Python 3 How to format to yyyy-mm-ddThh:mm:ssZ - python

I'm new to Python and I cannot for the life of me find my specific answer online. I need to format a timestamp to this exact format to include 'T', 'Z' and no sub or miliseconds like this yyyy-mm-ddThh:mm:ssZ i.e. 2019-03-06T11:22:00Z. There's lots of stuff on parsing this format but nothing about formatting this way. The only way I have nearly got it to work involves sub-seconds which I do not need. I've tried using arrow and reading their documentation but unable to get anything to work. Any help would be appreciated.

Try datetime library
import datetime
output_date = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ")
print(output_date)
For more information, refer to the Python Documentation.

Be careful. Just be cause a date can be formatted to look like UTC, doesn't mean it's accurate.
In ISO 8601, 'Z' is meant to designate "zulu time" or UTC ('+00:00'). While local times are typically designated by their offset from UTC. Even worse, these offsets can change throughout a year due to Daylight Saving Time (DST).
So unless you live in England in the winter or Iceland in the summer, chances are, you aren't lucky enough to be working with UTC locally, and your timestamps will be completely wrong.
Python3.8
from datetime import datetime, timezone
# a naive datetime representing local time
naive_dt = datetime.now()
# incorrect, local (MST) time made to look like UTC (very, very bad)
>>> naive_dt.strftime("%Y-%m-%dT%H:%M:%SZ")
'2020-08-27T20:57:54Z' # actual UTC == '2020-08-28T02:57:54Z'
# so we'll need an aware datetime (taking your timezone into consideration)
# NOTE: I imagine this works with DST, but I haven't verified
aware_dt = naive_dt.astimezone()
# correct, ISO-8601 (but not UTC)
>>> aware_dt.isoformat(timespec='seconds')
'2020-08-27T20:57:54-06:00'
# lets get the time in UTC
utc_dt = aware_dt.astimezone(timezone.utc)
# correct, ISO-8601 and UTC (but not in UTC format)
>>> utc_dt.isoformat(timespec='seconds')
'2020-08-28T02:57:54+00:00'
# correct, UTC format (this is what you asked for)
>>> date_str = utc_dt.isoformat(timespec='seconds')
>>> date_str.replace('+00:00', 'Z')
'2020-08-28T02:57:54Z'
# Perfect UTC format
>>> date_str = utc_dt.isoformat(timespec='milliseconds')
>>> date_str.replace('+00:00', 'Z')
'2020-08-28T02:57:54.640Z'
I just wanted to illustrate some things above, there are much simpler ways:
from datetime import datetime, timezone
def utcformat(dt, timespec='milliseconds'):
"""convert datetime to string in UTC format (YYYY-mm-ddTHH:MM:SS.mmmZ)"""
iso_str = dt.astimezone(timezone.utc).isoformat('T', timespec)
return iso_str.replace('+00:00', 'Z')
def fromutcformat(utc_str, tz=None):
iso_str = utc_str.replace('Z', '+00:00')
return datetime.fromisoformat(iso_str).astimezone(tz)
now = datetime.now(tz=timezone.utc)
# default with milliseconds ('2020-08-28T02:57:54.640Z')
print(utcformat(now))
# without milliseconds ('2020-08-28T02:57:54Z')
print(utcformat(now, timespec='seconds'))
>>> utc_str1 = '2020-08-28T04:35:35.455Z'
>>> dt = fromutcformat(utc_string)
>>> utc_str2 = utcformat(dt)
>>> utc_str1 == utc_str2
True
# it even converts naive local datetimes correctly (as of Python 3.8)
>>> now = datetime.now()
>>> utc_string = utcformat(now)
>>> converted = fromutcformat(utc_string)
>>> now.astimezone() - converted
timedelta(microseconds=997)

Thanks to skaul05 I managed to get the code I needed, it's
date = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ")
print(date)

With f strings, you can shorten it down to:
from datetime import datetime
f'{datetime.now():%Y-%m-%dT%H:%M:%SZ}'
Credits go to How do I turn a python datetime into a string, with readable format date?.

Related

Converting Unix timestamps with UTC offset, to Python datetime in different timezones?

If I run the following git log command (here, in this repo: https://github.com/rubyaustralia/rubyconfau-2013-cfp):
$ git --no-pager log --reverse --date=raw --pretty='%ad %h'
1344507869 -0700 314b3d4
1344508222 +1000 dffde53
1344510528 +1000 17e7d3b
...
... I get a list, where I have both Unix timestamp (seconds since Epoch), and a UTC offset, for every commit. What I would like to do, is to obtain a timezone aware datetime, that will:
Show me the date/time as the commit author saw it at the time (as per the recorded UTC time)
Show me the date/time as I would have seen it in my local timezone
In the first case, all I have is a UTC offset, not the author's time zone - and as such I'd have no information about possible daylight savings changes.
In the second case, my OS would most likely be set up to a certain locale including a (geographical) timezone, which would be aware of DST changes; say CET timezone has UTC offset of +0100 in winter, but in the summer daylight saving, it has UTC offset of +0200 (and is then called CEST)
In any case, I'd want to start with a UTC timestamp, because the "1344508222" count of epoch seconds is independent from timezones; the offset +1000 would simply help us see the human-readable output hopefully as the author saw it.
I need to do this for a Python 2.7 project, and I scoured through a ton of resources (SO posts), - and I came up with the following example (which attempts to parse the second line from the above snippet, "1344508222 +1000 dffde53"). However, I'm really not sure if it is right; so ultimately, my question would be - what would be the right way to do this?
Preamble:
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import datetime
import pytz
import dateutil.tz
import time
def getUtcOffsetFromString(in_offset_str): # SO:1101508
offset = int(in_offset_str[-4:-2])*60 + int(in_offset_str[-2:])
if in_offset_str[0] == "-":
offset = -offset
return offset
class FixedOffset(datetime.tzinfo): # SO:1101508
"""Fixed offset in minutes: `time = utc_time + utc_offset`."""
def __init__(self, offset):
self.__offset = datetime.timedelta(minutes=offset)
hours, minutes = divmod(offset, 60)
#NOTE: the last part is to remind about deprecated POSIX GMT+h timezones
# that have the opposite sign in the name;
# the corresponding numeric value is not used e.g., no minutes
self.__name = '<%+03d%02d>%+d' % (hours, minutes, -hours)
def utcoffset(self, dt=None):
return self.__offset
def tzname(self, dt=None):
return self.__name
def dst(self, dt=None):
return datetime.timedelta(0)
def __repr__(self):
return 'FixedOffset(%d)' % (self.utcoffset().total_seconds() / 60)
Start of parsing:
tstr = "1344508222 +1000 dffde53"
tstra = tstr.split(" ")
unixepochsecs = int(tstra[0])
utcoffsetstr = tstra[1]
print(unixepochsecs, utcoffsetstr) # (1344508222, '+1000')
Get UTC timestamp - first I attempted to parse the string 1528917616 +0000 with dateutil.parser.parse:
justthetstz = " ".join(tstra[:2])
print(justthetstz) # '1344508222 +1000'
#print(dateutil.parser.parse(justthets)) # ValueError: Unknown string format
... but that unfortunately fails.
This worked to get UTC timestamp:
# SO:12978391: "datetime.fromtimestamp(self.epoch) returns localtime that shouldn't be used with an arbitrary timezone.localize(); you need utcfromtimestamp() to get datetime in UTC and then convert it to a desired timezone"
dtstamp = datetime.datetime.utcfromtimestamp(unixepochsecs).replace(tzinfo=pytz.utc)
print(dtstamp) # 2012-08-09 10:30:22+00:00
print(dtstamp.isoformat()) # 2012-08-09T10:30:22+00:00 # ISO 8601
Ok, so far so good - this UTC timestamp looks reasonable.
Now, trying to get the date in author's UTC offset - apparently a custom class is needed here:
utcoffset = getUtcOffsetFromString(utcoffsetstr)
fixedtz = FixedOffset(utcoffset)
print(utcoffset, fixedtz) # (600, FixedOffset(600))
dtstampftz = dtstamp.astimezone(fixedtz)
print(dtstampftz) # 2012-08-09 20:30:22+10:00
print(dtstampftz.isoformat()) # 2012-08-09T20:30:22+10:00
This looks reasonable too, 10:30 in UTC would be 20:30 in +1000; then again, an offset is an offset, no ambiguity here.
Now I'm trying to derive the datetime in my local timezone - first, it looks like I shouldn't use the .replace method:
print(time.tzname[0]) # CET
tzlocal = dateutil.tz.tzlocal()
print(tzlocal) # tzlocal()
dtstamplocrep = dtstamp.replace(tzinfo=tzlocal)
print(dtstamp) # 2012-08-09 10:30:22+00:00
print(dtstamplocrep) # 2012-08-09 10:30:22+02:00 # not right!
This doesn't look right, I got the exact same "clock string", and different offsets.
However, .astimezone seems to work:
dtstamploc = dtstamp.astimezone(dateutil.tz.tzlocal())
print(dtstamp) # 2012-08-09 10:30:22+00:00
print(dtstamploc) # 2012-08-09 12:30:22+02:00 # was August -> summer -> CEST: UTC+2h
I get the same with a named pytz.timezone:
cphtz = pytz.timezone('Europe/Copenhagen')
dtstamploc = dtstamp.astimezone(cphtz)
print(dtstamp) # 2012-08-09 10:30:22+00:00
print(dtstamploc) # 2012-08-09 12:30:22+02:00 # is August -> summer -> CEST: UTC+2h
... however, I cannot use .localize here, since my input dtstamp already has a timezone associated with it, and is therefore not "naive" anymore:
# dtstamploc = cphtz.localize(dtstamp, is_dst=True) # ValueError: Not naive datetime (tzinfo is already set)
Ultimately, so far this looks correct, but I'm really uncertain about it - especially since I got to see this:
pytz.astimezone not accounting for daylight savings?
You can't assign the timezone in the datetime constructor, because it doesn't give the timezone object a chance to adjust for daylight savings - the date isn't accessible to it. This causes even more problems for certain parts of the world, where the name and offset of the timezone have changed over the years.
From the pytz documentation:
Unfortunately using the tzinfo argument of the standard datetime constructors ‘’does not work’’ with pytz for many timezones.
Use the localize method with a naive datetime instead.
... which ended up confusing me: say I want to do this, and I already have a correct timezoned timestamp, - how would I derive a "naive" datetime for it? Just get rid of the timezone info? Or is the right "naive" datetime derived from version of the timestamp expressed in UTC (e.g. 2012-08-09 20:30:22+10:00 -> 2012-08-09 10:30:22+00:00, and so the right "naive" datetime would be 2012-08-09 10:30:22)?

python mktime(.timetuple()) returns different results in mac and linux

I noticed time.mktime(.timetuple()) returned different time on mac and linux(ubuntu). Why this?
date = ['2016-07-01', '2016-07-05']
xdata = [datetime.datetime.strptime(str(s), "%Y-%m-%d") for s in date]
xdata = [time.mktime(s.timetuple()) * 1000 for s in xdata]
print xdata
# ----mac--
>> [1467356400000.0, 1467702000000.0]
#-----linux---
>> [1467345600000.0, 1467691200000.0]
How to return in UTC?
I marked to close this as a duplicate, but it's really not if you're viewing your original inputs as being in UTC to begin with. If you are (it's not wholly clear), then just replace your time.mktime with calendar.timegm.
>>> d = datetime.datetime(2016, 9, 1)
>>> calendar.timegm(d.timetuple())
1472688000
Or you can do it all yourself:
>>> EPOCH = datetime.datetime(1970, 1, 1)
>>> def dt2utcstamp(d):
... return (d - EPOCH).total_seconds()
and then:
>>> dt2utcstamp(d)
1472688000.0
I generally do the latter, because I find it next to impossible to remember what all the goofy time-and-date functions do ;-) But the timedelta.total_seconds() method doesn't exist before Python 3.2.
Or if you do view the inputs as being in local time, then the other answers apply:
How do I convert local time to UTC in Python?
NOTE
When you ask "How to return in UTC?", you have to realize that your original code already did that: timestamps are always viewed as being seconds from the epoch in UTC. Indeed, that's why you got different results on platforms set to different time zones to begin with: '2016-07-01'(with implied time 00:00:00) is a different real-world instant depending on which time zone it's viewed as being in.
The s.timetuple() part doesn't care about that, but it's a primary purpose of the time.mktime() part to convert the local time to a UTC timestamp.

Is there any proper method to convert ISO8601(with tzone) to milliseconds on python? [duplicate]

This question already has answers here:
How do I parse an ISO 8601-formatted date?
(29 answers)
Closed 8 years ago.
The community reviewed whether to reopen this question last month and left it closed:
Original close reason(s) were not resolved
I'm getting a datetime string in a format like "2009-05-28T16:15:00" (this is ISO 8601, I believe). One hackish option seems to be to parse the string using time.strptime and passing the first six elements of the tuple into the datetime constructor, like:
datetime.datetime(*time.strptime("2007-03-04T21:08:12", "%Y-%m-%dT%H:%M:%S")[:6])
I haven't been able to find a "cleaner" way of doing this. Is there one?
I prefer using the dateutil library for timezone handling and generally solid date parsing. If you were to get an ISO 8601 string like: 2010-05-08T23:41:54.000Z you'd have a fun time parsing that with strptime, especially if you didn't know up front whether or not the timezone was included. pyiso8601 has a couple of issues (check their tracker) that I ran into during my usage and it hasn't been updated in a few years. dateutil, by contrast, has been active and worked for me:
from dateutil import parser
yourdate = parser.parse(datestring)
Since Python 3.7 and no external libraries, you can use the fromisoformat function from the datetime module:
datetime.datetime.fromisoformat('2019-01-04T16:41:24+02:00')
Python 2 doesn't support the %z format specifier, so it's best to explicitly use Zulu time everywhere if possible:
datetime.datetime.strptime("2007-03-04T21:08:12Z", "%Y-%m-%dT%H:%M:%SZ")
Because ISO 8601 allows many variations of optional colons and dashes being present, basically CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]. If you want to use strptime, you need to strip out those variations first.
The goal is to generate a UTC datetime object.
If you just want a basic case that work for UTC with the Z suffix like 2016-06-29T19:36:29.3453Z:
datetime.datetime.strptime(timestamp.translate(None, ':-'), "%Y%m%dT%H%M%S.%fZ")
If you want to handle timezone offsets like 2016-06-29T19:36:29.3453-0400 or 2008-09-03T20:56:35.450686+05:00 use the following. These will convert all variations into something without variable delimiters like 20080903T205635.450686+0500 making it more consistent/easier to parse.
import re
# This regex removes all colons and all
# dashes EXCEPT for the dash indicating + or - utc offset for the timezone
conformed_timestamp = re.sub(r"[:]|([-](?!((\d{2}[:]\d{2})|(\d{4}))$))", '', timestamp)
datetime.datetime.strptime(conformed_timestamp, "%Y%m%dT%H%M%S.%f%z" )
If your system does not support the %z strptime directive (you see something like ValueError: 'z' is a bad directive in format '%Y%m%dT%H%M%S.%f%z') then you need to manually offset the time from Z (UTC). Note %z may not work on your system in Python versions < 3 as it depended on the C library support which varies across system/Python build type (i.e., Jython, Cython, etc.).
import re
import datetime
# This regex removes all colons and all
# dashes EXCEPT for the dash indicating + or - utc offset for the timezone
conformed_timestamp = re.sub(r"[:]|([-](?!((\d{2}[:]\d{2})|(\d{4}))$))", '', timestamp)
# Split on the offset to remove it. Use a capture group to keep the delimiter
split_timestamp = re.split(r"([+|-])",conformed_timestamp)
main_timestamp = split_timestamp[0]
if len(split_timestamp) == 3:
sign = split_timestamp[1]
offset = split_timestamp[2]
else:
sign = None
offset = None
# Generate the datetime object without the offset at UTC time
output_datetime = datetime.datetime.strptime(main_timestamp +"Z", "%Y%m%dT%H%M%S.%fZ" )
if offset:
# Create timedelta based on offset
offset_delta = datetime.timedelta(hours=int(sign+offset[:-2]), minutes=int(sign+offset[-2:]))
# Offset datetime with timedelta
output_datetime = output_datetime + offset_delta
Arrow looks promising for this:
>>> import arrow
>>> arrow.get('2014-11-13T14:53:18.694072+00:00').datetime
datetime.datetime(2014, 11, 13, 14, 53, 18, 694072, tzinfo=tzoffset(None, 0))
Arrow is a Python library that provides a sensible, intelligent way of creating, manipulating, formatting and converting dates and times. Arrow is simple, lightweight and heavily inspired by moment.js and requests.
You should keep an eye on the timezone information, as you might get into trouble when comparing non-tz-aware datetimes with tz-aware ones.
It's probably the best to always make them tz-aware (even if only as UTC), unless you really know why it wouldn't be of any use to do so.
#-----------------------------------------------
import datetime
import pytz
import dateutil.parser
#-----------------------------------------------
utc = pytz.utc
BERLIN = pytz.timezone('Europe/Berlin')
#-----------------------------------------------
def to_iso8601(when=None, tz=BERLIN):
if not when:
when = datetime.datetime.now(tz)
if not when.tzinfo:
when = tz.localize(when)
_when = when.strftime("%Y-%m-%dT%H:%M:%S.%f%z")
return _when[:-8] + _when[-5:] # Remove microseconds
#-----------------------------------------------
def from_iso8601(when=None, tz=BERLIN):
_when = dateutil.parser.parse(when)
if not _when.tzinfo:
_when = tz.localize(_when)
return _when
#-----------------------------------------------
I haven't tried it yet, but pyiso8601 promises to support this.
import datetime, time
def convert_enddate_to_seconds(self, ts):
"""Takes ISO 8601 format(string) and converts into epoch time."""
dt = datetime.datetime.strptime(ts[:-7],'%Y-%m-%dT%H:%M:%S.%f')+\
datetime.timedelta(hours=int(ts[-5:-3]),
minutes=int(ts[-2:]))*int(ts[-6:-5]+'1')
seconds = time.mktime(dt.timetuple()) + dt.microsecond/1000000.0
return seconds
This also includes the milliseconds and time zone.
If the time is '2012-09-30T15:31:50.262-08:00', this will convert into epoch time.
>>> import datetime, time
>>> ts = '2012-09-30T15:31:50.262-08:00'
>>> dt = datetime.datetime.strptime(ts[:-7],'%Y-%m-%dT%H:%M:%S.%f')+ datetime.timedelta(hours=int(ts[-5:-3]), minutes=int(ts[-2:]))*int(ts[-6:-5]+'1')
>>> seconds = time.mktime(dt.timetuple()) + dt.microsecond/1000000.0
>>> seconds
1348990310.26
Both ways:
Epoch to ISO time:
isoTime = time.strftime('%Y-%m-%dT%H:%M:%SZ', time.gmtime(epochTime))
ISO time to Epoch:
epochTime = time.mktime(time.strptime(isoTime, '%Y-%m-%dT%H:%M:%SZ'))
Isodate seems to have the most complete support.
aniso8601 should handle this. It also understands timezones, Python 2 and Python 3, and it has a reasonable coverage of the rest of ISO 8601, should you ever need it.
import aniso8601
aniso8601.parse_datetime('2007-03-04T21:08:12')
Here is a super simple way to do these kind of conversions.
No parsing, or extra libraries required.
It is clean, simple, and fast.
import datetime
import time
################################################
#
# Takes the time (in seconds),
# and returns a string of the time in ISO8601 format.
# Note: Timezone is UTC
#
################################################
def TimeToISO8601(seconds):
strKv = datetime.datetime.fromtimestamp(seconds).strftime('%Y-%m-%d')
strKv = strKv + "T"
strKv = strKv + datetime.datetime.fromtimestamp(seconds).strftime('%H:%M:%S')
strKv = strKv +"Z"
return strKv
################################################
#
# Takes a string of the time in ISO8601 format,
# and returns the time (in seconds).
# Note: Timezone is UTC
#
################################################
def ISO8601ToTime(strISOTime):
K1 = 0
K2 = 9999999999
K3 = 0
counter = 0
while counter < 95:
K3 = (K1 + K2) / 2
strK4 = TimeToISO8601(K3)
if strK4 < strISOTime:
K1 = K3
if strK4 > strISOTime:
K2 = K3
counter = counter + 1
return K3
################################################
#
# Takes a string of the time in ISO8601 (UTC) format,
# and returns a python DateTime object.
# Note: returned value is your local time zone.
#
################################################
def ISO8601ToDateTime(strISOTime):
return time.gmtime(ISO8601ToTime(strISOTime))
#To test:
Test = "2014-09-27T12:05:06.9876"
print ("The test value is: " + Test)
Ans = ISO8601ToTime(Test)
print ("The answer in seconds is: " + str(Ans))
print ("And a Python datetime object is: " + str(ISO8601ToDateTime(Test)))

datetime: Round/trim number of digits in microseconds

Currently I am logging stuff and I am using my own formatter with a custom formatTime():
def formatTime(self, _record, _datefmt):
t = datetime.datetime.now()
return t.strftime('%Y-%m-%d %H:%M:%S.%f')
My issue is that the microseconds, %f, are six digits. Is there anyway to spit out less digits, like the first three digits of the microseconds?
The simplest way would be to use slicing to just chop off the last three digits of the microseconds:
def format_time():
t = datetime.datetime.now()
s = t.strftime('%Y-%m-%d %H:%M:%S.%f')
return s[:-3]
I strongly recommend just chopping. I once wrote some logging code that rounded the timestamps rather than chopping, and I found it actually kind of confusing when the rounding changed the last digit. There was timed code that stopped running at a certain timestamp yet there were log events with that timestamp due to the rounding. Simpler and more predictable to just chop.
If you want to actually round the number rather than just chopping, it's a little more work but not horrible:
def format_time():
t = datetime.datetime.now()
s = t.strftime('%Y-%m-%d %H:%M:%S.%f')
head = s[:-7] # everything up to the '.'
tail = s[-7:] # the '.' and the 6 digits after it
f = float(tail)
temp = "{:.03f}".format(f) # for Python 2.x: temp = "%.3f" % f
new_tail = temp[1:] # temp[0] is always '0'; get rid of it
return head + new_tail
Obviously you can simplify the above with fewer variables; I just wanted it to be very easy to follow.
As of Python 3.6 the language has this feature built in:
def format_time():
t = datetime.datetime.now()
s = t.isoformat(timespec='milliseconds')
return s
This method should always return a timestamp that looks exactly like this (with or without the timezone depending on whether the input dt object contains one):
2016-08-05T18:18:54.776+0000
It takes a datetime object as input (which you can produce with datetime.datetime.now()). To get the time zone like in my example output you'll need to import pytz and pass datetime.datetime.now(pytz.utc).
import pytz, datetime
time_format(datetime.datetime.now(pytz.utc))
def time_format(dt):
return "%s:%.3f%s" % (
dt.strftime('%Y-%m-%dT%H:%M'),
float("%.3f" % (dt.second + dt.microsecond / 1e6)),
dt.strftime('%z')
)
I noticed that some of the other methods above would omit the trailing zero if there was one (e.g. 0.870 became 0.87) and this was causing problems for the parser I was feeding these timestamps into. This method does not have that problem.
An easy solution that should work in all cases:
def format_time():
t = datetime.datetime.now()
if t.microsecond % 1000 >= 500: # check if there will be rounding up
t = t + datetime.timedelta(milliseconds=1) # manually round up
return t.strftime('%Y-%m-%d %H:%M:%S.%f')[:-3]
Basically you do manual rounding on the date object itself first, then you can safely trim the microseconds.
Edit: As some pointed out in the comments below, the rounding of this solution (and the one above) introduces problems when the microsecond value reaches 999500, as 999.5 is rounded to 1000 (overflow).
Short of reimplementing strftime to support the format we want (the potential overflow caused by the rounding would need to be propagated up to seconds, then minutes, etc.), it is much simpler to just truncate to the first 3 digits as outlined in the accepted answer, or using something like:
'{:03}'.format(int(999999/1000))
-- Original answer preserved below --
In my case, I was trying to format a datestamp with milliseconds formatted as 'ddd'. The solution I ended up using to get milliseconds was to use the microsecond attribute of the datetime object, divide it by 1000.0, pad it with zeros if necessary, and round it with format. It looks like this:
'{:03.0f}'.format(datetime.now().microsecond / 1000.0)
# Produces: '033', '499', etc.
You can subtract the current datetime from the microseconds.
d = datetime.datetime.now()
current_time = d - datetime.timedelta(microseconds=d.microsecond)
This will turn 2021-05-14 16:11:21.916229 into 2021-05-14 16:11:21
This method allows flexible precision and will consume the entire microsecond value if you specify too great a precision.
def formatTime(self, _record, _datefmt, precision=3):
dt = datetime.datetime.now()
us = str(dt.microsecond)
f = us[:precision] if len(us) > precision else us
return "%d-%d-%d %d:%d:%d.%d" % (dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, int(f))
This method implements rounding to 3 decimal places:
import datetime
from decimal import *
def formatTime(self, _record, _datefmt, precision='0.001'):
dt = datetime.datetime.now()
seconds = float("%d.%d" % (dt.second, dt.microsecond))
return "%d-%d-%d %d:%d:%s" % (dt.year, dt.month, dt.day, dt.hour, dt.minute,
float(Decimal(seconds).quantize(Decimal(precision), rounding=ROUND_HALF_UP)))
I avoided using the strftime method purposely because I would prefer not to modify a fully serialized datetime object without revalidating it. This way also shows the date internals in case you want to modify it further.
In the rounding example, note that the precision is string-based for the Decimal module.
Here is my solution using regexp:
import re
# Capture 6 digits after dot in a group.
regexp = re.compile(r'\.(\d{6})')
def to_splunk_iso(dt):
"""Converts the datetime object to Splunk isoformat string."""
# 6-digits string.
microseconds = regexp.search(dt.isoformat()).group(1)
return regexp.sub('.%d' % round(float(microseconds) / 1000), dt.isoformat())
Fixing the proposed solution based on Pablojim Comments:
from datetime import datetime
dt = datetime.now()
dt_round_microsec = round(dt.microsecond/1000) #number of zeroes to round
dt = dt.replace(microsecond=dt_round_microsec)
If once want to get the day of the week (i.e, 'Sunday)' along with the result, then by slicing '[:-3]' will not work. At that time you may go with,
dt = datetime.datetime.now()
print("{}.{:03d} {}".format(dt.strftime('%Y-%m-%d %I:%M:%S'), dt.microsecond//1000, dt.strftime("%A")))
#Output: '2019-05-05 03:11:22.211 Sunday'
%H - for 24 Hour format
%I - for 12 Hour format
Thanks,
Adding my two cents here as this method will allow you to write your microsecond format as you would a float in c-style. It takes advantage that they both use %f.
import datetime
import re
def format_datetime(date, format):
"""Format a ``datetime`` object with microsecond precision.
Pass your microsecond as you would format a c-string float.
e.g "%.3f"
Args:
date (datetime.datetime): You input ``datetime`` obj.
format (str): Your strftime format string.
Returns:
str: Your formatted datetime string.
"""
# We need to check if formatted_str contains "%.xf" (x = a number)
float_format = r"(%\.\d+f)"
has_float_format = re.search(float_format, format)
if has_float_format:
# make microseconds be decimal place. Might be a better way to do this
microseconds = date.microsecond
while int(microseconds): # quit once it's 0
microseconds /= 10
ms_str = has_float_format.group(1) % microseconds
format = re.sub(float_format, ms_str[2:], format)
return date.strftime(format)
print(datetime.datetime.now(), "%H:%M:%S.%.3f")
# '17:58:54.424'

string to datetime with fractional seconds, on Google App Engine

I need to convert a string to a datetime object, along with the fractional seconds. I'm running into various problems.
Normally, i would do:
>>> datetime.datetime.strptime(val, "%Y-%m-%dT%H:%M:%S.%f")
But errors and old docs showed me that python2.5's strptime does not have %f...
Investigating further, it seems that the App Engine's data store does not like fractional seconds. Upon editing a datastore entity, trying to add .5 to the datetime field gave me the following error:
ValueError: unconverted data remains: .5
I doubt that fractional seconds are not supported... so this is just on the datastore viewer, right?
Has anyone circumvented this issue? I want to use the native datetime objects... I rather not store UNIX timestamps...
Thanks!
EDIT: Thanks to Jacob Oscarson for the .replace(...) tip!
One thing to keep in mind is to check the length of nofrag before feeding it in. Different sources use different precision for seconds.
Here's a quick function for those looking for something similar:
def strptime(val):
if '.' not in val:
return datetime.datetime.strptime(val, "%Y-%m-%dT%H:%M:%S")
nofrag, frag = val.split(".")
date = datetime.datetime.strptime(nofrag, "%Y-%m-%dT%H:%M:%S")
frag = frag[:6] # truncate to microseconds
frag += (6 - len(frag)) * '0' # add 0s
return date.replace(microsecond=int(frag))
Parsing
Without the %f format support for datetime.datetime.strptime() you can still sufficiently easy enter it into a datetime.datetime object (randomly picking a value for your val here) using datetime.datetime.replace()), tested on 2.5.5:
>>> val = '2010-08-06T10:00:14.143896'
>>> nofrag, frag = val.split('.')
>>> nofrag_dt = datetime.datetime.strptime(nofrag, "%Y-%m-%dT%H:%M:%S")
>>> dt = nofrag_dt.replace(microsecond=int(frag))
>>> dt
datetime.datetime(2010, 8, 6, 10, 0, 14, 143896)
Now you have your datetime.datetime object.
Storing
Reading further into http://code.google.com/appengine/docs/python/datastore/typesandpropertyclasses.html#datetime
I can see no mentioning that fractions isn't supported, so yes, it's probably only the datastore viewer. The docs points directly to Python 2.5.2's module docs for datetime, and it does support fractions, just not the %f parsing directive for strptime. Querying for fractions might be trickier, though..
All ancient history by now, but in these modern times you can also conveniently use dateutil
from dateutil import parser as DUp
funky_time_str = "1/1/2011 12:51:00.0123 AM"
foo = DUp.parse(funky_time_str)
print foo.timetuple()
# time.struct_time(tm_year=2011, tm_mon=1, tm_mday=1, tm_hour=0, tm_min=51, tm_sec=0, tm_wday=5, tm_yday=1, tm_isdst=-1)
print foo.microsecond
# 12300
print foo
# 2011-01-01 00:51:00.012300
dateutil supports a surprising variety of possible input formats, which it parses without pattern strings.

Categories