Plot signal spectrogram image for each time step in python - python

I want to print a spectrogram image for each time step
This is what i have tried
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
NFFT = 256 # the length of the windowing segments
Fs = 64 # the sampling rate
plt.subplot(212) # don't share the axis
for x in range(1,20):
Pxx, freqs, bins, im = plt.specgram(a, NFFT=150, Fs=Fs,noverlap=50, cmap=plt.cm.gist_heat)
NFFT = NFFT+50
plt.savefig("spectrogram{x}.png".format(x=x))
But the output image for the first iteration is as same as the image in the last iteration

Related

How to get mel-spectagram peaks array in python?

I want to make an audio fingerprint, so i need to get a spectrogram peaks array. I've tried to find solution in the internet, but there's nothing.
Here is the spectagram example
import librosa, librosa.display
import numpy as np
import matplotlib.pyplot as plt
import IPython.display as ipd
from FFT import FFT
def MEL_SPECTOGRAM(signal, sr, fileName):
ipd.Audio(signal, rate=sr)
# this is the number of samples in a window per fft
n_fft = 2048
# The amount of samples we are shifting after each fft
hop_length = 512
audio_stft = librosa.core.stft(signal, hop_length=hop_length, n_fft=n_fft)
spectrogram = np.abs(audio_stft)
log_spectro = librosa.amplitude_to_db(spectrogram)
librosa.util.normalize(log_spectro)
librosa.display.specshow(log_spectro, sr=sr, n_fft=n_fft, hop_length=hop_length, cmap='magma', win_length=n_fft)
plt.plot()
plt.show()
[mel-spectagram example]
(https://i.stack.imgur.com/u0zKd.png)
The best solution i found was this video, but unfortunately, it was written on wolfram, so i can't use it
https://www.youtube.com/watch?v=oCHeGesfJe8&ab_channel=Wolfram

Convert imshow spectrogram to image

I would like to save just the wavelet image (no ticks nor labels) shown here to a png file.
I tried to follow the solution posted here for saving a spectrogram plot, but this approach is not working for me.
This is what I get:
This is the code that I have used:
import librosa
import librosa.display
import os
import pywt
import matplotlib.pyplot as plt
import soundfile as sf
import skimage.io
from tftb.generators import anasing
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
from ssqueezepy import cwt
from ssqueezepy.visuals import plot, imshow
# Set the path to the Binary Class dataset
fulldatasetpath = 'G:/AudioFile'
input_file = (r'G:/Audiofile.wav')
[data1, sample_rate1] = sf.read(input_file)
#[sample_rate1, data1] = wav.read(input_file);
duration = len(data1)/sample_rate1
time = np.arange(0, duration, 1/sample_rate1) #time vector
#%%############## Take CWT & plot ##################################################
Wx, scales = cwt(data1, 'morlet')
imshow(Wx, abs=1)
plt.show()
Wx = abs(Wx)
#%%############## SAVE TO IMAGE ###########################################
def scale_minmax(X, min=0.0, max=1.0):
X_std = (X - X.min()) / (X.max() - X.min())
X_scaled = X_std * (max - min) + min
return X_scaled
wave1 = np.log(Wx + 1e-9) # add small number to avoid log(0)
# min-max scale to fit inside 8-bit range
img = scale_minmax(Wx, 0, 255).astype(np.uint8)
img = np.flip(img, axis=0) # put low frequencies at the bottom in image
img = 255-img # invert. make black==more energy
out = 'out.png'
# save as PNG
skimage.io.imsave(out, img)
You can set the position of the axis to cover the entire figure, and you can also play with figsize. For example:
import matplotlib.pyplot as plt
import numpy as np
from ssqueezepy import imshow
# test image
img = np.zeros((500, 40000, 3), dtype=int)
for i in range(img.shape[1]):
img[:, i, 0] = int(abs(1 - 2 * i / img.shape[1]) * 255)
# create a figure and set the size
f = plt.figure(figsize=(8, 4))
# add a new axis into which ssqueezepy is going to plot
ax = f.add_subplot()
imshow(img)
# turn off tick labels
ax.axis(False)
# make the axis to cover the entire figure
ax.set_position([0, 0, 1, 1])
f.savefig("result.png")

Python Audio Analysis, Spectrogram: Which spectrogram should I use and why?

I am doing my final project at university: pitch estimation from song recording using convolutional neural network (CNN). I want to retrieve pitches existed in a song recording. For CNN input, I am using a spectrogram.
I am using MIR-QBSH dataset with pitch vectors as data label. Before processing the audio to CNN (each audio has 8 sec duration in .wav files of 8 KHz, 8 bit, mono), I need to pre-process the audio into a spectrogram representation.
I have found 3 ways to generate a spectrogram, the code are listed below.
Audio example I am using in this code is available here.
Imports:
import librosa
import numpy as np
import matplotlib.pyplot as plt
import librosa.display
from numpy.fft import *
import math
import wave
import struct
from scipy.io import wavfile
Spectrogram A
x, sr = librosa.load('audio/00020_2003_person1.wav', sr=None)
window_size = 1024
hop_length = 512
n_mels = 128
time_steps = 384
window = np.hanning(window_size)
stft= librosa.core.spectrum.stft(x, n_fft = window_size, hop_length = hop_length, window=window)
out = 2 * np.abs(stft) / np.sum(window)
plt.figure(figsize=(12, 4))
ax = plt.axes()
plt.set_cmap('hot')
librosa.display.specshow(librosa.amplitude_to_db(out, ref=np.max), y_axis='log', x_axis='time',sr=sr)
plt.savefig('spectrogramA.png', bbox_inches='tight', transparent=True, pad_inches=0.0 )
Spectrogram B
x, sr = librosa.load('audio/00020_2003_person1.wav', sr=None)
X = librosa.stft(x)
Xdb = librosa.amplitude_to_db(abs(X))
# plt.figure(figsize=(14, 5))
librosa.display.specshow(Xdb, sr=sr, x_axis='time', y_axis='hz')
Spectrogram C
# Read the wav file (mono)
samplingFrequency, signalData = wavfile.read('audio/00020_2003_person1.wav')
print(samplingFrequency)
print(signalData)
# Plot the signal read from wav file
plt.subplot(111)
plt.specgram(signalData,Fs=samplingFrequency)
plt.xlabel('Time')
plt.ylabel('Frequency')
Spectrogram results are displayed below:
My question is, from the 3 spectrograms I have listed above, which spectrogram is best to use for input to CNN and why should I use that spectrogram type? I am currently having difficulty to find their differences, as well as their pros and cons.

how to convert the x-axis accelerator signal into spectrogram in python?

my dataset (patient No., time/millisecond, x, y, z, label)
1,15,70,39,-970,0
1,31,70,39,-970,0
1,46,60,49,-960,0
1,62,60,49,-960,0
1,78,50,39,-960,0
1,93,50,39,-960,0
.
.
.
i am trying to to use the spectrogam for x-axis signal in preprocessing stage to use it then as the input data for a machine learning model instead of using the original raw x-axis data
here is what i tried to do
import matplotlib.pyplot as plt
import numpy as np
dt = 0.0005
t = np.arange(0.0, 20.0, dt)
data = np.loadtxt("trainingdataset.txt", delimiter=",")
x = data[:]
NFFT = 1024 # the length of the windowing segments
Fs = int(1.0/dt) # the sampling frequency
ax1 = plt.subplot(211)
plt.plot(x)
plt.subplot(212, sharex=ax1)
Pxx, freqs, bins, im = plt.specgram(x, NFFT=NFFT, Fs=Fs, noverlap=900)
plt.show()
it gets me the following error
Warning (from warnings module):
File "C:\Users\hadeer.elziaat\AppData\Local\Programs\Python\Python36\lib\site-packages\matplotlib\axes\_axes.py", line 7221
Z = 10. * np.log10(spec)
RuntimeWarning: divide by zero encountered in log10
If x is your signal and you can assume that your sampling rate is the mean of time/millisecond, then probably you can use the librosa library to compute the mel-spectrogram using librosa.feature.melspectrogram, there's also other utils to compute signal related features.

How to plot a wav file

I have just read a wav file with scipy and now I want to make the plot of the file using matplotlib, on the "y scale" I want to see the aplitude and over the "x scale" I want to see the numbers of frames!
Any help how can I do this??
Thank you!
from scipy.io.wavfile import read
import numpy as np
from numpy import*
import matplotlib.pyplot as plt
a=read("C:/Users/Martinez/Desktop/impulso.wav")
print a
You can call wave lib to read an audio file.
To plot the waveform, use the "plot" function from matplotlib
import matplotlib.pyplot as plt
import numpy as np
import wave
import sys
spf = wave.open("wavfile.wav", "r")
# Extract Raw Audio from Wav File
signal = spf.readframes(-1)
signal = np.fromstring(signal, "Int16")
# If Stereo
if spf.getnchannels() == 2:
print("Just mono files")
sys.exit(0)
plt.figure(1)
plt.title("Signal Wave...")
plt.plot(signal)
plt.show()
you will have something like:
To Plot the x-axis in seconds you need get the frame rate and divide by size of your signal, you can use linspace function from numpy to create a Time Vector spaced linearly with the size of the audio file and finally you can use plot again like plt.plot(Time,signal)
import matplotlib.pyplot as plt
import numpy as np
import wave
import sys
spf = wave.open("Animal_cut.wav", "r")
# Extract Raw Audio from Wav File
signal = spf.readframes(-1)
signal = np.fromstring(signal, "Int16")
fs = spf.getframerate()
# If Stereo
if spf.getnchannels() == 2:
print("Just mono files")
sys.exit(0)
Time = np.linspace(0, len(signal) / fs, num=len(signal))
plt.figure(1)
plt.title("Signal Wave...")
plt.plot(Time, signal)
plt.show()
New plot x-axis in seconds:
Alternatively, if you want to use SciPy, you may also do the following:
from scipy.io.wavfile import read
import matplotlib.pyplot as plt
# read audio samples
input_data = read("Sample.wav")
audio = input_data[1]
# plot the first 1024 samples
plt.plot(audio[0:1024])
# label the axes
plt.ylabel("Amplitude")
plt.xlabel("Time")
# set the title
plt.title("Sample Wav")
# display the plot
plt.show()
Here's a version that will also handle stereo inputs, based on the answer by #ederwander
import matplotlib.pyplot as plt
import numpy as np
import wave
file = 'test.wav'
with wave.open(file,'r') as wav_file:
#Extract Raw Audio from Wav File
signal = wav_file.readframes(-1)
signal = np.fromstring(signal, 'Int16')
#Split the data into channels
channels = [[] for channel in range(wav_file.getnchannels())]
for index, datum in enumerate(signal):
channels[index%len(channels)].append(datum)
#Get time from indices
fs = wav_file.getframerate()
Time=np.linspace(0, len(signal)/len(channels)/fs, num=len(signal)/len(channels))
#Plot
plt.figure(1)
plt.title('Signal Wave...')
for channel in channels:
plt.plot(Time,channel)
plt.show()
Here is the code to draw a waveform and a frequency spectrum of a wavefile
import wave
import numpy as np
import matplotlib.pyplot as plt
signal_wave = wave.open('voice.wav', 'r')
sample_rate = 16000
sig = np.frombuffer(signal_wave.readframes(sample_rate), dtype=np.int16)
For the whole segment of the wave file
sig = sig[:]
For partial segment of the wave file
sig = sig[25000:32000]
Separating stereo channels
left, right = data[0::2], data[1::2]
Plot the waveform (plot_a) and the frequency spectrum (plot_b)
plt.figure(1)
plot_a = plt.subplot(211)
plot_a.plot(sig)
plot_a.set_xlabel('sample rate * time')
plot_a.set_ylabel('energy')
plot_b = plt.subplot(212)
plot_b.specgram(sig, NFFT=1024, Fs=sample_rate, noverlap=900)
plot_b.set_xlabel('Time')
plot_b.set_ylabel('Frequency')
plt.show()
Just an observation (I cannot add comment).
You will receive the following mesage:
DeprecationWarning: Numeric-style type codes are deprecated and will
resultin an error in the future.
Do not use np.fromstring with binaries. Instead of signal = np.fromstring(signal, 'Int16'), it's preferred to use signal = np.frombuffer(signal, dtype='int16').
Here is a version that handles mono/stereo and 8-bit/16-bit PCM.
import matplotlib.pyplot as plt
import numpy as np
import wave
file = 'test.wav'
wav_file = wave.open(file,'r')
#Extract Raw Audio from Wav File
signal = wav_file.readframes(-1)
if wav_file.getsampwidth() == 1:
signal = np.array(np.frombuffer(signal, dtype='UInt8')-128, dtype='Int8')
elif wav_file.getsampwidth() == 2:
signal = np.frombuffer(signal, dtype='Int16')
else:
raise RuntimeError("Unsupported sample width")
# http://schlameel.com/2017/06/09/interleaving-and-de-interleaving-data-with-python/
deinterleaved = [signal[idx::wav_file.getnchannels()] for idx in range(wav_file.getnchannels())]
#Get time from indices
fs = wav_file.getframerate()
Time=np.linspace(0, len(signal)/wav_file.getnchannels()/fs, num=len(signal)/wav_file.getnchannels())
#Plot
plt.figure(1)
plt.title('Signal Wave...')
for channel in deinterleaved:
plt.plot(Time,channel)
plt.show()
I suppose I could've put this in a comment, but building slightly on the answers from both #ederwander and #TimSC, I wanted to make something more fine (as in detailed) and aesthetically pleasing. The code below creates what I think is a very nice waveform of a stereo or mono wave file (I didn't need a title so I just commented that out, nor did I need the show method - just needed to save the image file).
Here's an example of a stereo wav rendered:
And the code, with the differences I mentioned:
import matplotlib.pyplot as plt
import numpy as np
import wave
file = '/Path/to/my/audio/file/DeadMenTellNoTales.wav'
wav_file = wave.open(file,'r')
#Extract Raw Audio from Wav File
signal = wav_file.readframes(-1)
if wav_file.getsampwidth() == 1:
signal = np.array(np.frombuffer(signal, dtype='UInt8')-128, dtype='Int8')
elif wav_file.getsampwidth() == 2:
signal = np.frombuffer(signal, dtype='Int16')
else:
raise RuntimeError("Unsupported sample width")
# http://schlameel.com/2017/06/09/interleaving-and-de-interleaving-data-with-python/
deinterleaved = [signal[idx::wav_file.getnchannels()] for idx in range(wav_file.getnchannels())]
#Get time from indices
fs = wav_file.getframerate()
Time=np.linspace(0, len(signal)/wav_file.getnchannels()/fs, num=len(signal)/wav_file.getnchannels())
plt.figure(figsize=(50,3))
#Plot
plt.figure(1)
#don't care for title
#plt.title('Signal Wave...')
for channel in deinterleaved:
plt.plot(Time,channel, linewidth=.125)
#don't need to show, just save
#plt.show()
plt.savefig('/testing_folder/deadmentellnotales2d.png', dpi=72)
I came up with a solution that's more flexible and more performant:
Downsampling is used to achieve two samples per second. This is achieved by calculating the average of absolute values for each window. The result looks like the waveforms from streaming sites like SoundCloud.
Multi-channel is supported (thanks #Alter)
Numpy is used for each operation, which is much more performant than looping through the array.
The file is processed in batches to support very large files.
import matplotlib.pyplot as plt
import numpy as np
import wave
import math
file = 'audiofile.wav'
with wave.open(file,'r') as wav_file:
num_channels = wav_file.getnchannels()
frame_rate = wav_file.getframerate()
downsample = math.ceil(frame_rate * num_channels / 2) # Get two samples per second!
process_chunk_size = 600000 - (600000 % frame_rate)
signal = None
waveform = np.array([])
while signal is None or signal.size > 0:
signal = np.frombuffer(wav_file.readframes(process_chunk_size), dtype='int16')
# Take mean of absolute values per 0.5 seconds
sub_waveform = np.nanmean(
np.pad(np.absolute(signal), (0, ((downsample - (signal.size % downsample)) % downsample)), mode='constant', constant_values=np.NaN).reshape(-1, downsample),
axis=1
)
waveform = np.concatenate((waveform, sub_waveform))
#Plot
plt.figure(1)
plt.title('Waveform')
plt.plot(waveform)
plt.show()

Categories