I have a multistep form with checkboxes, after the user submit the first step form I save the objects he checked on his session, at the second step form I would like to filter the objects with the session datas.
To accomplish this I need to get the session on the new ModelForm for the second step, unfortunaltely request is not defined in forms.
How can I access my sessions ?
class IconSubChoiceForm(forms.ModelForm):
session_icons = request.session.get('icons')
query = Q(tags__contains=session_icons[0]) | Q(tags__contains=session_icons[1]) | Q(tags__contains=session_icons[2])
icons = CustomSubChoiceField(queryset=CanvaIcon.objects.filter(query), widget=forms.CheckboxSelectMultiple)
class Meta:
model = CanvaIcon
fields = ['icons']
Any suggestion ?
As you have found, you can't access request inside the form definition.
You can override the __init__ method to take extra parameters, and set the queryset for your field. In the example below, I've used session_icons as the argument, instead of request.
class IconSubChoiceForm(forms.ModelForm):
icons = CustomSubChoiceField(queryset=CanvaIcon.objects.none(), widget=forms.CheckboxSelectMultiple)
def __init__(self, *args, **kwargs):
session_icons = kwargs.pop('session_icons')
super(IconSubChoiceForm, self).__init__(*args, **kwargs)
self.fields['icons'].queryset = CanvaIcon.objects.filter(...)
Then in your view, instantiate your form with session_icons.
form = IconSubChoiceForm(data=request.POST, session_icons=request.session.get('icons'))
I would like to provide different widgets to input form fields for the same type of model field in a Django admin inline.
I have implemented a version of the Entity-Attribute-Value paradigm in my shop application (I tried eav-django and it wasn't flexible enough). In my model it is Product-Parameter-Value (see Edit below).
Everything works as I want except that when including an admin inline for the Parameter-Value pair, the same input formfield is used for every value. I understand that this is the default Django admin behaviour because it uses the same formset for each Inline row.
I have a callback on my Parameter that I would like to use (get_value_formfield). I currently have:
class SpecificationValueAdminInline(admin.TabularInline):
model = SpecificationValue
fields = ('parameter', 'value')
readonly_fields = ('parameter',)
max_num = 0
def get_formset(self, request, instance, **kwargs):
"""Take a copy of the instance"""
self.parent_instance = instance
return super().get_formset(request, instance, **kwargs)
def formfield_for_dbfield(self, db_field, **kwargs):
"""Override admin function for requesting the formfield"""
if self.parent_instance and db_field.name == 'value':
# Notice first() on the end -->
sv_instance = SpecificationValue.objects.filter(
product=self.parent_instance).first()
formfield = sv_instance.parameter.get_value_formfield()
else:
formfield = super().formfield_for_dbfield(db_field, **kwargs)
return formfield
formfield_for_dbfield is only called once for each admin page.
How would I override the default behaviour so that formfield_for_dbfield is called once for each SpecificationValue instance, preferably passing the instance in each time?
Edit:
Here is the model layout:
class Product(Model):
specification = ManyToManyField('SpecificationParameter',
through='SpecificationValue')
class SpecificationParameter(Model):
"""Other normal model fields here"""
type = models.PositiveSmallIntegerField(choices=TUPLE)
def get_value_formfield(self):
"""
Return the type of form field for parameter instance
with the correct widget for the value
"""
class SpecificationValue(Model):
product = ForeignKey(Product)
parameter = ForeignKey(SpecificationParameter)
# To store and retrieve all types of value, overrides CharField
value = CustomValueField()
The way I eventually solved this is using the form = attribute of the Admin Inline. This skips the form generation code of the ModelAdmin:
class SpecificationValueForm(ModelForm):
class Meta:
model = SpecificationValue
def __init__(self, instance=None, **kwargs):
super().__init__(instance=instance, **kwargs)
if instance:
self.fields['value'] = instance.parameter.get_value_formfield()
else:
self.fields['value'].disabled = True
class SpecificationValueAdminInline(admin.TabularInline):
form = SpecificationValueForm
Using standard forms like this, widgets with choices (e.g. RadioSelect and CheckboxSelectMultiple) have list bullets next to them in the admin interface because the <ul> doesn't have the radiolist class. You can almost fix the RadioSelect by using AdminRadioSelect(attrs={'class': 'radiolist'}) but there isn't an admin version of the CheckboxSelectMultiple so I preferred consistency. Also there is an aligned class missing from the <fieldset> wrapper element.
Looks like I'll have to live with that!
I'm trying to get two parameters out of the URL to add to my context.
This is the URL:
url(r'^company/(?P<company>[\w\-\_]+)/?/(?P<program>[\w\-\_]+)/?$', RegistrationView.as_view(),
name='test'),
The view:
class RegistrationView(RegistrationMixin, BaseCreateView):
form_class = AppUserIntroducerCreateForm
template_name = "registration/register_introducer.html"
slug_field = 'company'
def get_context_data(self, *args, **kwargs):
context = super(RegistrationIntroducerView, self).get_context_data(**kwargs)
print(self.get_slug_field())
context['company'] = ??????
context['program'] = ??????
return context
I have tried everything to get the values self.company, kwargs['company'] etc, what I'm I doing wrong here?
Here is SO reference for you .
context = super(RegistrationView, self).get_context_data(**kwargs)
print(self.get_slug_field())
context['company'] = self.kwargs['company']
context['program'] = self.kwargs['program']
Try this
self.kwargs['company']
self.kwargs['program']
The as_view class method of the base class (View) is a closure around a pretty simple view function that accepts the arguments defined in urls.py. It then assigns them as a dictionary to self.kwargs attribute of the view class. Therefore what you need to do in order to access this data is:
self.kwargs['company']
Also, if you inherited your RegistrationView from CreateView instead of BaseCreateView, you'd get SingleObjectTemplateResponseMixin mixed in with your view and the slug_field (along with model or queryset) would be used by get_object method to fetch the desired company. Furthermore, the context variable company containing the Company instance would be already set for you and you would not have to set it yourself.
Using Django REST Framework, I want to limit which values can be used in a related field in a creation.
For example consider this example (based on the filtering example on https://web.archive.org/web/20140515203013/http://www.django-rest-framework.org/api-guide/filtering.html, but changed to ListCreateAPIView):
class PurchaseList(generics.ListCreateAPIView)
model = Purchase
serializer_class = PurchaseSerializer
def get_queryset(self):
user = self.request.user
return Purchase.objects.filter(purchaser=user)
In this example, how do I ensure that on creation the purchaser may only be equal to self.request.user, and that this is the only value populated in the dropdown in the form in the browsable API renderer?
I ended up doing something similar to what Khamaileon suggested here. Basically I modified my serializer to peek into the request, which kind of smells wrong, but it gets the job done... Here's how it looks (examplified with the purchase-example):
class PurchaseSerializer(serializers.HyperlinkedModelSerializer):
def get_fields(self, *args, **kwargs):
fields = super(PurchaseSerializer, self).get_fields(*args, **kwargs)
fields['purchaser'].queryset = permitted_objects(self.context['view'].request.user, fields['purchaser'].queryset)
return fields
class Meta:
model = Purchase
permitted_objects is a function which takes a user and a query, and returns a filtered query which only contains objects that the user has permission to link to. This seems to work both for validation and for the browsable API dropdown fields.
Here's how I do it:
class PurchaseList(viewsets.ModelViewSet):
...
def get_serializer(self, *args, **kwargs):
serializer_class = self.get_serializer_class()
context = self.get_serializer_context()
return serializer_class(*args, request_user=self.request.user, context=context, **kwargs)
class PurchaseSerializer(serializers.ModelSerializer):
...
def __init__(self, *args, request_user=None, **kwargs):
super(PurchaseSerializer, self).__init__(*args, **kwargs)
self.fields['user'].queryset = User._default_manager.filter(pk=request_user.pk)
The example link does not seem to be available anymore, but by reading other comments, I assume that you are trying to filter the user relationship to purchases.
If i am correct, then i can say that there is now an official way to do this. Tested with django rest framework 3.10.1.
class UserPKField(serializers.PrimaryKeyRelatedField):
def get_queryset(self):
user = self.context['request'].user
queryset = User.objects.filter(...)
return queryset
class PurchaseSeriaizer(serializers.ModelSerializer):
users = UserPKField(many=True)
class Meta:
model = Purchase
fields = ('id', 'users')
This works as well with the browsable API.
Sources:
https://github.com/encode/django-rest-framework/issues/1985#issuecomment-328366412
https://medium.com/django-rest-framework/limit-related-data-choices-with-django-rest-framework-c54e96f5815e
I disliked the style of having to override the init method for every place where I need to have access to user data or the instance at runtime to limit the queryset. So I opted for this solution.
Here is the code inline.
from rest_framework import serializers
class LimitQuerySetSerializerFieldMixin:
"""
Serializer mixin with a special `get_queryset()` method that lets you pass
a callable for the queryset kwarg. This enables you to limit the queryset
based on data or context available on the serializer at runtime.
"""
def get_queryset(self):
"""
Return the queryset for a related field. If the queryset is a callable,
it will be called with one argument which is the field instance, and
should return a queryset or model manager.
"""
# noinspection PyUnresolvedReferences
queryset = self.queryset
if hasattr(queryset, '__call__'):
queryset = queryset(self)
if isinstance(queryset, (QuerySet, Manager)):
# Ensure queryset is re-evaluated whenever used.
# Note that actually a `Manager` class may also be used as the
# queryset argument. This occurs on ModelSerializer fields,
# as it allows us to generate a more expressive 'repr' output
# for the field.
# Eg: 'MyRelationship(queryset=ExampleModel.objects.all())'
queryset = queryset.all()
return queryset
class DynamicQuersetPrimaryKeyRelatedField(LimitQuerySetSerializerFieldMixin, serializers.PrimaryKeyRelatedField):
"""Evaluates callable queryset at runtime."""
pass
class MyModelSerializer(serializers.ModelSerializer):
"""
MyModel serializer with a primary key related field to 'MyRelatedModel'.
"""
def get_my_limited_queryset(self):
root = self.root
if root.instance is None:
return MyRelatedModel.objects.none()
return root.instance.related_set.all()
my_related_model = DynamicQuersetPrimaryKeyRelatedField(queryset=get_my_limited_queryset)
class Meta:
model = MyModel
The only drawback with this is that you would need to explicitly set the related serializer field instead of using the automatic field discovery provided by ModelSerializer. i would however expect something like this to be in rest_framework by default.
In django rest framework 3.0 the get_fields method was removed. But in a similar way you can do this in the init function of the serializer:
class PurchaseSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Purchase
def __init__(self, *args, **kwargs):
super(PurchaseSerializer, self).__init__(*args, **kwargs)
if 'request' in self.context:
self.fields['purchaser'].queryset = permitted_objects(self.context['view'].request.user, fields['purchaser'].queryset)
I added the if check since if you use PurchaseSerializer as field in another serializer on get methods, the request will not be passed to the context.
First to make sure you only allow "self.request.user" when you have an incoming http POST/PUT (this assumes the property on your serializer and model is named "user" literally)
def validate_user(self, attrs, source):
posted_user = attrs.get(source, None)
if posted_user:
raise serializers.ValidationError("invalid post data")
else:
user = self.context['request']._request.user
if not user:
raise serializers.ValidationError("invalid post data")
attrs[source] = user
return attrs
By adding the above to your model serializer you ensure that ONLY the request.user is inserted into your database.
2) -about your filter above (filter purchaser=user) I would actually recommend using a custom global filter (to ensure this is filtered globally). I do something for a software as a service app of my own and it helps to ensure each http request is filtered down (including an http 404 when someone tries to lookup a "object" they don't have access to see in the first place)
I recently patched this in the master branch so both list and singular views will filter this
https://github.com/tomchristie/django-rest-framework/commit/1a8f07def8094a1e34a656d83fc7bdba0efff184
3) - about the api renderer - are you having your customers use this directly? if not I would say avoid it. If you need this it might be possible to add a custom serlializer that would help to limit the input on the front-end
Upon request # gabn88, as you may know by now, with DRF 3.0 and above, there is no easy solution.
Even IF you do manage to figure out a solution, it won't be pretty and will most likely fail on subsequent versions of DRF as it will override a bunch of DRF source which will have changed by then.
I forget the exact implementation I used, but the idea is to create 2 fields on the serializer, one your normal serializer field (lets say PrimaryKeyRelatedField etc...), and another field a serializer method field, which the results will be swapped under certain cases (such as based on the request, the request user, or whatever). This would be done on the serializers constructor (ie: init)
Your serializer method field will return a custom query that you want.
You will pop and/or swap these fields results, so that the results of your serializer method field will be assigned to the normal/default serializer field (PrimaryKeyRelatedField etc...) accordingly. That way you always deal with that one key (your default field) while the other key remains transparent within your application.
Along with this info, all you really need is to modify this: http://www.django-rest-framework.org/api-guide/serializers/#dynamically-modifying-fields
I wrote a custom CustomQueryHyperlinkedRelatedField class to generalize this behavior:
class CustomQueryHyperlinkedRelatedField(serializers.HyperlinkedRelatedField):
def __init__(self, view_name=None, **kwargs):
self.custom_query = kwargs.pop('custom_query', None)
super(CustomQueryHyperlinkedRelatedField, self).__init__(view_name, **kwargs)
def get_queryset(self):
if self.custom_query and callable(self.custom_query):
qry = self.custom_query()(self)
else:
qry = super(CustomQueryHyperlinkedRelatedField, self).get_queryset()
return qry
#property
def choices(self):
qry = self.get_queryset()
return OrderedDict([
(
six.text_type(self.to_representation(item)),
six.text_type(item)
)
for item in qry
])
Usage:
class MySerializer(serializers.HyperlinkedModelSerializer):
....
somefield = CustomQueryHyperlinkedRelatedField(view_name='someview-detail',
queryset=SomeModel.objects.none(),
custom_query=lambda: MySerializer.some_custom_query)
#staticmethod
def some_custom_query(field):
return SomeModel.objects.filter(somefield=field.context['request'].user.email)
...
I did the following:
class MyModelSerializer(serializers.ModelSerializer):
myForeignKeyFieldName = MyForeignModel.objects.all()
def get_fields(self, *args, **kwargs):
fields = super(MyModelSerializer, self).get_fields()
qs = MyModel.objects.filter(room=self.instance.id)
fields['myForeignKeyFieldName'].queryset = qs
return fields
I looked for a solution where I can set the queryset upon creation of the field and don't have to add a separate field class. This is what I came up with:
class PurchaseSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Purchase
fields = ["purchaser"]
def get_purchaser_queryset(self):
user = self.context["request"].user
return Purchase.objects.filter(purchaser=user)
def get_extra_kwargs(self):
kwargs = super().get_extra_kwargs()
kwargs["purchaser"] = {"queryset": self.get_purchaser_queryset()}
return kwargs
The main issue for tracking suggestions regarding this seems to be drf#1985.
Here's a re-usable generic serializer field that can be used instead of defining a custom field for every use case.
class DynamicPrimaryKeyRelatedField(serializers.PrimaryKeyRelatedField):
"""A PrimaryKeyRelatedField with ability to set queryset at runtime.
Pass a function in the `queryset_fn` kwarg. It will be passed the serializer `context`.
The function should return a queryset.
"""
def __init__(self, queryset_fn=None, **kwargs):
assert queryset_fn is not None, "The `queryset_fn` argument is required."
self.queryset_fn = queryset_fn
super().__init__(**kwargs)
def get_queryset(self):
return self.queryset_fn(context=self.context)
Usage:
class MySerializer(serializers.ModelSerializer):
my_models = DynamicPrimaryKeyRelatedField(
queryset_fn=lambda context: MyModel.objects.visible_to_user(context["request"].user)
)
# ...
Same works for serializers.SlugRelatedField.
I want create a ModelForm class where model is a parameter passed from the view.(i want a dynamic form, so i can create all forms using the same class ObjectForm by just changing model value in Meta) :
class ObjectForm(ModelForm):
model_name = None
def __init__(self, *args, **kwargs):
model_name = kwargs.pop('model_name ')
super(ModelForm, self).__init__(*args, **kwargs)
class Meta:
model = models.get_model('core', model_name )
exclude = ("societe")
An error is occured and say that model_name is not a global field.
Please help me on this problem.
your problem is that the class (and the Meta class) are processed at compile time, not when you instantiate your ObjectForm. at compile time, the model name is unknown. creating classes dynamically is possible, but a bit more complicated. as luck has it, the django devs have done the hard work for you:
>>> from django.forms.models import modelform_factory
>>> modelform_factory(MyModel)
<class 'django.forms.models.MyModelForm'>
update
So you want something like
def my_view(request):
# ...
MyForm = modelform_factory(MyModel)
form = MyForm(request.POST) # or however you would use a 'regular' form
Well, your basic error is that you are accessing model_name as a local variable, rather than as a model instance. That's fairly basic Python.
But even once you've fixed this, it still wouldn't work. The Meta class is evaluated at define time, by the form metaclass, rather than at runtime. You need to call forms.models.modelform_factory - you can pass in your modelform subclass to the factory, if you want to define some standard validation and/or fields.
form_class = modelform_factory(MyModel, form=MyModelForm)