Pandas concat similar DataFrames and Series - python
I have a list of Dataframes, all with the same columns. Occaisionally, a DataFrame has only one row, and is, hence, a Series. When I try to concatenate this list with pd.concat, where there was a Series, it puts what I want to be the columns in the index. See below for a minimal working example.
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: d = {'a':np.random.randn(100), 'b':np.random.randn(100)}
In [4]: df = pd.DataFrame(d)
In [5]: thing1 = df.iloc[:10, :]
In [6]: thing1
Out[6]:
a b
0 -0.505268 -1.109089
1 -1.792729 -0.580566
2 -0.478042 0.410095
3 -0.758376 0.558772
4 0.112519 0.556316
5 -1.015813 -0.568148
6 1.234858 -1.062879
7 -0.455796 -0.107942
8 1.231422 0.780694
9 -1.082461 -1.809412
In [7]: thing2 = df.iloc[10,:]
In [8]: thing2
Out[8]:
a -1.527836
b 0.653610
Name: 10, dtype: float64
In [9]: thing3 = df.iloc[11:, :]
In [10]: thing3
Out[10]:
a b
11 -1.247939 -0.694491
12 1.359737 0.625284
13 -0.491533 -0.230665
14 1.360465 0.472451
15 0.691532 -1.822708
16 0.938316 1.310101
17 0.485776 -0.313206
18 1.398189 -0.232446
19 -0.626278 0.714052
20 -1.292272 -1.299580
21 -1.521746 -1.615611
22 1.464332 2.839602
23 0.707370 -0.162056
24 -1.825903 0.000278
25 0.917284 -0.094716
26 -0.239839 0.132572
27 -0.463240 -0.805458
28 1.174125 0.131057
29 0.183503 0.328603
30 0.045839 -0.244965
31 0.449265 0.642082
32 2.381600 -0.417044
33 0.276217 -0.257426
34 0.755067 0.012898
35 0.130339 -0.094300
36 -1.643097 0.038982
37 0.895719 0.789494
38 0.701480 -0.668440
39 -0.201400 1.441928
40 -2.018043 -0.106764
.. ... ...
70 0.971799 0.298164
71 1.307070 -2.093075
72 -1.049177 2.183065
73 -0.469273 -0.739449
74 0.685838 2.579547
75 1.994485 0.783204
76 -0.414760 -0.285766
77 -1.005873 -0.783886
78 1.486588 -0.349575
79 1.417006 -0.676501
80 1.284611 -0.817505
81 -0.624406 -1.659931
82 -0.921061 0.424663
83 -0.645472 -0.769509
84 -1.217172 -0.943542
85 -0.184948 0.482977
86 -0.253972 -0.080682
87 -0.699122 0.368751
88 1.391163 0.042899
89 -0.075512 0.019728
90 0.449151 0.486462
91 -0.182553 0.876379
92 -0.209162 0.390093
93 0.789094 1.570251
94 -1.018724 -0.084603
95 1.109534 1.840739
96 0.774806 -0.380387
97 0.534344 1.165343
98 1.003597 -0.221899
99 -0.659863 -1.061590
[89 rows x 2 columns]
In [11]: pd.concat([thing1, thing2, thing3])
Out[11]:
a b 0
0 -0.505268 -1.109089 NaN
1 -1.792729 -0.580566 NaN
2 -0.478042 0.410095 NaN
3 -0.758376 0.558772 NaN
4 0.112519 0.556316 NaN
5 -1.015813 -0.568148 NaN
6 1.234858 -1.062879 NaN
7 -0.455796 -0.107942 NaN
8 1.231422 0.780694 NaN
9 -1.082461 -1.809412 NaN
a NaN NaN -1.527836
b NaN NaN 0.653610
11 -1.247939 -0.694491 NaN
12 1.359737 0.625284 NaN
13 -0.491533 -0.230665 NaN
14 1.360465 0.472451 NaN
15 0.691532 -1.822708 NaN
16 0.938316 1.310101 NaN
17 0.485776 -0.313206 NaN
18 1.398189 -0.232446 NaN
19 -0.626278 0.714052 NaN
20 -1.292272 -1.299580 NaN
21 -1.521746 -1.615611 NaN
22 1.464332 2.839602 NaN
23 0.707370 -0.162056 NaN
24 -1.825903 0.000278 NaN
25 0.917284 -0.094716 NaN
26 -0.239839 0.132572 NaN
27 -0.463240 -0.805458 NaN
28 1.174125 0.131057 NaN
.. ... ... ...
70 0.971799 0.298164 NaN
71 1.307070 -2.093075 NaN
72 -1.049177 2.183065 NaN
73 -0.469273 -0.739449 NaN
74 0.685838 2.579547 NaN
75 1.994485 0.783204 NaN
76 -0.414760 -0.285766 NaN
77 -1.005873 -0.783886 NaN
78 1.486588 -0.349575 NaN
79 1.417006 -0.676501 NaN
80 1.284611 -0.817505 NaN
81 -0.624406 -1.659931 NaN
82 -0.921061 0.424663 NaN
83 -0.645472 -0.769509 NaN
84 -1.217172 -0.943542 NaN
85 -0.184948 0.482977 NaN
86 -0.253972 -0.080682 NaN
87 -0.699122 0.368751 NaN
88 1.391163 0.042899 NaN
89 -0.075512 0.019728 NaN
90 0.449151 0.486462 NaN
91 -0.182553 0.876379 NaN
92 -0.209162 0.390093 NaN
93 0.789094 1.570251 NaN
94 -1.018724 -0.084603 NaN
95 1.109534 1.840739 NaN
96 0.774806 -0.380387 NaN
97 0.534344 1.165343 NaN
98 1.003597 -0.221899 NaN
99 -0.659863 -1.061590 NaN
[101 rows x 3 columns]
Please note that for this problem, I need to maintain the original index.
I've spent a long time investigating the documentation but can't seem to figure out my problem. Is there an easy way around this?
thing2 = pd.DataFrame(thing2).transpose()
pd.concat([thing1, thing2, thing3])
In your case transpose() will set Pandas Series index as colums and then you can concate easily.
Documentation here : https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.transpose.html
Related
How to perform operations with columns from different datasets with different indexation?
The goal A bit of background, to get familiar with variables and understand what the problem is: floor, square, matc and volume are tables or dataframes, all share same column "id" (which simply goes from 1 to 100), so every row is unique; floor and square also share column "room_name"; volume is generally equivalent to floor, except all rows with rooms ("room_name") that have no values in "square" column of square dataframe were dropped; This implies that some values of "id" are missing That done, I needed to create a new column in volume dataframe, which would consist of multiplication of one of its own columns with two other columns from matc and square dataframes. The problem This seemingly simple interaction turned out to be quite difficult, because, well, the columns I am working with are of different length (except for square and matc, they are the same) and I need to align them by "id". To make matters worse, when called directly as volume['coefLoosening'] (please note that coefLoosening does not originate from floor and is added after the table is created), it returns a series with its own index and no way to relate it to "id". What I tried Whilst trying to solve the issue, I came up with this abomination: volume = volume.merge(pd.DataFrame({"id": matc.loc[matc["id"].isin(volume["id"])]["id"], "tempCoef": volume['coefLoosening'] * matc.loc[matc["id"].isin(volume["id"])]['width'] * square.loc[square["id"].isin(volume["id"])]['square']}), how = "left", on = ["id"]) This, however, misaligns "id" column completely, somehow creating more rows. For instance, this what `` returns: index id tempCoef 0 1.0 960.430612244898 1 2.0 4665.499999999999 2 NaN NaN 3 4.0 2425.44652173913 4 5.0 5764.964210526316 5 6.0 55201.68727272727 6 NaN NaN 7 NaN NaN 8 NaN NaN 9 10.0 1780.7208791208789 10 11.0 6075.385074626865 11 12.0 10400.94 12 13.0 31.378285714285713 13 NaN NaN 14 NaN NaN 15 NaN NaN 16 17.0 10505.431451612903 17 18.0 1208.994845360825 18 NaN NaN 19 NaN NaN 20 21.0 568.8900000000001 21 22.0 4275.416470588235 22 NaN NaN 23 NaN NaN 24 25.0 547.04 25 26.0 2090.666111111111 26 27.0 2096.88406779661 27 NaN NaN 28 29.0 8324.566547619048 29 NaN NaN 30 NaN NaN 31 NaN NaN 32 33.0 2459.8314736842103 33 34.0 2177.778461538461 34 35.0 166.1257142857143 35 36.0 1866.8492307692304 36 37.0 3598.1470588235293 37 38.0 21821.709411764703 38 NaN NaN 39 40.0 2999.248 40 41.0 980.3136 41 42.0 2641.3503947368426 42 NaN NaN 43 44.0 25829.878148148146 44 45.0 649.3632 45 46.0 10895.386666666667 46 NaN NaN 47 NaN NaN 48 49.0 825.9879310344828 49 50.0 15951.941666666671 50 51.0 2614.9343434343436 51 52.0 2462.30625 52 NaN NaN 53 NaN NaN 54 55.0 1366.8287671232877 55 56.0 307.38 56 57.0 11601.975 57 58.0 1002.5415730337081 58 59.0 2493.4532432432434 59 60.0 981.7482608695652 61 62.0 NaN 63 64.0 NaN 65 66.0 NaN 67 68.0 NaN 73 74.0 NaN 75 76.0 NaN 76 77.0 NaN 77 78.0 NaN 78 79.0 NaN 80 81.0 NaN 82 83.0 NaN 84 85.0 NaN 88 89.0 NaN 89 90.0 NaN 90 91.0 NaN 92 93.0 NaN 94 95.0 NaN 95 96.0 NaN 97 98.0 NaN 98 99.0 NaN 99 100.0 NaN For clarity, no values in any of columns in the operation have NaNs in them. This is what 'volume["coefLoosening"]` returns: 0 1.020408 1 1.515152 2 2.000000 3 4.347826 4 5.263158 5 9.090909 6 1.162791 7 1.149425 8 1.851852 9 1.098901 10 1.492537 11 2.083333 12 1.428571 13 1.010101 14 1.562500 15 3.448276 16 1.612903 17 1.030928 18 33.333333 19 1.000000 20 1.123596 21 1.960784 22 2.127660 23 2.857143 24 1.369863 25 1.111111 26 1.694915 27 1.492537 28 1.190476 29 1.818182 30 1.612903 31 12.500000 32 1.052632 33 3.846154 34 2.040816 35 1.098901 36 2.941176 37 2.941176 38 2.857143 39 1.111111 40 1.333333 41 1.315789 42 3.703704 43 3.703704 44 2.000000 45 33.333333 46 12.500000 47 1.149425 48 1.724138 49 4.166667 50 1.010101 51 1.041667 52 1.162791 53 3.225806 54 1.369863 55 1.666667 56 4.545455 57 1.123596 58 1.351351 59 2.173913 and finally, this is what volume["id"] returns (to compare to the result of «abomination»): 0 1 1 2 2 4 3 5 4 6 5 10 6 11 7 12 8 13 9 17 10 18 11 21 12 22 13 25 14 26 15 27 16 29 17 33 18 34 19 35 20 36 21 37 22 38 23 40 24 41 25 42 26 44 27 45 28 46 29 49 30 50 31 51 32 52 33 55 34 56 35 57 36 58 37 59 38 60 39 62 40 64 41 66 42 68 43 74 44 76 45 77 46 78 47 79 48 81 49 83 50 85 51 89 52 90 53 91 54 93 55 95 56 96 57 98 58 99 59 100 Some thoughts I believe, part of the problem is how pandas returns columns (as series with default indexation) and I don't know how to work around that. Another source of the problem might be the way how .loc() method returns its result. In the case of matc.loc[matc["id"].isin(volume["id"])]['width'] it is: 0 15.98 1 36.12 3 32.19 4 18.54 5 98.96 9 64.56 10 58.20 11 55.08 12 3.84 16 77.31 17 15.25 20 63.21 21 76.32 24 10.52 25 54.65 26 95.46 28 79.67 32 57.01 33 27.54 34 7.36 35 36.44 36 23.64 37 78.98 39 92.19 40 31.26 41 61.71 43 70.07 44 10.91 45 4.24 48 7.35 49 46.70 50 97.69 51 32.03 54 13.50 55 42.30 56 94.71 57 37.49 58 57.86 59 50.29 61 18.18 63 88.26 65 4.28 67 28.89 73 4.05 75 22.37 76 52.20 77 98.29 78 72.98 80 6.07 82 35.80 84 64.16 88 23.60 89 45.05 90 21.14 92 31.21 94 46.04 95 7.15 97 27.70 98 31.93 99 79.62 which is shifted by -1 and I don't see a way to change this manually. So, any ideas? Maybe there is answered analogue of this question (because I tried to search it before asking, but found nothing)? Data Minimal columns of tables required to replicate this (because stack overflow does not allow files to be uploaded) volume: index,id,room_name,coefLoosening 0,1,6,1.0204081632653061 1,2,7,1.5151515151515151 2,4,3,2.0 3,5,7,4.3478260869565215 4,6,4,5.2631578947368425 5,10,7,9.090909090909092 6,11,5,1.1627906976744187 7,12,4,1.1494252873563218 8,13,1,1.8518518518518516 9,17,3,1.0989010989010988 10,18,3,1.4925373134328357 11,21,3,2.0833333333333335 12,22,7,1.4285714285714286 13,25,3,1.0101010101010102 14,26,6,1.5625 15,27,6,3.4482758620689657 16,29,4,1.6129032258064517 17,33,2,1.0309278350515465 18,34,2,33.333333333333336 19,35,5,1.0 20,36,4,1.1235955056179776 21,37,2,1.9607843137254901 22,38,6,2.127659574468085 23,40,5,2.857142857142857 24,41,6,1.36986301369863 25,42,3,1.1111111111111112 26,44,2,1.6949152542372883 27,45,4,1.4925373134328357 28,46,2,1.1904761904761905 29,49,5,1.8181818181818181 30,50,4,1.6129032258064517 31,51,2,12.5 32,52,3,1.0526315789473684 33,55,6,3.846153846153846 34,56,5,2.0408163265306123 35,57,5,1.0989010989010988 36,58,4,2.941176470588235 37,59,5,2.941176470588235 38,60,5,2.857142857142857 39,62,7,1.1111111111111112 40,64,7,1.3333333333333333 41,66,7,1.3157894736842106 42,68,3,3.7037037037037033 43,74,5,3.7037037037037033 44,76,4,2.0 45,77,3,33.333333333333336 46,78,4,12.5 47,79,5,1.1494252873563218 48,81,5,1.7241379310344829 49,83,4,4.166666666666667 50,85,2,1.0101010101010102 51,89,4,1.0416666666666667 52,90,1,1.1627906976744187 53,91,2,3.2258064516129035 54,93,2,1.36986301369863 55,95,1,1.6666666666666667 56,96,4,4.545454545454546 57,98,7,1.1235955056179776 58,99,7,1.3513513513513513 59,100,5,2.1739130434782608 matc: index,id,width 0,1,15.98 1,2,36.12 2,3,63.41 3,4,32.19 4,5,18.54 5,6,98.96 6,7,5.65 7,8,97.42 8,9,50.88 9,10,64.56 10,11,58.2 11,12,55.08 12,13,3.84 13,14,75.87 14,15,96.51 15,16,42.08 16,17,77.31 17,18,15.25 18,19,81.43 19,20,98.71 20,21,63.21 21,22,76.32 22,23,22.59 23,24,30.79 24,25,10.52 25,26,54.65 26,27,95.46 27,28,49.93 28,29,79.67 29,30,45.0 30,31,59.14 31,32,62.25 32,33,57.01 33,34,27.54 34,35,7.36 35,36,36.44 36,37,23.64 37,38,78.98 38,39,47.8 39,40,92.19 40,41,31.26 41,42,61.71 42,43,93.11 43,44,70.07 44,45,10.91 45,46,4.24 46,47,35.39 47,48,99.1 48,49,7.35 49,50,46.7 50,51,97.69 51,52,32.03 52,53,48.61 53,54,33.44 54,55,13.5 55,56,42.3 56,57,94.71 57,58,37.49 58,59,57.86 59,60,50.29 60,61,77.98 61,62,18.18 62,63,3.42 63,64,88.26 64,65,48.66 65,66,4.28 66,67,20.78 67,68,28.89 68,69,27.17 69,70,57.48 70,71,59.07 71,72,12.63 72,73,22.06 73,74,4.05 74,75,22.3 75,76,22.37 76,77,52.2 77,78,98.29 78,79,72.98 79,80,49.37 80,81,6.07 81,82,28.85 82,83,35.8 83,84,66.74 84,85,64.16 85,86,33.64 86,87,66.36 87,88,34.51 88,89,23.6 89,90,45.05 90,91,21.14 91,92,97.27 92,93,31.21 93,94,13.04 94,95,46.04 95,96,7.15 96,97,47.87 97,98,27.7 98,99,31.93 99,100,79.62 square: index,id,room_name,square 0,1,5,58.9 1,2,3,85.25 2,3,5,90.39 3,4,3,17.33 4,5,2,59.08 5,6,4,61.36 6,7,2,29.02 7,8,2,59.63 8,9,6,98.31 9,10,4,25.1 10,11,3,69.94 11,12,7,90.64 12,13,4,5.72 13,14,6,29.96 14,15,4,59.06 15,16,1,41.85 16,17,7,84.25 17,18,4,76.9 18,19,1,17.2 19,20,4,60.9 20,21,1,8.01 21,22,2,28.57 22,23,1,65.07 23,24,1,20.24 24,25,7,37.96 25,26,7,34.43 26,27,3,12.96 27,28,6,80.96 28,29,5,87.77 29,30,2,95.67 30,31,1,10.4 31,32,1,30.96 32,33,6,40.99 33,34,7,20.56 34,35,5,11.06 35,36,4,46.62 36,37,3,51.75 37,38,4,93.94 38,39,5,62.64 39,40,6,29.28 40,41,3,23.52 41,42,6,32.53 42,43,1,33.3 43,44,3,99.53 44,45,5,29.76 45,46,7,77.09 46,47,1,71.31 47,48,2,59.22 48,49,1,65.18 49,50,7,81.98 50,51,7,26.5 51,52,3,73.8 52,53,6,78.52 53,54,6,69.67 54,55,6,73.91 55,56,6,4.36 56,57,5,26.95 57,58,2,23.8 58,59,2,31.89 59,60,1,8.98 60,61,1,88.76 61,62,5,88.75 62,63,4,44.94 63,64,4,81.13 64,65,5,48.39 65,66,3,55.63 66,67,7,46.28 67,68,3,40.85 68,69,7,54.37 69,70,3,14.01 70,71,6,20.13 71,72,2,90.67 72,73,3,4.28 73,74,4,56.18 74,75,3,74.8 75,76,5,10.34 76,77,6,15.94 77,78,2,29.4 78,79,6,60.8 79,80,3,13.05 80,81,3,49.46 81,82,1,75.76 82,83,1,84.27 83,84,5,76.36 84,85,3,75.98 85,86,7,77.81 86,87,2,56.34 87,88,1,43.93 88,89,5,30.64 89,90,5,55.78 90,91,5,88.26 91,92,6,15.11 92,93,1,20.64 93,94,2,5.08 94,95,1,82.31 95,96,4,76.92 96,97,1,53.47 97,98,2,2.7 98,99,7,77.12 99,100,4,29.43 floor: index,id,room_name 0,1,6 1,2,7 2,3,12 3,4,3 4,5,7 5,6,4 6,7,8 7,8,11 8,9,10 9,10,7 10,11,5 11,12,4 12,13,1 13,14,11 14,15,12 15,16,9 16,17,3 17,18,3 18,19,9 19,20,12 20,21,3 21,22,7 22,23,8 23,24,12 24,25,3 25,26,6 26,27,6 27,28,10 28,29,4 29,30,10 30,31,9 31,32,11 32,33,2 33,34,2 34,35,5 35,36,4 36,37,2 37,38,6 38,39,11 39,40,5 40,41,6 41,42,3 42,43,11 43,44,2 44,45,4 45,46,2 46,47,9 47,48,12 48,49,5 49,50,4 50,51,2 51,52,3 52,53,9 53,54,10 54,55,6 55,56,5 56,57,5 57,58,4 58,59,5 59,60,5 60,61,12 61,62,7 62,63,12 63,64,7 64,65,11 65,66,7 66,67,12 67,68,3 68,69,8 69,70,11 70,71,12 71,72,8 72,73,12 73,74,5 74,75,11 75,76,4 76,77,3 77,78,4 78,79,5 79,80,12 80,81,5 81,82,12 82,83,4 83,84,8 84,85,2 85,86,8 86,87,8 87,88,9 88,89,4 89,90,1 90,91,2 91,92,9 92,93,2 93,94,12 94,95,1 95,96,4 96,97,8 97,98,7 98,99,7 99,100,5
IIUC you overcomplicated things. The whole thing about merging on id is that you don't need to filter the other df's beforehand on id with loc and isin like you tried to do, merge will do that for you. You could multiply square and width at the square_df (matc_df would also work since they have same length and id). Then merge this new column to the volume_df (which filters the multiplied result only to the id's which are found in the volume_df) and multiply it again. square_df['square*width'] = square_df['square'] * matc_df['width'] df = volume_df.merge(square_df[['id', 'square*width']], on='id', how='left') df['result'] = df['coefLoosening'] * df['square*width'] Output df: id room_name coefLoosening square*width result 0 1 6 1.020408 941.2220 960.430612 1 2 7 1.515152 3079.2300 4665.500000 2 4 3 2.000000 557.8527 1115.705400 3 5 7 4.347826 1095.3432 4762.361739 4 6 4 5.263158 6072.1856 31958.871579 5 10 7 9.090909 1620.4560 14731.418182 6 11 5 1.162791 4070.5080 4733.148837 7 12 4 1.149425 4992.4512 5738.449655 8 13 1 1.851852 21.9648 40.675556 9 17 3 1.098901 6513.3675 7157.546703 10 18 3 1.492537 1172.7250 1750.335821 11 21 3 2.083333 506.3121 1054.816875 12 22 7 1.428571 2180.4624 3114.946286 13 25 3 1.010101 399.3392 403.372929 14 26 6 1.562500 1881.5995 2939.999219 15 27 6 3.448276 1237.1616 4266.074483 16 29 4 1.612903 6992.6359 11278.445000 17 33 2 1.030928 2336.8399 2409.113299 18 34 2 33.333333 566.2224 18874.080000 19 35 5 1.000000 81.4016 81.401600 20 36 4 1.123596 1698.8328 1908.800899 21 37 2 1.960784 1223.3700 2398.764706 22 38 6 2.127660 7419.3812 15785.917447 23 40 5 2.857143 2699.3232 7712.352000 24 41 6 1.369863 735.2352 1007.171507 25 42 3 1.111111 2007.4263 2230.473667 26 44 2 1.694915 6974.0671 11820.452712 27 45 4 1.492537 324.6816 484.599403 28 46 2 1.190476 326.8616 389.120952 29 49 5 1.818182 479.0730 871.041818 30 50 4 1.612903 3828.4660 6174.945161 31 51 2 12.500000 2588.7850 32359.812500 32 52 3 1.052632 2363.8140 2488.225263 33 55 6 3.846154 997.7850 3837.634615 34 56 5 2.040816 184.4280 376.383673 35 57 5 1.098901 2552.4345 2804.873077 36 58 4 2.941176 892.2620 2624.300000 37 59 5 2.941176 1845.1554 5426.927647 38 60 5 2.857143 451.6042 1290.297714 39 62 7 1.111111 1613.4750 1792.750000 40 64 7 1.333333 7160.5338 9547.378400 41 66 7 1.315789 238.0964 313.284737 42 68 3 3.703704 1180.1565 4370.950000 43 74 5 3.703704 227.5290 842.700000 44 76 4 2.000000 231.3058 462.611600 45 77 3 33.333333 832.0680 27735.600000 46 78 4 12.500000 2889.7260 36121.575000 47 79 5 1.149425 4437.1840 5100.211494 48 81 5 1.724138 300.2222 517.624483 49 83 4 4.166667 3016.8660 12570.275000 50 85 2 1.010101 4874.8768 4924.117980 51 89 4 1.041667 723.1040 753.233333 52 90 1 1.162791 2512.8890 2921.963953 53 91 2 3.225806 1865.8164 6018.762581 54 93 2 1.369863 644.1744 882.430685 55 95 1 1.666667 3789.5524 6315.920667 56 96 4 4.545455 549.9780 2499.900000 57 98 7 1.123596 74.7900 84.033708 58 99 7 1.351351 2462.4416 3327.623784 59 100 5 2.173913 2343.2166 5093.949130
What cause the different times function if the dataframe has a columns name?
I tested this two snippets,the df share the same structure other than the df.columns, so what causes the difference between them? And how should I change my second snippet, for example,should I always use the pandas.DataFrame.mul or use the other method to avoid this? # test1 df = pd.DataFrame(np.random.randint(100, size=(10, 10))) \ .assign(Count=np.random.rand(10)) df.iloc[:, 0:3] *= df['Count'] df Out[1]: 0 1 2 3 4 5 6 7 8 9 Count 0 26.484949 68.217006 4.902341 61 10 13 31 15 10 11 0.645974 1 56.845743 70.085965 28.106758 79 56 47 82 83 62 40 0.934480 2 33.590667 78.496281 1.634114 94 3 91 16 41 93 55 0.326823 3 51.031974 15.886152 26.145821 67 31 20 81 21 10 8 0.012706 4 47.156128 82.234199 10.458328 24 8 68 44 24 4 50 0.517130 5 18.733256 61.675649 23.531239 74 61 97 20 12 0 95 0.360815 6 4.521820 26.165427 26.145821 68 10 77 67 92 82 11 0.606739 7 24.547026 62.610129 23.531239 50 45 69 94 56 77 56 0.412445 8 52.969897 75.692843 9.804683 73 74 5 10 60 51 77 0.125309 9 21.963128 30.837825 19.609366 75 9 50 68 10 82 96 0.687966 #test2 df = pd.DataFrame(np.random.randint(100, size=(10, 10))) \ .assign(Count=np.random.rand(10)) df.columns = ['find', 'a', 'b', 3, 4, 5, 6, 7, 8, 9, 'Count'] df.iloc[:, 0:3] *= df['Count'] df Out[2]: find a b 3 4 5 6 7 8 9 Count 0 NaN NaN NaN 63 63 47 81 3 48 34 0.603953 1 NaN NaN NaN 70 48 41 27 78 75 23 0.839635 2 NaN NaN NaN 5 38 52 23 3 75 4 0.515159 3 NaN NaN NaN 40 49 31 25 63 48 25 0.483255 4 NaN NaN NaN 42 89 46 47 78 30 5 0.693555 5 NaN NaN NaN 68 83 81 87 7 54 3 0.108306 6 NaN NaN NaN 74 48 99 67 80 81 36 0.361500 7 NaN NaN NaN 10 19 26 41 11 24 33 0.705899 8 NaN NaN NaN 38 51 83 78 7 31 42 0.838703 9 NaN NaN NaN 2 7 63 14 28 38 10 0.277547
df.iloc[:,0:3] is a dataframe with three series, named find, a, and b. df['Count'] is a series named Count. When you multiply these, Pandas tries to match up same-named series, but since there are none, it ends up generating NaN values for all the slots. Then it assigns these NaN:s back to the dataframe. I think that using .mul with an appropriate axis= is the way around this, but I may be wrong about that...
Python: compare many columns to one column and replace values greater than that column with NaN
My overall goal is to remove outliers in a row that are higher than the 1.5xIQR of the that row. I have a large dataframe with thousands of features which mainly consists of numeric data. I have calculated the 1.5xIQR in a row-wise fashion and set it as a new column. I would like to replace any data within each row that is greater than its respective 1.5xIQR with either NaN (preferred) or 0. import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(0,100,size=(10, 4),), columns=list('ABCD')) df A B C D 0 46 99 38 11 1 43 49 3 95 2 64 39 33 49 3 41 60 49 7 4 38 95 70 13 5 11 45 57 73 6 8 62 57 22 7 9 83 89 91 8 47 82 61 40 9 34 21 21 41 I have tried numerous variations of this and beyond with no success. df1 = df.iloc[:,:] > df.loc['D'] = 'NaN'
I think this should work: def f(row): Q1 = row.quantile(0.25) Q3 = row.quantile(0.75) IQR = Q3 - Q1 row[row > 1.5*IQR] = np.nan return row df1 = df.apply(f, axis=1)
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(0,100,size=(10, 4),), columns=list('ABCD')) s = df.apply(lambda x: (x.quantile(.75)-x.quantile(.25))*1.5, axis=1) df=df.where(df.lt(s, axis=0),np.nan) print(df)
My understanding from the wording of question and your tried code is that you have already calculated the 1.5xIQR in column D. As such, you can use df.mask as follows: df1 = df.mask(df.gt(df['D'], axis=0), np.nan) Demo: import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(0,100,size=(10, 4),), columns=list('ABCD')) print(df) A B C D 0 45 71 15 22 1 56 68 62 91 2 21 90 44 15 3 60 87 2 68 4 48 21 22 25 5 60 68 67 60 6 74 97 94 27 7 69 26 56 85 8 39 42 74 73 9 23 99 91 72 df1 = df.mask(df.gt(df['D'], axis=0), np.nan) print(df1) A B C D 0 NaN NaN 15.0 22 1 56.0 68.0 62.0 91 2 NaN NaN NaN 15 3 60.0 NaN 2.0 68 4 NaN 21.0 22.0 25 5 60.0 NaN NaN 60 6 NaN NaN NaN 27 7 69.0 26.0 56.0 85 8 39.0 42.0 NaN 73 9 23.0 NaN NaN 72 Alternatively, you can also use the simplified code below to update df elements meeting the criteria in place: df[df.gt(df['D'], axis=0)] = np.nan Printing df after the code will give the same result.
How to create a rolling window in pandas with another condition
I have a data frame with 2 columns df = pd.DataFrame(np.random.randint(0,100,size=(100, 2)), columns=list('AB')) A B 0 11 10 1 61 30 2 24 54 3 47 52 4 72 42 ... ... ... 95 61 2 96 67 41 97 95 30 98 29 66 99 49 22 100 rows × 2 columns Now I want to create a third column, which is a rolling window max of col 'A' BUT the max has to be lower than the corresponding value in col 'B'. In other words I want the value of the 4 (using a window size of 4) in column 'A' closest to the value in col 'B', yet smaller than B So for example in row 3 47 52 the new value I am looking for, is not 61 but 47, because it is the highest value of the 4 that is not higher than 52 pseudo code df['C'] = df['A'].rolling(window=4).max() where < df['B']
You can use concat + shift to create a wide DataFrame with the previous values, which makes complicated rolling calculations a bit easier. Sample Data np.random.seed(42) df = pd.DataFrame(np.random.randint(0, 100, size=(100, 2)), columns=list('AB')) Code N = 4 # End slice ensures same default min_periods behavior to `.rolling` df1 = pd.concat([df['A'].shift(i).rename(i) for i in range(N)], axis=1).iloc[N-1:] # Remove values larger than B, then find the max of remaining. df['C'] = df1.where(df1.lt(df.B, axis=0)).max(1) print(df.head(15)) A B C 0 51 92 NaN # Missing b/c min_periods 1 14 71 NaN # Missing b/c min_periods 2 60 20 NaN # Missing b/c min_periods 3 82 86 82.0 4 74 74 60.0 5 87 99 87.0 6 23 2 NaN # Missing b/c 82, 74, 87, 23 all > 2 7 21 52 23.0 # Max of 21, 23, 87, 74 which is < 52 8 1 87 23.0 9 29 37 29.0 10 1 63 29.0 11 59 20 1.0 12 32 75 59.0 13 57 21 1.0 14 88 48 32.0
You can use a custom function to .apply to the rolling window. In this case, you can use a default argument to pass in the B column. df = pd.DataFrame(np.random.randint(0,100,size=(100, 2)), columns=('AB')) def rollup(a, B=df.B): ix = a.index.max() b = B[ix] return a[a<b].max() df['C'] = df.A.rolling(4).apply(rollup) df # returns: A B C 0 8 17 NaN 1 23 84 NaN 2 75 84 NaN 3 86 24 23.0 4 52 83 75.0 .. .. .. ... 95 38 22 NaN 96 53 48 38.0 97 45 4 NaN 98 3 92 53.0 99 91 86 53.0 The NaN values occur when no number in the window of A is less than B or at the start of the series when the window is too big for the first few rows.
You can use where to replace values that don't fulfill the condition with np.nan and then use rolling(window=4, min_periods=1): In [37]: df['C'] = df['A'].where(df['A'] < df['B'], np.nan).rolling(window=4, min_periods=1).max() In [38]: df Out[38]: A B C 0 0 1 0.0 1 1 2 1.0 2 2 3 2.0 3 10 4 2.0 4 4 5 4.0 5 5 6 5.0 6 10 7 5.0 7 10 8 5.0 8 10 9 5.0 9 10 10 NaN
Compute annual rate using a DataFrame and pct_change()
I have a column inside a DataFrame that I want to use in order to perform the operation: n = step/12 step = 3 t1 = step - 1 pd.DataFrame(100*((df[t1+step::step]['Column'].values / df[t1:-t1:step]['Column'].values)**(1/n) - 1)) A possible set of values for the column of interest could be: >>> df['Column'] 0 NaN 1 NaN 2 7469.5 3 NaN 4 NaN 5 7537.9 6 NaN 7 NaN 8 7655.2 9 NaN 10 NaN 11 7712.6 12 NaN 13 NaN 14 7784.1 15 NaN 16 NaN 17 7819.8 18 NaN 19 NaN 20 7898.6 21 NaN 22 NaN 23 7939.5 24 NaN 25 NaN 26 7995.0 27 NaN 28 NaN 29 8084.7 ... So df[t1+step::step]['Column'] would give us: >>> df[5::3]['Column'] 5 7537.9 8 7655.2 11 7712.6 14 7784.1 17 7819.8 20 7898.6 23 7939.5 26 7995.0 29 8084.7 32 8158.0 35 8292.7 38 8339.3 41 8449.5 44 8498.3 47 8610.9 50 8697.7 53 8766.1 56 8831.5 59 8850.2 62 8947.1 65 8981.7 68 8983.9 71 8907.4 74 8865.6 77 8934.4 80 8977.3 83 9016.4 86 9123.0 89 9223.5 92 9313.2 ... And lastly df[t1:-t1:step]['Column'] >>> df[2:-2:3]['Column'] 2 7469.5 5 7537.9 8 7655.2 11 7712.6 14 7784.1 17 7819.8 20 7898.6 23 7939.5 26 7995.0 29 8084.7 32 8158.0 35 8292.7 38 8339.3 41 8449.5 44 8498.3 47 8610.9 50 8697.7 53 8766.1 56 8831.5 59 8850.2 62 8947.1 65 8981.7 68 8983.9 71 8907.4 74 8865.6 77 8934.4 80 8977.3 83 9016.4 86 9123.0 89 9223.5 ... With these values what we expect is the following output: >>> pd.DataFrame(100*((df[5::3]['Column'].values / df[2:-2:3]['Column'].values)**4 -1)) 0 3.713517 1 6.371352 2 3.033171 3 3.760103 4 1.847168 5 4.092131 6 2.087397 7 2.825602 8 4.563898 9 3.676223 10 6.769944 11 2.266778 12 5.391516 13 2.330287 14 5.406150 15 4.093476 16 3.182961 17 3.017786 18 0.849662 19 4.452016 20 1.555866 21 0.098013 22 -3.362834 23 -1.863919 24 3.140454 25 1.934544 26 1.753587 27 4.813692 28 4.479794 29 3.947179 Since this reminds a lot of what pct_change() does I was wondering if I could achieve the same result by doing something like: >>> df['Column'].pct_change(periods=step)**(1/n) * 100 Until now I am getting incorrect outputs though. Is it possible to use pct_change() and achieve the same result?