plot the PSD of an image vs. x/y axis - python

a research professor asked me to generate 2d-spatial spectrum density plots for a couple of videos. I have two problems:
How can I plot the PSD vs. x,y axis?
I know how to generate PSD for images, but uncertain how to do the same on videos. I thought about getting PSDs for every frame in the video and take the average, but I am having difficulties implementing it in python.
Below is the code I have
curr_dir = os.getcwd()
img = cv2.imread(curr_dir+'/test.jpg',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
mag = 20*np.log(np.abs(fshift))
plt.subplot(121), plt.imshow(img,cmap='gray')
plt.subplot(122), plt.imshow(mag,cmap='gray')
plt.show()
This generates something like this:
I would like to get something like this:
Any help/advice is greatly appreciated!

Since you show two 1d spectra, it would seem that you are looking for something like the following.
We read in the image, Fourier transform along one axis, and then sum the power in each bin, along the other axis. Since the input is real valued, we use rfft() so what we do not have to shift the spectrum, and we use rfftreq() to calculate the frequency for each bin. We graph the result omitting the sometimes large signal in the 0 frequency bin (which corresponds to baseline) so that the useful part of the spectrum appears on a convenient scale.
#!/usr/bin/python3
import cv2
import os
import math
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
curr_dir = os.getcwd()
img = cv2.imread(curr_dir+'/temp.png',0)
print( img.shape )
# Fourier Transform along the first axis
# Round up the size along this axis to an even number
n = int( math.ceil(img.shape[0] / 2.) * 2 )
# We use rfft since we are processing real values
a = np.fft.rfft(img,n, axis=0)
# Sum power along the second axis
a = a.real*a.real + a.imag*a.imag
a = a.sum(axis=1)/a.shape[1]
# Generate a list of frequencies
f = np.fft.rfftfreq(n)
# Graph it
plt.plot(f[1:],a[1:], label = 'sum of amplitudes over y vs f_x')
# Fourier Transform along the second axis
# Same steps as above
n = int( math.ceil(img.shape[1] / 2.) * 2 )
a = np.fft.rfft(img,n,axis=1)
a = a.real*a.real + a.imag*a.imag
a = a.sum(axis=0)/a.shape[0]
f = np.fft.rfftfreq(n)
plt.plot(f[1:],a[1:], label ='sum of amplitudes over x vs f_y')
plt.ylabel( 'amplitude' )
plt.xlabel( 'frequency' )
plt.yscale( 'log' )
plt.legend()
plt.savefig( 'test_rfft.png' )
#plt.show()
Applying this to the photograph posted in your question, produces the following result,

Related

Time series dBFS plot output modification - current output plot not as expected (matplotlib)

I'm trying to plot the Amplitude (dBFS) vs. Time (s) plot of an audio (.wav) file using matplotlib. I managed to do that with the following code:
def convert_to_decibel(sample):
ref = 32768 # Using a signed 16-bit PCM format wav file. So, 2^16 is the max. value.
if sample!=0:
return 20 * np.log10(abs(sample) / ref)
else:
return 20 * np.log10(0.000001)
from scipy.io.wavfile import read as readWav
from scipy.fftpack import fft
import matplotlib.pyplot as gplot1
import matplotlib.pyplot as gplot2
import numpy as np
import struct
import gc
wavfile1 = '/home/user01/audio/speech.wav'
wavsamplerate1, wavdata1 = readWav(wavfile1)
wavdlen1 = wavdata1.size
wavdtype1 = wavdata1.dtype
gplot1.rcParams['figure.figsize'] = [15, 5]
pltaxis1 = gplot1.gca()
gplot1.axhline(y=0, c="black")
gplot1.xticks(np.arange(0, 10, 0.5))
gplot1.yticks(np.arange(-200, 200, 5))
gplot1.grid(linestyle = '--')
wavdata3 = np.array([convert_to_decibel(i) for i in wavdata1], dtype=np.int16)
yvals3 = wavdata3
t3 = wavdata3.size / wavsamplerate1
xvals3 = np.linspace(0, t3, wavdata3.size)
pltaxis1.set_xlim([0, t3 + 2])
pltaxis1.set_title('Amplitude (dBFS) vs Time(s)')
pltaxis1.plot(xvals3, yvals3, '-')
which gives the following output:
I had also plotted the Power Spectral Density (PSD, in dBm) using the code below:
from scipy.signal import welch as psd # Computes PSD using Welch's method.
fpsd, wPSD = psd(wavdata1, wavsamplerate1, nperseg=1024)
gplot2.rcParams['figure.figsize'] = [15, 5]
pltpsdm = gplot2.gca()
gplot2.axhline(y=0, c="black")
pltpsdm.plot(fpsd, 20*np.log10(wPSD))
gplot2.xticks(np.arange(0, 4000, 400))
gplot2.yticks(np.arange(-150, 160, 10))
pltpsdm.set_xlim([0, 4000])
pltpsdm.set_ylim([-150, 150])
gplot2.grid(linestyle = '--')
which gives the output as:
The second output above, using the Welch's method plots a more presentable output. The dBFS plot though informative is not very presentable IMO. Is this because of:
the difference in the domains (time in case of 1st output vs frequency in the 2nd output)?
the way plot function is implemented in pyplot?
Also, is there a way I can plot my dBFS output as a peak-to-peak style of plot just like in my PSD (dBm) plot rather than a dense stem plot?
Would be much helpful and would appreciate any pointers, answers or suggestions from experts here as I'm just a beginner with matplotlib and plots in python in general.
TLNR
This has nothing to do with pyplot.
The frequency domain is different from the time domain, but that's not why you didn't get what you want.
The calculation of dbFS in your code is wrong.
You should frame your data, calculate RMSs or peaks in every frame, and then convert that value to dbFS instead of applying this transformation to every sample point.
When we talk about the amplitude, we are talking about a periodic signal. And when we read in a series of data from a sound file, we read in a series of sample points of a signal(may be or be not periodic). The value of every sample point represents a, say, voltage value, or sound pressure value sampled at a specific time.
We assume that, within a very short time interval, maybe 10ms for example, the signal is stationary. Every such interval is called a frame.
Some specific function is applied to each frame usually, to reduce the sudden change at the edge of this frame, and these functions are called window functions. If you did nothing to every frame, you added rectangle windows to them.
An example: when the sampling frequency of your sound is 44100Hz, in a 10ms-long frame, there are 44100*0.01=441 sample points. That's what the nperseg argument means in your psd function but it has nothing to do with dbFS.
Given the knowledge above, now we can talk about the amplitude.
There are two methods a get the value of amplitude in every frame:
The most straightforward one is to get the maximum(peak) values in every frame.
Another one is to calculate the RMS(Root Mean Sqaure) of every frame.
After that, the peak values or RMS values can be converted to dbFS values.
Let's start coding:
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
# Determine full scall(maximum possible amplitude) by bit depth
bit_depth = 16
full_scale = 2 ** bit_depth
# dbFS function
to_dbFS = lambda x: 20 * np.log10(x / full_scale)
# Read in the wave file
fname = "01.wav"
fs,data = wavfile.read(fname)
# Determine frame length(number of sample points in a frame) and total frame numbers by window length(how long is a frame in seconds)
window_length = 0.01
signal_length = data.shape[0]
frame_length = int(window_length * fs)
nframes = signal_length // frame_length
# Get frames by broadcast. No overlaps are used.
idx = frame_length * np.arange(nframes)[:,None] + np.arange(frame_length)
frames = data[idx].astype("int64") # Convert to in 64 to avoid integer overflow
# Get RMS and peaks
rms = ((frames**2).sum(axis=1)/frame_length)**.5
peaks = np.abs(frames).max(axis=1)
# Convert them to dbfs
dbfs_rms = to_dbFS(rms)
dbfs_peak = to_dbFS(peaks)
# Let's start to plot
# Get time arrays of every sample point and ever frame
frame_time = np.arange(nframes) * window_length
data_time = np.linspace(0,signal_length/fs,signal_length)
# Plot
f,ax = plt.subplots()
ax.plot(data_time,data,color="k",alpha=.3)
# Plot the dbfs values on a twin x Axes since the y limits are not comparable between data values and dbfs
tax = ax.twinx()
tax.plot(frame_time,dbfs_rms,label="RMS")
tax.plot(frame_time,dbfs_peak,label="Peak")
tax.legend()
f.tight_layout()
# Save serval details
f.savefig("whole.png",dpi=300)
ax.set_xlim(1,2)
f.savefig("1-2sec.png",dpi=300)
ax.set_xlim(1.295,1.325)
f.savefig("1.2-1.3sec.png",dpi=300)
The whole time span looks like(the unit of the right axis is dbFS):
And the voiced part looks like:
You can see that the dbFS values become greater while the amplitudes become greater at the vowel start point:

What is the best way/method to digitize the data of a 3D surface into a grid of pixels with smaller resolution in Python?

I want to digitize (= average out over cells) photon count data into pixels given by a grid that tells how they are aligned. The photon count data is stored in a 2D array. I want to split that data into cells, each of which would correspond to a pixel. The idea is basically the same as changing an HD image to a smaller resolution. I'd like to achieve this in Python.
The digitizing function I've written:
import numpy as np
def digitize(function_data, grid_shape):
"""
function_data = 2D array of function values of some 3D shape,
eg.: exp(-(x^2 + y^2 -> want to digitize this
grid_shape: an array of length 2 which contains the dimensions of the smaller resolution
"""
l = len(function_data)
pixel_len_x = int(l/grid_shape[0])
pixel_len_y = int(l/grid_shape[1])
digitized_data = np.empty((grid_shape[0], grid_shape[1]))
for i in range(grid_shape[0]): #row-index of pixel in smaller-resolution grid
for j in range(grid_shape[1]): #column-index of pixel in smaller-resolution grid
hd_pixel = []
for k in range(pixel_len_y):
hd_pixel.append(z_data[k][j:j*pixel_len_x])
hd_pixel = np.ravel(hd_pixel) #turns 2D array into 1D to be able to compute average
pixel_avg = np.average(hd_pixel)
digitized_data[i][j] = pixel_avg
return digitized_data
In theory, this function should do what I want to achieve, but when tested it doesn't yield the expected results. Either a completed version of my function or any other method that achieves my goal would be extremely helpful.
You could also use a interpolation function, if you can use SciPy. Here we use one of the gridded data interpolating functions, RectBivariateSpline to upsample your function, but you can find numerous examples on this and other sites.
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import RectBivariateSpline as rbs
# Sampling coordinates
x = np.linspace(-2,2,20)
y = np.linspace(-2,2,30)
# Your function
f = np.exp(-(x[:,None]**2 + y**2))
# Interpolator
interp = rbs(x, y, f)
# Higher resolution coordinates
x_hd = np.linspace(x.min(), x.max(), x.size * 5)
y_hd = np.linspace(y.min(), y.max(), y.size * 5)
# New higher res function
f_hd = interp(x_hd, y_hd, grid = True)
# Some plots
fig, ax = plt.subplots(ncols = 2)
ax[0].imshow(f)
ax[1].imshow(f_hd)

Undo np.fft.fft2 to get the original image

I've just started to learn about images frecuency domain.
I have this function:
def fourier_transform(img):
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))
return magnitude_spectrum
And I want to implement this function:
def inverse_fourier_transform(magnitude_spectrum):
return img
But I don't know how.
My idea is to use magnitude_spectrum to get the original img.
How can I do it?
You are loosing phases here: np.abs(fshift).
np.abs takes only real part of your data. You could separate the amplitudes and phases by:
abs = fshift.real
ph = fshift.imag
In theory, you could work on abs and join them later together with phases and reverse FFT by np.fft.ifft2.
EDIT:
You could try this approach:
import numpy as np
import matplotlib.pyplot as plt
# single chanel image
img = np.random.random((100, 100))
img = plt.imread(r'path/to/color/img.jpg')[:,:,0]
# should be only width and height
print(img.shape)
# do the 2D fourier transform
fft_img = np.fft.fft2(img)
# shift FFT to the center
fft_img_shift = np.fft.fftshift(fft_img)
# extract real and phases
real = fft_img_shift.real
phases = fft_img_shift.imag
# modify real part, put your modification here
real_mod = real/3
# create an empty complex array with the shape of the input image
fft_img_shift_mod = np.empty(real.shape, dtype=complex)
# insert real and phases to the new file
fft_img_shift_mod.real = real_mod
fft_img_shift_mod.imag = phases
# reverse shift
fft_img_mod = np.fft.ifftshift(fft_img_shift_mod)
# reverse the 2D fourier transform
img_mod = np.fft.ifft2(fft_img_mod)
# using np.abs gives the scalar value of the complex number
# with img_mod.real gives only real part. Not sure which is proper
img_mod = np.abs(img_mod)
# show differences
plt.subplot(121)
plt.imshow(img, cmap='gray')
plt.subplot(122)
plt.imshow(img_mod, cmap='gray')
plt.show()
You cannot recover the exact original image without the phase information, so you cannot only use the magnitude of the fft2.
To use the fft2 to recover the image, you just need to call numpy.fft.ifft2. See the code below:
import numpy as np
from numpy.fft import fft2, ifft2, fftshift, ifftshift
#do the 2D fourier transform
fft_img = fftshift(fft2(img))
# reverse the 2D fourier transform
freq_filt_img = ifft2(ifftshift(fft_img))
freq_filt_img = np.abs(freq_filt_img)
freq_filt_img = freq_filt_img.astype(np.uint8)
Note that calling fftshift and ifftshift is not necessary if you just want to recover the original image directly, but I added them in case there is some plotting to be done in the middle or some other operation that requires the centering of the zero frequency.
The result of calling numpy.abs() or freq_filt_img.real (assuming positive values for each pixel) to recover the image should be the same because the imaginary part of the ifft2 should be really small. Of course, the complexity of numpy.abs() is O(n) while freq_filt_img.real is O(1)

Using FFT for 3D array representation of 2D field

I need to obtain the fourier transform of a complex field. I'm using python.
My input is a 2D snapshot of the electric field in the xy-plane.
I currently have a 3D array F[x][y][z] where F[x][y][0] contains the real component and F[x][y]1 contains the complex component of the field.
My current code is very simple and does this:
result=np.fft.fftn(F)
result=np.fft.fftshift(result)
I have the following questions:
1) Does this correctly compute the fourier transform of the field, or should the field be entered as a 2D matrix with each element containing both the real and imaginary component instead?
2) I entered the complex component values of the field using the real multiple only (i.e if the complex value is 6i I entered 6), is this correct or should this be entered as a complex value instead (i.e. entered as '6j')?
3) As this is technically a 2D input field, should I use np.fft.fft2 instead? Doing this means the output is not centered in the middle.
4) The output does not look like what I'd expect the fourier transform of F to look like, and I'm unsure what I'm doing wrong.
Full example code:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
x, y = np.meshgrid(np.linspace(-1,1,100), np.linspace(-1,1,100))
d = np.sqrt(x*x+y*y)
sigma, mu = .35, 0.0
g1 = np.exp(-( (d-mu)**2 / ( 2.0 * sigma**2 ) ) )
F=np.empty(shape=(300,300,2),dtype=complex)
for x in range(0,300):
for y in range(0,300):
if y<50 or x<100 or y>249 or x>199:
F[x][y][0]=g1[0][0]
F[x][y][1]=0j
elif y<150:
F[x][y][0]=g1[x-100][y-50]
F[x][y][1]=0j
else:
F[x][y][0]=g1[x-100][y-150]
F[x][y][1]=0j
F_2D=np.empty(shape=(300,300))
for x in range(0,300):
for y in range(0,300):
F_2D[x][y]=np.absolute(F[x][y][0])+np.absolute(F[x][y][1])
plt.imshow(F_2D)
plt.show()
result=np.fft.fftn(F)
result=np.fft.fftshift(result)
result_2D=np.empty(shape=(300,300))
for x in range(0,300):
for y in range(0,300):
result_2D[x][y]=np.absolute(result[x][y][0])+np.absolute(result[x][y][1])
plt.imshow(result_2D)
plt.show()
plotting F gives this:
With np.fft.fftn, the image shown at the end is:
And with np.fft.fft2:
Neither of these look like what I would expect the fourier transform of F to look like.
I add here another answer, suitable to the added code.
The answer is still np.fft.fft2(). Here's an example. I modified the code slightly. To verify that we need fft2 I discarded one of the blobs, and then we know that a single Gaussian blob should transform into a Gaussian blob (with a certain phase, that's not shown when plotting absolute value). I also decreased the standard deviation so that the frequency response will widen a little.
Code:
import numpy as np
import matplotlib.pyplot as plt
x, y = np.meshgrid(np.linspace(-1,1,100), np.linspace(-1,1,100))
d = np.sqrt(x**2+y**2)
sigma, mu = .1, 0.0
g1 = np.exp(-( (d-mu)**2 / ( 2.0 * sigma**2 ) ) )
N = 300
positions = [ [150,100] ]#, [150,200] ]
sz2 = [int(x/2) for x in g1.shape]
F_2D = np.zeros([N,N])
for x0,y0 in positions:
F_2D[ x0-sz2[0]: x0+sz2[0], y0-sz2[1]:y0+sz2[1] ] = g1 + 1j*0.
result = np.fft.fftshift(np.fft.fft2(F_2D))
plt.subplot(211); plt.imshow(F_2D)
plt.subplot(212); plt.imshow(np.absolute(result))
plt.title('$\sigma$=.1')
plt.show()
Result:
To get back to the original problem, we need only change
positions = [ [150,100] , [150,200] ]
and sigma=.35 instead of sigma=.1.
You should use complex numpy variables (by using 1j) and use fft2. For example:
N = 16
x0 = np.random.randn(N,N,2)
x = x0[:,:,0] + 1j*x0[:,:,1]
X = np.fft.fft2(x)
Using fftn on x0 will do a 3D FFT, and using fft will do vector-wise 1D FFT.

Plancks Formula for Blackbody spectrum

I am trying to write a simple python code for a plot of intensity vs wavelength for a given temperature, T=200K.
So far I have this...
import scipy as sp
import math
import matplotlib.pyplot as plt
import numpy as np
pi = np.pi
h = 6.626e-34
c = 3.0e+8
k = 1.38e-23
def planck(wav, T):
a = 2.0*h*pi*c**2
b = h*c/(wav*k*T)
intensity = a/ ( (wav**5)*(math.e**b - 1.0) )
return intensity
I don't know how to define wavelength(wav) and thus produce the plot of Plancks Formula. Any help would be appreciated.
Here's a basic plot. To plot using plt.plot(x, y, fmt) you need two arrays x and y of the same size, where x is the x coordinate of each point to plot and y is the y coordinate, and fmt is a string describing how to plot the numbers.
So all you need to do is create an evenly spaced array of wavelengths (an np.array which I named wavelengths). This can be done with arange(start, end, spacing) which will create an array from start to end (not inclusive) spaced at spacing apart.
Then compute the intensity using your function at each of those points in the array (which will be stored in another np.array), and then call plt.plot to plot them. Note numpy let's you do mathematical operations on arrays quickly in a vectorized form which will be computationally efficient.
import matplotlib.pyplot as plt
import numpy as np
h = 6.626e-34
c = 3.0e+8
k = 1.38e-23
def planck(wav, T):
a = 2.0*h*c**2
b = h*c/(wav*k*T)
intensity = a/ ( (wav**5) * (np.exp(b) - 1.0) )
return intensity
# generate x-axis in increments from 1nm to 3 micrometer in 1 nm increments
# starting at 1 nm to avoid wav = 0, which would result in division by zero.
wavelengths = np.arange(1e-9, 3e-6, 1e-9)
# intensity at 4000K, 5000K, 6000K, 7000K
intensity4000 = planck(wavelengths, 4000.)
intensity5000 = planck(wavelengths, 5000.)
intensity6000 = planck(wavelengths, 6000.)
intensity7000 = planck(wavelengths, 7000.)
plt.plot(wavelengths*1e9, intensity4000, 'r-')
# plot intensity4000 versus wavelength in nm as a red line
plt.plot(wavelengths*1e9, intensity5000, 'g-') # 5000K green line
plt.plot(wavelengths*1e9, intensity6000, 'b-') # 6000K blue line
plt.plot(wavelengths*1e9, intensity7000, 'k-') # 7000K black line
# show the plot
plt.show()
And you see:
You probably will want to clean up the axes labels, add a legend, plot the intensity at multiple temperatures on the same plot, among other things. Consult the relevant matplotlib documentation.
You may also want to use the RADIS library, which allows you to plot the Planck function against wavelengths, or against frequency / wavenumber, if needed !
from radis import sPlanck
sPlanck(wavelength_min=135, wavelength_max=3000, T=4000).plot()
sPlanck(wavelength_min=135, wavelength_max=3000, T=5000).plot(nfig='same')
sPlanck(wavelength_min=135, wavelength_max=3000, T=6000).plot(nfig='same')
sPlanck(wavelength_min=135, wavelength_max=3000, T=7000).plot(nfig='same')
Just want to point out that there seems to be an equivalent of what OP wants to do in astropy:
https://docs.astropy.org/en/stable/api/astropy.modeling.physical_models.BlackBody.html
Unfortunately, it is not very clear to me yet how to get wavelength vs frequency based expression.

Categories