i have been looking around and i can find examples for annotating a single line chart by using iterrows for the dataframe. what i am struggling with is
a) selecting the single line in the plot instead of ax.lines (using ax.lines[#]) is clearly not proper and
b) annotating the values for the line with values from a different column
the dataframe dfg is in a format such that (edited to provide a minimal, reproducible example):
week 2016 2017 2018 2019 2020 2021 min max avg WoW Change
1 8188.0 9052.0 7658.0 7846.0 6730.0 6239.0 6730 9052 7893.7
2 7779.0 8378.0 7950.0 7527.0 6552.0 6045.0 6552 8378 7588.0 -194.0
3 7609.0 7810.0 8041.0 8191.0 6432.0 5064.0 6432 8191 7529.4 -981.0
4 8256.0 8290.0 8430.0 7083.0 6660.0 6507.0 6660 8430 7687.0 1443.0
5 7124.0 9372.0 7892.0 7146.0 6615.0 5857.0 6615 9372 7733.7 -650.0
6 7919.0 8491.0 7888.0 6210.0 6978.0 5898.0 6210 8491 7455.3 41.0
7 7802.0 7286.0 7021.0 7522.0 6547.0 4599.0 6547 7802 7218.1 -1299.0
8 8292.0 7589.0 7282.0 5917.0 6217.0 6292.0 5917 8292 7072.3 1693.0
9 8048.0 8150.0 8003.0 7001.0 6238.0 5655.0 6238 8150 7404.0 -637.0
10 7693.0 7405.0 7585.0 6746.0 6412.0 5323.0 6412 7693 7135.1 -332.0
11 8384.0 8307.0 7077.0 6932.0 6539.0 6539 8384 7451.7
12 7748.0 8224.0 8148.0 6540.0 6117.0 6117 8224 7302.6
13 7254.0 7850.0 7898.0 6763.0 6047.0 6047 7898 7108.1
14 7940.0 7878.0 8650.0 6599.0 5874.0 5874 8650 7352.1
15 8187.0 7810.0 7930.0 5992.0 5680.0 5680 8187 7066.6
16 7550.0 8912.0 8469.0 7149.0 4937.0 4937 8912 7266.6
17 7660.0 8264.0 8549.0 7414.0 5302.0 5302 8549 7291.4
18 7655.0 7620.0 7323.0 6693.0 5712.0 5712 7655 6910.0
19 7677.0 8590.0 7601.0 7612.0 5391.0 5391 8590 7264.6
20 7315.0 8294.0 8159.0 6943.0 5197.0 5197 8294 7057.0
21 7839.0 7985.0 7631.0 6862.0 7200.0 6862 7985 7480.6
22 7705.0 8341.0 8346.0 7927.0 6179.0 6179 8346 7574.7
... ... ... ... ... ... ... ... ...
51 8167.0 7993.0 7656.0 6809.0 5564.0 5564 8167 7131.4
52 7183.0 7966.0 7392.0 6352.0 5326.0 5326 7966 6787.3
53 5369.0 5369 5369 5369.0
with the graph plotted by:
fig, ax = plt.subplots(1, figsize=[14,4])
ax.fill_between(dfg.index, dfg["min"], dfg["max"], label="5 Yr. Range", facecolor="oldlace")
ax.plot(dfg.index, dfg[2020], label="2020", c="grey")
ax.plot(dfg.index, dfg[2021], label="2021", c="coral")
ax.plot(dfg.index, dfg.avg, label="5 Yr. Avg.", c="goldenrod", ls=(0,(1,2)), lw=3).
I would like to label the dfg[2021] line with the values from dfg['WoW Change']. Additionally, if anyone knows how to get the calculate the first value in the WoW column based on the last value from 2020 and the first value from 2021, that would be wonderful! It's currently just dfg['WoW Change'] = dfg[2021].diff()
Thanks!
Figured it out. Zipped the index and two columns up as a tuple. I ended up deciding I only wanted the last value to be shown but using below code:
a = dfg.index.values
b = dfg[2021]
c = dfg['WoW Change']
#zip 3 columns separately
labels = list(zip(dfg.index.values,dfg[2021],dfg['WoW Change']))
#remove tuples with index + 2 nan values
labels_light = [i for i in labels if not any(isinstance(n,float) and math.isnan(n) for n in i)]
#label last point using list accessors
ax.annotate(str("w/w change: " + str("{:,}".format(int(labels_light[-1][2])))+link[1]),xy=(labels_light[-1][0],labels_light[-1][1]))
I'm sure this could have been done much better by someone who knows what they're doing, any feedback is appreciated.
So I have the df.head() being displayed below.I wanted to display the progression of salaries across time spans.As you can see the teams will get repeated across the years and the idea is to
display how their salaries changed over time.So for teamID='ATL' I will have a graph that starts by 1985 and goes all the way to the present time.
I think I will need to select teams by their team ID and have the x axis display time (year) and Y axis display year. I don't know how to do that on Pandas and for each team in my data frame.
teamID yearID lgID payroll_total franchID Rank W G win_percentage
0 ATL 1985 NL 14807000.0 ATL 5 66 162 40.740741
1 BAL 1985 AL 11560712.0 BAL 4 83 161 51.552795
2 BOS 1985 AL 10897560.0 BOS 5 81 163 49.693252
3 CAL 1985 AL 14427894.0 ANA 2 90 162 55.555556
4 CHA 1985 AL 9846178.0 CHW 3 85 163 52.147239
5 ATL 1986 NL 17800000.0 ATL 4 55 181 41.000000
You can use seaborn for this:
import seaborn as sns
sns.lineplot(data=df, x='yearID', y='payroll_total', hue='teamID')
To get different plot for each team:
for team, d in df.groupby('teamID'):
d.plot(x='yearID', y='payroll_total', label='team')
import pandas as pd
import matplotlib.pyplot as plt
# Display the box plots on 3 separate rows and 1 column
fig, axes = plt.subplots(nrows=3, ncols=1)
# Generate a plot for each team
df[df['teamID'] == 'ATL'].plot(ax=axes[0], x='yearID', y='payroll_total')
df[df['teamID'] == 'BAL'].plot(ax=axes[1], x='yearID', y='payroll_total')
df[df['teamID'] == 'BOS'].plot(ax=axes[2], x='yearID', y='payroll_total')
# Display the plot
plt.show()
depending on how many teams you want to show you should adjust the
fig, axes = plt.subplots(nrows=3, ncols=1)
Finally, you could create a loop and create the visualization for every team
I'm trying to do simple linear regression using this small Dataset (Screenshot).
The dataset is records divided into small time blocks of 4 years each (Except for the 2nd to the last time block of 2016-2018).
What I'm trying to do is try to predict the output of records for the timeblock of 2019-2022. To do this, I placed a 2019-2022 time block with all its rows containing the value of 0 (Since there's nothing made during that time since it's the future). I did that to accommodate the syntax of sklearn's train_test_split and went with this code:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
df = pd.read_csv("TCO.csv")
df = df[['2000-2003', '2004-2007', '2008-2011','2012-2015','2016-2018','2019-2022']]
linreg = LinearRegression()
X1_train, X1_test, y1_train, y1_test = train_test_split(df[['2000-2003','2004-2007','2008-2011',
'2012-2015','2016-2018']],df['2019-2022'],test_size=0.4,random_state = 42)
linreg.fit(X1_train, y1_train)
linreg.intercept_
list( zip( ['2000-2003','2004-2007','2008-2011','2012-2015','2016-2018'],list(linreg.coef_)))
y1_pred = linreg.predict(X1_test)
print(y1_pred)
test_pred_df = pd.DataFrame({'actual': y1_test,
'predicted': np.round(y1_pred, 2),
'residuals': y1_test - y1_pred})
print(test_pred_df[0:10].to_string())
For some reason, the algorithm would always return a 0 as the final prediction for all rows with 0 residuals (This is due to the timeblock of 2019-2022 having all rows of zero.)
I think I did something wrong but I can't tell what it is. (I'm a beginner in this topic.) Can someone point out what went wrong and how to fix it?
Edit: I added a copy-able version of the data:
df = pd.DataFrame( {'Country:':['Brunei','Cambodia','Indonesia','Laos',
'Malaysia','Myanmar','Philippines','Singaore',
'Thailand','Vietnam'],
'2000-2003': [0,0,14,1,6,0,25,8,26,8],
'2004-2007': [0,3,15,6,21,0,37,11,44,36],
'2008-2011': [0,5,31,9,75,0,58,27,96,61],
'2012-2015': [5,11,129,35,238,3,99,65,170,96],
'2016-2018': [6,22,136,17,211,10,66,89,119,88]})
Based on your data, I think this is what you ask for [Edit: see updated version below]:
import pandas as pd
from sklearn.linear_model import LinearRegression
df = pd.DataFrame( {'Country:':['Brunei','Cambodia','Indonesia','Laos',
'Malaysia','Myanmar','Philippines','Singaore',
'Thailand','Vietnam'],
'2000-2003': [0,0,14,1,6,0,25,8,26,8],
'2004-2007': [0,3,15,6,21,0,37,11,44,36],
'2008-2011': [0,5,31,9,75,0,58,27,96,61],
'2012-2015': [5,11,129,35,238,3,99,65,170,96],
'2016-2018': [6,22,136,17,211,10,66,89,119,88]})
# create a transposed version with country in header
df_T = df.T
df_T.columns = df_T.iloc[-1]
df_T = df_T.drop("Country:")
# create a new columns for target
df["2019-2022"] = np.NaN
# now fit a model per country and add the prediction
for country in df_T:
y = df_T[country].values
X = np.arange(0,len(y))
m = LinearRegression()
m.fit(X.reshape(-1, 1), y)
df.loc[df["Country:"] == country, "2019-2022"] = m.predict(5)[0]
This prints:
Country: 2000-2003 2004-2007 2008-2011 2012-2015 2016-2018 2019-2022
Brunei 0 0 0 5 6 7.3
Cambodia 0 3 5 11 22 23.8
Indonesia 14 15 31 129 136 172.4
Laos 1 6 9 35 17 31.9
Malaysia 6 21 75 238 211 298.3
Myanmar 0 0 0 3 10 9.5
Philippines 25 37 58 99 66 100.2
Singaore 8 11 27 65 89 104.8
Thailand 26 44 96 170 119 184.6
Vietnam 8 36 61 96 88 123.8
Forget about my comment with shift(). I thought about it, but it makes not sense for this small amount of data, I think. But considering time series methods and treating each country's series as a time series may still be worth for you.
Edit:
Excuse me. The above code is unnessary complicated, but was just result of me going through it step by step. Of course it can simply be done row by row like tihs:
import pandas as pd
from sklearn.linear_model import LinearRegression
df = pd.DataFrame( {'Country:':['Brunei','Cambodia','Indonesia','Laos',
'Malaysia','Myanmar','Philippines','Singaore',
'Thailand','Vietnam'],
'2000-2003': [0,0,14,1,6,0,25,8,26,8],
'2004-2007': [0,3,15,6,21,0,37,11,44,36],
'2008-2011': [0,5,31,9,75,0,58,27,96,61],
'2012-2015': [5,11,129,35,238,3,99,65,170,96],
'2016-2018': [6,22,136,17,211,10,66,89,119,88]})
# create a new columns for target
df["2019-2022"] = np.NaN
for idx, row in df.iterrows():
y = row.drop(["Country:", "2019-2022"]).values
X = np.arange(0,len(y))
m = LinearRegression()
m.fit(X.reshape(-1, 1), y)
df.loc[idx, "2019-2022"] = m.predict(len(y)+1)[0]
1500 rows should be no problem.
I know this is going to end up being a really messy plot, but I am curious to know what the most efficient way to do this is. I have some data that looks like this in a csv file:
ROI Band Min Max Mean Stdev
1 red_2 Band 1 0.032262 0.124425 0.078073 0.028031
2 red_2 Band 2 0.021072 0.064156 0.037923 0.012178
3 red_2 Band 3 0.013404 0.066043 0.036316 0.014787
4 red_2 Band 4 0.005162 0.055781 0.015526 0.013255
5 red_3 Band 1 0.037488 0.10783 0.057892 0.018964
6 red_3 Band 2 0.02814 0.07237 0.04534 0.014507
7 red_3 Band 3 0.01496 0.112973 0.032751 0.026575
8 red_3 Band 4 0.006566 0.029133 0.018201 0.006897
9 red_4 Band 1 0.022841 0.148666 0.065844 0.0336
10 red_4 Band 2 0.018651 0.175298 0.046383 0.042339
11 red_4 Band 3 0.012256 0.045111 0.024035 0.009711
12 red_4 Band 4 0.001493 0.033822 0.014678 0.007788
13 red_5 Band 1 0.030513 0.18098 0.090056 0.044456
37 bcs_1 Band 1 0.013059 0.076753 0.037674 0.023172
38 bcs_1 Band 2 0.035227 0.08826 0.057672 0.015005
39 bcs_1 Band 3 0.005223 0.028459 0.010836 0.006003
40 bcs_1 Band 4 0.009804 0.031457 0.018094 0.007136
41 bcs_2 Band 1 0.018134 0.083854 0.040654 0.018333
42 bcs_2 Band 2 0.016123 0.088613 0.045742 0.020168
43 bcs_2 Band 3 0.008065 0.030557 0.014596 0.007435
44 bcs_2 Band 4 0.004789 0.016514 0.009815 0.003241
45 bcs_3 Band 1 0.021092 0.077993 0.037246 0.013696
46 bcs_3 Band 2 0.011918 0.068825 0.028775 0.013758
47 bcs_3 Band 3 0.003969 0.021714 0.011336 0.004964
48 bcs_3 Band 4 0.003053 0.015763 0.006283 0.002425
49 bcs_4 Band 1 0.024466 0.079989 0.049291 0.018032
50 bcs_4 Band 2 0.009274 0.093137 0.041979 0.019347
51 bcs_4 Band 3 0.006874 0.027214 0.014386 0.005386
52 bcs_4 Band 4 0.005679 0.026662 0.014529 0.006505
And I want to create one probability density plot with 8 lines: 4 of which the 4 bands for "red" and the other will be the 4 bands for "black".So far I have this for just Band 1 in both red and black ROIs. But my code outputs two different plots. I have tried using subplot but that has not worked for me.
Help? I know my approach is verbose and clunky, so smarter solutions much appreciated!
Load packages
import csv
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
files = ['example.csv']
Organize the data
for f in files:
fn = f.split('.')[0]
dat = pd.read_csv(f)
df0 = dat.loc[:, ['ROI', 'Band', 'Mean']]
# parse by soil type
red = df0[df0['ROI'].str.contains("red")]
black = df0[df0['ROI'].str.contains("bcs")]
# parse by band
red.b1 = red[red['Band'].str.contains("Band 1")]
red.b2 = red[red['Band'].str.contains("Band 2")]
red.b3 = red[red['Band'].str.contains("Band 3")]
red.b4 = red[red['Band'].str.contains("Band 4")]
black.b1 = black[black['Band'].str.contains("Band 1")]
black.b2 = black[black['Band'].str.contains("Band 2")]
black.b3 = black[black['Band'].str.contains("Band 3")]
black.b4 = black[black['Band'].str.contains("Band 4")]
Plot the figure
pd.DataFrame(black.b1).plot(kind="density")
pd.DataFrame(red.b1).plot(kind="density")
plt.show()
I'd like for the figure to have 8 lines on it.
groupby + str.split
df.groupby([df.ROI.str.split('_').str[0], 'Band']).Mean.plot.kde();
If you want a legend
df.groupby([df.ROI.str.split('_').str[0], 'Band']).Mean.plot.kde()
plt.legend();
Something to help lead you in the right direction:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame()
for i in range(8):
mean = 5-10*np.random.rand()
std = 6*np.random.rand()
df['score_{0}'.format(i)] = np.random.normal(mean, std, 60)
fig, ax = plt.subplots(1,1)
for s in df.columns:
df[s].plot(kind='density')
fig.show()
Basically just looping through the columns, and plotting as you go. Having more control over the figure is very helpful.
I am trying to make a model for predicting energy production, by using ARMA model.
The data I can use for training is as following;
(https://github.com/soma11soma11/EnergyDataSimulationChallenge/blob/master/challenge1/data/training_dataset_500.csv)
ID Label House Year Month Temperature Daylight EnergyProduction
0 0 1 2011 7 26.2 178.9 740
1 1 1 2011 8 25.8 169.7 731
2 2 1 2011 9 22.8 170.2 694
3 3 1 2011 10 16.4 169.1 688
4 4 1 2011 11 11.4 169.1 650
5 5 1 2011 12 4.2 199.5 763
...............
11995 19 500 2013 2 4.2 201.8 638
11996 20 500 2013 3 11.2 234 778
11997 21 500 2013 4 13.6 237.1 758
11998 22 500 2013 5 19.2 258.4 838
11999 23 500 2013 6 22.7 122.9 586
As shown above, I can use data from July 2011 to May 2013 for training.
Using the training, I want to predict energy production on June 2013 for each 500 house.
The problem is that the time series data is not stationary and has trend components and seasonal components (I checked it as following.).
import csv
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data_train = pd.read_csv('../../data/training_dataset_500.csv')
rng=pd.date_range('7/1/2011', '6/1/2013', freq='M')
house1 = data_train[data_train.House==1][['EnergyProduction','Daylight','Temperature']].set_index(rng)
fig, axes = plt.subplots(nrows=1, ncols=3)
for i, column in enumerate(house1.columns):
house1[column].plot(ax=axes[i], figsize=(14,3), title=column)
plt.show()
With this data, I cannot implement ARMA model to get good prediction. So I want to get rid of the trend components and a seasonal components and make the time series data stationary. I tried this problem, but I could not remove these components and make it stationary..
I would recommend the Hodrick-Prescott (HP) filter, which is widely used in macroeconometrics to separate long-term trending component from short-term fluctuations. It is implemented statsmodels.api.tsa.filters.hpfilter.
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
df = pd.read_csv('/home/Jian/Downloads/data.csv', index_col=[0])
# get part of the data
x = df.loc[df.House==1, 'Daylight']
# hp-filter, set parameter lamb=129600 following the suggestions for monthly data
x_smoothed, x_trend = sm.tsa.filters.hpfilter(x, lamb=129600)
fig, axes = plt.subplots(figsize=(12,4), ncols=3)
axes[0].plot(x)
axes[0].set_title('raw x')
axes[1].plot(x_trend)
axes[1].set_title('trend')
axes[2].plot(x_smoothed)
axes[2].set_title('smoothed x')