Python wheel anti-dependency - python

I'm managing a python project which can be released in two different variants, "full" and "lightweight", called e.g. my-project and my-project-lw. Both use the same top-level name, e.g. myproject. I have a script that cuts off the "heavy" parts of the project and builds both wheel installable archives with dependencies (the lightweight has considerably fewer). Everything works, and I can install them using the wheels.
Now I would like to make sure that a user wouldn't have both packages installed at the same time. Ideally I'd like pip to uninstall one when installing the other, or at least fail when the other is present (such that the user would have to uninstall the current manually).
Otherwise, when you install the my-project package it installs into /lib/python3.6/site-packages/myproject, and then when you install the my-project-lw package it overwrites the files in the same folder so you get a weird hybrid when some file are from "full" and some from "lightweigth", which is not good.
Is there a way to specify an anti-dependency? To mark them somehow as mutually exclusive? Thanks!

Pip doesn't support it. See also the related 'obsoletes' metadata. https://github.com/pypa/packaging-problems/issues/154

Related

requirements.txt vs setup.py

I started working with Python. I've added requirements.txt and setup.py to my project. But, I am still confused about the purpose of both files. I have read that setup.py is designed for redistributable things and that requirements.txt is designed for non-redistributable things. But I am not certain this is accurate.
How are those two files truly intended to be used?
requirements.txt:
This helps you to set up your development environment.
Programs like pip can be used to install all packages listed in the file in one fell swoop. After that you can start developing your python script. Especially useful if you plan to have others contribute to the development or use virtual environments.
This is how you use it:
pip install -r requirements.txt
It can be produced easily by pip itself:
pip freeze > requirements.txt
pip automatically tries to only add packages that are not installed by default, so the produced file is pretty minimal.
setup.py:
This helps you to create packages that you can redistribute.
The setup.py script is meant to install your package on the end user's system, not to prepare the development environment as pip install -r requirements.txt does. See this answer for more details on setup.py.
The dependencies of your project are listed in both files.
The short answer is that requirements.txt is for listing package requirements only. setup.py on the other hand is more like an installation script. If you don't plan on installing the python code, typically you would only need requirements.txt.
The file setup.py describes, in addition to the package dependencies, the set of files and modules that should be packaged (or compiled, in the case of native modules (i.e., written in C)), and metadata to add to the python package listings (e.g. package name, package version, package description, author, ...).
Because both files list dependencies, this can lead to a bit of duplication. Read below for details.
requirements.txt
This file lists python package requirements. It is a plain text file (optionally with comments) that lists the package dependencies of your python project (one per line). It does not describe the way in which your python package is installed. You would generally consume the requirements file with pip install -r requirements.txt.
The filename of the text file is arbitrary, but is often requirements.txt by convention. When exploring source code repositories of other python packages, you might stumble on other names, such as dev-dependencies.txt or dependencies-dev.txt. Those serve the same purpose as dependencies.txt but generally list additional dependencies of interest to developers of the particular package, namely for testing the source code (e.g. pytest, pylint, etc.) before release. Users of the package generally wouldn't need the entire set of developer dependencies to run the package.
If multiplerequirements-X.txt variants are present, then usually one will list runtime dependencies, and the other build-time, or test dependencies. Some projects also cascade their requirements file, i.e. when one requirements file includes another file (example). Doing so can reduce repetition.
setup.py
This is a python script which uses the setuptools module to define a python package (name, files included, package metadata, and installation). It will, like requirements.txt, also list runtime dependencies of the package. Setuptools is the de-facto way to build and install python packages, but it has its shortcomings, which over time have sprouted the development of new "meta-package managers", like pip. Example shortcomings of setuptools are its inability to install multiple versions of the same package, and lack of an uninstall command.
When a python user does pip install ./pkgdir_my_module (or pip install my-module), pip will run setup.py in the given directory (or module). Similarly, any module which has a setup.py can be pip-installed, e.g. by running pip install . from the same folder.
Do I really need both?
Short answer is no, but it's nice to have both. They achieve different purposes, but they can both be used to list your dependencies.
There is one trick you may consider to avoid duplicating your list of dependencies between requirements.txt and setup.py. If you have written a fully working setup.py for your package already, and your dependencies are mostly external, you could consider having a simple requirements.txt with only the following:
# requirements.txt
#
# installs dependencies from ./setup.py, and the package itself,
# in editable mode
-e .
# (the -e above is optional). you could also just install the package
# normally with just the line below (after uncommenting)
# .
The -e is a special pip install option which installs the given package in editable mode. When pip -r requirements.txt is run on this file, pip will install your dependencies via the list in ./setup.py. The editable option will place a symlink in your install directory (instead of an egg or archived copy). It allows developers to edit code in place from the repository without reinstalling.
You can also take advantage of what's called "setuptools extras" when you have both files in your package repository. You can define optional packages in setup.py under a custom category, and install those packages from just that category with pip:
# setup.py
from setuptools import setup
setup(
name="FOO"
...
extras_require = {
'dev': ['pylint'],
'build': ['requests']
}
...
)
and then, in the requirements file:
# install packages in the [build] category, from setup.py
# (path/to/mypkg is the directory where setup.py is)
-e path/to/mypkg[build]
This would keep all your dependency lists inside setup.py.
Note: You would normally execute pip and setup.py from a sandbox, such as those created with the program virtualenv. This will avoid installing python packages outside the context of your project's development environment.
For the sake of completeness, here is how I see it in 3 4 different angles.
Their design purposes are different
This is the precise description quoted from the official documentation (emphasis mine):
Whereas install_requires (in setup.py) defines the dependencies for a single project, Requirements Files are often used to define the requirements for a complete Python environment.
Whereas install_requires requirements are minimal, requirements files often contain an exhaustive listing of pinned versions for the purpose of achieving repeatable installations of a complete environment.
But it might still not easy to be understood, so in next section, there come 2 factual examples to demonstrate how the 2 approaches are supposed to be used, differently.
Their actual usages are therefore (supposed to be) different
If your project foo is going to be released as a standalone library (meaning, others would probably do import foo), then you (and your downstream users) would want to have a flexible declaration of dependency, so that your library would not (and it must not) be "picky" about what exact version of YOUR dependencies should be. So, typically, your setup.py would contain lines like this:
install_requires=[
'A>=1,<2',
'B>=2'
]
If you just want to somehow "document" or "pin" your EXACT current environment for your application bar, meaning, you or your users would like to use your application bar as-is, i.e. running python bar.py, you may want to freeze your environment so that it would always behave the same. In such case, your requirements file would look like this:
A==1.2.3
B==2.3.4
# It could even contain some dependencies NOT strickly required by your library
pylint==3.4.5
In reality, which one do I use?
If you are developing an application bar which will be used by python bar.py, even if that is "just script for fun", you are still recommended to use requirements.txt because, who knows, next week (which happens to be Christmas) you would receive a new computer as a gift, so you would need to setup your exact environment there again.
If you are developing a library foo which will be used by import foo, you have to prepare a setup.py. Period.
But you may still choose to also provide a requirements.txt at the same time, which can:
(a) either be in the A==1.2.3 style (as explained in #2 above);
(b) or just contain a magical single .
.
The latter is essentially using the conventional requirements.txt habit to document your installation step is pip install ., which means to "install the requirements based on setup.py" while without duplication. Personally I consider this last approach kind of blurs the line, adds to the confusion, but it is nonetheless a convenient way to explicitly opt out for dependency pinning when running in a CI environment. The trick was derived from an approach mentioned by Python packaging maintainer Donald in his blog post.
Different lower bounds.
Assuming there is an existing engine library with this history:
engine 1.1.0 Use steam
...
engine 1.2.0 Internal combustion is invented
engine 1.2.1 Fix engine leaking oil
engine 1.2.2 Fix engine overheat
engine 1.2.3 Fix occasional engine stalling
engine 2.0.0 Introducing nuclear reactor
You follow the above 3 criteria and correctly decided that your new library hybrid-engine would use a setup.py to declare its dependency engine>=1.2.0,<2, and then your separated application reliable-car would use requirements.txt to declare its dependency engine>=1.2.3,<2 (or you may want to just pin engine==1.2.3). As you see, your choice for their lower bound number are still subtly different, and neither of them uses the latest engine==2.0.0. And here is why.
hybrid-engine depends on engine>=1.2.0 because, the needed add_fuel() API was first introduced in engine 1.2.0, and that capability is the necessity of hybrid-engine, regardless of whether there might be some (minor) bugs inside such version and been fixed in subsequent versions 1.2.1, 1.2.2 and 1.2.3.
reliable-car depends on engine>=1.2.3 because that is the earliest version WITHOUT known issues, so far. Sure there are new capabilities in later versions, i.e. "nuclear reactor" introduced in engine 2.0.0, but they are not necessarily desirable for project reliable-car. (Your yet another new project time-machine would likely use engine>=2.0.0, but that is a different topic, though.)
TL;DR
requirements.txt lists concrete dependencies
setup.py lists abstract dependencies
A common misunderstanding with respect to dependency management in Python is whether you need to use a requirements.txt or setup.py file in order to handle dependencies.
The chances are you may have to use both in order to ensure that dependencies are handled appropriately in your Python project.
The requirements.txt file is supposed to list the concrete dependencies. In other words, it should list pinned dependencies (using the == specifier). This file will then be used in order to create a working virtual environment that will have all the dependencies installed, with the specified versions.
On the other hand, the setup.py file should list the abstract dependencies. This means that it should list the minimal dependencies for running the project. Apart from dependency management though, this file also serves the package distribution (say on PyPI).
For a more comprehensive read, you can read the article requirements.txt vs setup.py in Python on TDS.
Now going forward and as of PEP-517 and PEP-518, you may have to use a pyproject.toml in order to specify that you want to use setuptools as the build-tool and an additional setup.cfg file to specify the details.
For more details you can read the article setup.py vs setup.cfg in Python.

setup.py + virtualenv = chicken and egg issue?

I'm a Java/Scala dev transitioning to Python for a work project. To dust off the cobwebs on the Python side of my brain, I wrote a webapp that acts as a front-end for Docker when doing local Docker work. I'm now working on packaging it up and, as such, am learning about setup.py and virtualenv. Coming from the JVM world, where dependencies aren't "installed" so much as downloaded to a repository and referenced when needed, the way pip handles things is a bit foreign. It seems like best practice for production Python work is to first create a virtual environment for your project, do your coding work, then package it up with setup.py.
My question is, what happens on the other end when someone needs to install what I've written? They too will have to create a virtual environment for the package but won't know how to set it up without inspecting the setup.py file to figure out what version of Python to use, etc. Is there a way for me to create a setup.py file that also creates the appropriate virtual environment as part of the install process? If not — or if that's considered a "no" as this respondent stated to this SO post — what is considered "best practice" in this situation?
You can think of virtualenv as an isolation for every package you install using pip. It is a simple way to handle different versions of python and packages. For instance you have two projects which use same packages but different versions of them. So, by using virtualenv you can isolate those two projects and install different version of packages separately, not on your working system.
Now, let's say, you want work on a project with your friend. In order to have the same packages installed you have to share somehow what versions and which packages your project depends on. If you are delivering a reusable package (a library) then you need to distribute it and here where setup.py helps. You can learn more in Quick Start
However, if you work on a web site, all you need is to put libraries versions into a separate file. Best practice is to create separate requirements for tests, development and production. In order to see the format of the file - write pip freeze. You will be presented with a list of packages installed on the system (or in the virtualenv) right now. Put it into the file and you can install it later on another pc, with completely clear virtualenv using pip install -r development.txt
And one more thing, please do not put strict versions of packages like pip freeze shows, most of time you want >= at least X.X version. And good news here is that pip handles dependencies by its own. It means you do not have to put dependent packages there, pip will sort it out.
Talking about deploy, you may want to check tox, a tool for managing virtualenvs. It helps a lot with deploy.
Python default package path always point to system environment, that need Administrator access to install. Virtualenv able to localised the installation to an isolated environment.
For deployment/distribution of package, you can choose to
Distribute by source code. User need to run python setup.py --install, or
Pack your python package and upload to Pypi or custom Devpi. So the user can simply use pip install <yourpackage>
However, as you notice the issue on top : without virtualenv, they user need administrator access to install any python package.
In addition, the Pypi package worlds contains a certain amount of badly tested package that doesn't work out of the box.
Note : virtualenv itself is actually a hack to achieve isolation.

Delete unused packages from requirements file

Is there any easy way to delete no-more-using packages from requirements file?
I wrote a bash script for this task but, it doesn't work as I expected. Because, some packages are not used following their PyPI project names. For example;
dj-database-url
package is used as
dj_database_url
My project has many packages in its own requirements file, so, searching them one-by-one is too messy, error-prone and takes too much time. As I searched, IDEs don't have this property, yet.
You can use Code Inspection in PyCharm.
Delete the contents of your requirements.txt but keep the empty file.
Load your project in,
PyCharm go to Code -> Inspect code....
Choose Whole project option in dialog and click OK.
In inspection results panel locate Package requirements section under Python (note that this section will be showed only if there is any requirements.txt or setup.py file).
The section will contain one of the following messages:
Package requirement '<package>' is not satisfied if there is any package that is listed in requirements.txt but not used in any .py file.
Package '<package>' is not listed in project requirements if there is any package that is used in .py files, but not listed in requirements.txt.
You are interested in the second inspection.
You can add all used packages to requirements.txt by right clicking the Package requirements section and selecting Apply Fix 'Add requirements '<package>' to requirements.txt'. Note that it will show only one package name, but it will actually add all used packages to requirements.txt if called for section.
If you want, you can add them one by one, just right click the inspection corresponding to certain package and choose Apply Fix 'Add requirements '<package>' to requirements.txt', repeat for each inspection of this kind.
After that you can create clean virtual environment and install packages from new requirements.txt.
Also note that PyCharm has import optimisation feature, see Optimize imports.... It can be useful to use this feature before any other steps listed above.
The best bet is to use a (fresh) python venv/virtual-env with no packages, or only those you definitely know you need, test your package - installing missing packages with pip as you hit problems which should be quite quick for most software then use the pip freeze command to list the packages you really need. Better you you could use pip wheel to create a wheel with the packages in.
The other approach would be to:
Use pylint to check each file for unused imports and delete them, (you should be doing this anyway),
Run your tests to make sure that it was right,
Use a tool like snakefood or snakefood3 to generate your new list of dependencies
Note that for any dependency checking to work well it is advisable to avoid conditional import and import within functions.
Also note that to be sure you have everything then it is a good idea to build a new venv/virtual-env and install from your dependencies list then re-test your code.
You can find obsolete dependencies by using deptry, a command line utility that checks for various issues with a project's dependencies, such as obsolete, missing or transitive dependencies.
Add it to your project with
pip install deptry
and then run
deptry .
Example output:
-----------------------------------------------------
The project contains obsolete dependencies:
Flask
scikit-learn
scipy
Consider removing them from your projects dependencies. If a package is used for development purposes, you should add
it to your development dependencies instead.
-----------------------------------------------------
Note that for the best results, you should be using a virtual environment for your project, see e.g. here.
Disclaimer: I am the author of deptry.
In pycharm go to Tools -> Sync Python Requirements. There's a 'Remove unused requirements' checkbox.
I've used with success pip-check-reqs.
With command pip-extra-reqs your_directory it will check for all unused dependencies in your_directory
Install it with pip install pip-check-reqs.

Migrating to pip+virtualenv from setuptools

So pip and virtualenv sound wonderful compared to setuptools. Being able to uninstall would be great. But my project is already using setuptools, so how do I migrate? The web sites I've been able to find so far are very vague and general. So here's an anthology of questions after reading the main web sites and trying stuff out:
First of all, are virtualenv and pip supposed to be in a usable state by now? If not, please disregard the rest as the ravings of a madman.
How should virtualenv be installed? I'm not quite ready to believe it's as convoluted as explained elsewhere.
Is there a set of tested instructions for how to install matplotlib in a virtual environment? For some reason it always wants to compile it here instead of just installing a package, and it always ends in failure (even after build-dep which took up 250 MB of disk space). After a whole bunch of warnings it prints src/mplutils.cpp:17: error: ‘vsprintf’ was not declared in this scope.
How does either tool interact with setup.py? pip is supposed to replace easy_install, but it's not clear whether it's a drop-in or more complicated relationship.
Is virtualenv only for development mode, or should the users also install it?
Will the resulting package be installed with the minimum requirements (like the current egg), or will it be installed with sources & binaries for all dependencies plus all the build tools, creating a gigabyte monster in the virtual environment?
Will the users have to modify their $PATH and $PYTHONPATH to run the resulting package if it's installed in a virtual environment?
Do I need to create a script from a text string for virtualenv like in the bad old days?
What is with the #egg=Package URL syntax? That's not part of the standard URL, so why isn't it a separate parameter?
Where is #rev included in the URL? At the end I suppose, but the documentation is not clear about this ("You can also include #rev in the URL").
What is supposed to be understood by using an existing requirements file as "as a sort of template for the new file"? This could mean any number of things.
Wow, that's quite a set of questions. Many of them would really deserve their own SO question with more details. I'll do my best:
First of all, are virtualenv and pip
supposed to be in a usable state by
now?
Yes, although they don't serve everyone's needs. Pip and virtualenv (along with everything else in Python package management) are far from perfect, but they are widely used and depended upon nonetheless.
How should virtualenv be installed?
I'm not quite ready to believe it's as
convoluted as explained elsewhere.
The answer you link is complex because it is trying to avoid making any changes at all to your global Python installation and install everything in ~/.local instead. This has some advantages, but is more complex to setup. It's also installing virtualenvwrapper, which is a set of convenience bash scripts for working with virtualenv, but is not necessary for using virtualenv.
If you are on Ubuntu, aptitude install python-setuptools followed by easy_install virtualenv should get you a working virtualenv installation without doing any damage to your global python environment (unless you also had the Ubuntu virtualenv package installed, which I don't recommend as it will likely be an old version).
Is there a set of tested instructions
for how to install matplotlib in a
virtual environment? For some reason
it always wants to compile it here
instead of just installing a package,
and it always ends in failure (even
after build-dep which took up 250 MB
of disk space). After a whole bunch of
warnings it prints
src/mplutils.cpp:17: error: ‘vsprintf’
was not declared in this scope.
It "always wants to compile" because pip, by design, installs only from source, it doesn't install pre-compiled binaries. This is a controversial choice, and is probably the primary reason why pip has seen widest adoption among Python web developers, who use more pure-Python packages and commonly develop and deploy in POSIX environments where a working compilation chain is standard.
The reason for the design choice is that providing precompiled binaries has a combinatorial explosion problem with different platforms and build architectures (including python version, UCS-2 vs UCS-4 python builds, 32 vs 64-bit...). The way easy_install finds the right binary package on PyPI sort of works, most of the time, but doesn't account for all these factors and can break. So pip just avoids that issue altogether (replacing it with a requirement that you have a working compilation environment).
In many cases, packages that require C compilation also have a slower-moving release schedule and it's acceptable to simply install OS packages for them instead. This doesn't allow working with different versions of them in different virtualenvs, though.
I don't know what's causing your compilation error, it works for me (on Ubuntu 10.10) with this series of commands:
virtualenv --no-site-packages tmp
. tmp/bin/activate
pip install numpy
pip install -f http://downloads.sourceforge.net/project/matplotlib/matplotlib/matplotlib-1.0.1/matplotlib-1.0.1.tar.gz matplotlib
The "-f" link is necessary to get the most recent version, due to matplotlib's unusual download URLs on PyPI.
How does either tool interact with
setup.py? pip is supposed to replace
easy_install, but it's not clear
whether it's a drop-in or more
complicated relationship.
The setup.py file is a convention of distutils, the Python standard library's package management "solution." distutils alone is missing some key features, and setuptools is a widely-used third-party package that "embraces and extends" distutils to provide some additional features. setuptools also uses setup.py. easy_install is the installer bundled with setuptools. Setuptools development stalled for several years, and distribute was a fork of setuptools to fix some longstanding bugs. Eventually the fork was resolved with a merge of distribute back into setuptools, and setuptools development is now active again (with a new maintainer).
distutils2 was a mostly-rewritten new version of distutils that attempted to incorporate the best ideas from setuptools/distribute, and was supposed to become part of the Python standard library. Unfortunately this effort failed, so for the time being setuptools remains the de facto standard for Python packaging.
Pip replaces easy_install, but it does not replace setuptools; it requires setuptools and builds on top of it. Thus it also uses setup.py.
Is virtualenv only for development
mode, or should the users also install
it?
There's no single right answer to that; it can be used either way. In the end it's really your user's choice, and your software ideally should be able to be installed inside or out of a virtualenv; though you might choose to document and emphasize one approach or the other. It depends very much on who your users are and what environments they are likely to need to install your software into.
Will the resulting package be
installed with the minimum
requirements (like the current egg),
or will it be installed with sources &
binaries for all dependencies plus all
the build tools, creating a gigabyte
monster in the virtual environment?
If a package that requires compilation is installed via pip, it will need to be compiled from source. That also applies to any dependencies that require compilation.
This is unrelated to the question of whether you use a virtualenv. easy_install is available by default in a virtualenv and works just fine there. It can install pre-compiled binary eggs, just like it does outside of a virtualenv.
Will the users have to modify their
$PATH and $PYTHONPATH to run the
resulting package if it's installed in
a virtual environment?
In order to use anything installed in a virtualenv, you need to use the python binary in the virtualenv's bin/ directory (or another script installed into the virtualenv that references this binary). The most common way to do this is to use the virtualenv's activate or activate.bat script to temporarily modify the shell PATH so the virtualenv's bin/ directory is first. Modifying PYTHONPATH is not generally useful or necessary with virtualenv.
Do I need to create a script from a
text string for virtualenv like in the
bad old days?
No.
What is with the #egg=Package URL
syntax? That's not part of the
standard URL, so why isn't it a
separate parameter?
The "#egg=projectname-version" URL fragment hack was first introduced by setuptools and easy_install. Since easy_install scrapes links from the web to find candidate distributions to install for a given package name and version, this hack allowed package authors to add links on PyPI that easy_install could understand, even if they didn't use easy_install's standard naming conventions for their files.
Where is #rev included in the URL? At
the end I suppose, but the
documentation is not clear about this
("You can also include #rev in the
URL").
A couple sentences after that quoted fragment there is a link to "read the requirements file format to learn about other features." The #rev feature is fully documented and demonstrated there.
What is supposed to be understood by
using an existing requirements file as
"as a sort of template for the new
file"? This could mean any number of
things.
The very next sentence says "it will keep the packages listed in devel-req.txt in order and preserve comments." I'm not sure what would be a better concise description.
I can't answer all your questions, but hopefully the following helps.
Both virtualenv and pip are very usable. Many Python devs use these everyday.
Since you have a working easy_install, the easiest way to install both is the following:
easy_install pip
easy_install virtualenv
Once you have virtualenv, just type virtualenv yourEnvName and you'll get your new python virtual environment in a directory named yourEnvName.
From there, it's as easy as source yourEnvName/bin/activate and the virtual python interpreter will be your active. I know nothing about matplotlib, but following the installation interactions should work out ok unless there are weird hard-coded path issues.
If you can install something via easy_install you can usually install it via pip. I haven't found anything that easy_install could do that pip couldn't.
I wouldn't count on users being able to install virtualenv (it depends on who your users are). Technically, a virtual python interpreter can be treated as a real one for most cases. It's main use is not cluttering up the real interpreter's site-packages and if you have two libraries/apps that require different and incompatible versions of the same library.
If you or a user install something in a virtualenv, it won't be available in other virtualenvs or the system Python interpreter. You'll need to use source /path/to/yourvirtualenv/bin/activate command to switch to a virtual environment you installed the library on.
What they mean by "as a sort of template for the new file" is that the pip freeze -r devel-req.txt > stable-req.txt command will create a new file stable-req.txt based on the existing file devel-req.txt. The only difference will be anything installed not already specified in the existing file will be in the new file.

Best practice for installing python modules from an arbitrary VCS repository

I'm newish to the python ecosystem, and have a question about module editing.
I use a bunch of third-party modules, distributed on PyPi. Coming from a C and Java background, I love the ease of easy_install <whatever>. This is a new, wonderful world, but the model breaks down when I want to edit the newly installed module for two reasons:
The egg files may be stored in a folder or archive somewhere crazy on the file system.
Using an egg seems to preclude using the version control system of the originating project, just as using a debian package precludes development from an originating VCS repository.
What is the best practice for installing modules from an arbitrary VCS repository? I want to be able to continue to import foomodule in other scripts. And if I modify the module's source code, will I need to perform any additional commands?
Pip lets you install files gives a URL to the Subversion, git, Mercurial or bzr repository.
pip install -e svn+http://path_to_some_svn/repo#egg=package_name
Example:
pip install -e hg+https://rwilcox#bitbucket.org/ianb/cmdutils#egg=cmdutils
If I wanted to download the latest version of cmdutils. (Random package I decided to pull).
I installed this into a virtualenv (using the -E parameter), and pip installed cmdutls into a src folder at the top level of my virtualenv folder.
pip install -E thisIsATest -e hg+https://rwilcox#bitbucket.org/ianb/cmdutils#egg=cmdutils
$ ls thisIsATest/src
cmdutils
Are you wanting to do development but have the developed version be handled as an egg by the system (for instance to get entry-points)? If so then you should check out the source and use Development Mode by doing:
python setup.py develop
If the project happens to not be a setuptools based project, which is required for the above, a quick work-around is this command:
python -c "import setuptools; execfile('setup.py')" develop
Almost everything you ever wanted to know about setuptools (the basis of easy_install) is available from the the setuptools docs. Also there are docs for easy_install.
Development mode adds the project to your import path in the same way that easy_install does. An changes you make will be available to your apps the next time they import the module.
As others mentioned, you can also directly use version control URLs if you just want to get the latest version as it is now without the ability to edit, but that will only take a snapshot, and indeed creates a normal egg as part of the process. I know for sure it does Subversion and I thought it did others but I can't find the docs on that.
You can use the PYTHONPATH environment variable or symlink your code to somewhere in site-packages.
Packages installed by easy_install tend to come from snapshots of the developer's version control, generally made when the developer releases an official version. You're therefore going to have to choose between convenient automatic downloads via easy_install and up-to-the-minute code updates via version control. If you pick the latter, you can build and install most packages seen in the python package index directly from a version control checkout by running python setup.py install.
If you don't like the default installation directory, you can install to a custom location instead, and export a PYTHONPATH environment variable whose value is the path of the installed package's parent folder.

Categories