Sectors representing and intersections in shapely - python

I am trying to use shapely to identify the area that intersact between sectors and rectangle.
So , my question is divide to two sections:
How to define (create, representing) sector as shapely object ( also triangle is sufficient), my input is coordinate x,y , start angle, end angle , radius.
How to calculate the area that intersact between list of sectors and polygon (rectangle)
Thanks

You can create a sector as a shapely object with the following function:
from shapely.geometry import Point, Polygon
import math
def sector(center, start_angle, end_angle, radius, steps=200):
def polar_point(origin_point, angle, distance):
return [origin_point.x + math.sin(math.radians(angle)) * distance, origin_point.y + math.cos(math.radians(angle)) * distance]
if start_angle > end_angle:
start_angle = start_angle - 360
else:
pass
step_angle_width = (end_angle-start_angle) / steps
sector_width = (end_angle-start_angle)
segment_vertices = []
segment_vertices.append(polar_point(center, 0,0))
segment_vertices.append(polar_point(center, start_angle,radius))
for z in range(1, steps):
segment_vertices.append((polar_point(center, start_angle + z * step_angle_width,radius)))
segment_vertices.append(polar_point(center, start_angle+sector_width,radius))
segment_vertices.append(polar_point(center, 0,0))
return Polygon(segment_vertices)
The center is a shapely point object and steps define the resolution of the curve.
So you can create a sector in this way:
center = Point(0,0)
sect = sector(center, 10, 60, 20)
To calculate the area of the intersection first you calculate the shape of the intersection in this way:
square = Polygon([(0,0), (0,10),(10,10), (10,0)])
intersection = sect.intersection(square)
at this point you obtain the area in this way:
calculated_area = intersection.area
The sector function is deliberately inspired by https://gis.stackexchange.com/questions/67478/how-to-create-a-circle-vector-layer-with-12-sectors-with-python-pyqgis

Related

How to find the intervals that are intersection of a circle with a rectangle

I need to integrate over the arcs that are resulted from the intersection of a circle with a rectangle and fall inside the rectangle. I can find the intersection points using the shapely package. However, I don't know how to obtain integration intervals. For example, in the below figure my code returns [-2.1562, 2.1562] in radians (with respect to the center of the circle), while it should be able to automatically understand that the integration intervals that falls inside the rectangle are [[2.1562, 3.1415],[-3.1415, -2.1562]] (assuming pi = 3.1415).
Here is another example:
My code returns [-0.45036, -0.29576, 0.29576, 0.45036] and the expected intervals will be [[0.29576, 0.45036], [-0.45036, -0.29576]].
The code should also work for any other location that the circle is located (with any radius), whether its center is outside or inside the rectangle.
Here is my code, written using iPython:
import matplotlib.pyplot as plt
import math
import numpy as np
from shapely.geometry import LineString, MultiPoint
from shapely.geometry import Polygon
from shapely.geometry import Point
# Utilities
def cart2pol(xy, center):
x,y = xy
x_0,y_0 = center
rho = np.sqrt((x-x_0)**2 + (y-y_0)**2)
phi = np.arctan2(y-y_0, x-x_0)
return(rho, phi)
def pol2cart(rho, phi, center):
x_0,y_0 = center
x = rho * np.cos(phi)+x_0
y = rho * np.sin(phi)+y_0
return(x, y)
def distance(A,B):
return math.sqrt((A[0]-B[0])**2+(A[1]-B[1])**2)
#######################
rad = 6
center = (-1,5)
p = Point(center)
c = p.buffer(rad).boundary
A = (10,0)
B = (0,0)
C = (0,10)
D = (10,10)
coords = [Point(A), Point(B), Point(C), Point(D)]
poly = MultiPoint(coords).convex_hull
i=c.intersection(poly)
lines = [LineString([A, D]), LineString([D, C]),
LineString([C, B]), LineString([B, A])]
points = []
for l in lines:
i = c.intersection(l)
if not i.is_empty:
if i.geom_type == 'MultiPoint':
for j in range(len(i.geoms)):
points.append(i.geoms[j].coords[0])
else:
points.append(i.coords[0])
# Repeat the tangential points
for k, point in enumerate(points.copy()):
if abs(distance(center, point)**2 + distance(point, B)**2 - distance(B, center)**2) < 1e-4:
points.insert(k+1,point)
elif abs(distance(center, point)**2 + distance(point, D)**2 -distance(D, center)**2) < 1e-4:
points.insert(k+1,point)
# Sort points in polar coordinates
phis = [cart2pol(point,center)[1] for point in points]
phis.sort()
print(phis)
# Plot the shapes
x,y = c.xy
plt.plot(*c.xy)
for l in lines:
plt.plot(*l.xy, 'b')
plt.gca().set_aspect('equal', adjustable='box')
I tried to sort the intersection points according to their angle in a way that each two adjacent items in the list of intersection points corresponds to an arc. The problem is that there will be a jump in the angles from -pi to pi when rotating along the unit circle. Also I don't know how to find that whether an arc is inside the rectangle or not given its 2 end points.
Dealing with angle ranges is not straightforward.
1) select a non-ambiguous representation range, such as [-π, π) radians.
2) write a function that finds the intersections of the circle with a (h/v) half-plane and returns an angle interval. It the interval straddles the ±π border, split it in two.
3) write a function that finds the intersection between two lists of intervals (this is a modified merging problem).
4) process the four edges and intersect the resulting intervals.
5) possibly merge intervals that straddle the ±π border.

Skyfield visible area underneath EarthSatellite

How would I calculate the area below an EarthSatellite so that I can plot the swath of land covered as the satellite passes over?
Is there anything in Skyfield that would facilitate that?
Edit: Just thought I'd clarify what I mean by area below the satellite. I need to plot the maximum area below the satellite possible to observe given that the Earth is a spheroid. I know how to plot the satellite path, but now I need to plot some lines to represent the area visible by that satellite as it flies over the earth.
Your edit made it clear what you want. The visible area from a satellite can be easily calculated (when the earth is seen as a sphere). A good source to get some background on the visible portion can be found here. To calculate the visible area when the earth is seen as an oblate spheroid will be a lot harder (and maybe even impossible). I think it's better to reform that part of the question and post it on Mathematics.
If you want to calculate the visible area when the earth is seen as a sphere we need to make some adjustments in Skyfield. With a satellite loaded using the TLE api you can easily get a sub point with the position on earth. The library is calling this the Geocentric position, but actually it's the Geodetic position (where the earth is seen as an oblate spheroid). To correct this we need to adjust subpoint of the Geocentric class to use the calculation for the Geocentric position and not the Geodetic position. Due to a bug and missing information in the reverse_terra function we also need to replace that function. And we need to be able to retrieve the earth radius. This results in the following:
from skyfield import api
from skyfield.positionlib import ICRF, Geocentric
from skyfield.constants import (AU_M, ERAD, DEG2RAD,
IERS_2010_INVERSE_EARTH_FLATTENING, tau)
from skyfield.units import Angle
from numpy import einsum, sqrt, arctan2, pi, cos, sin
def reverse_terra(xyz_au, gast, iterations=3):
"""Convert a geocentric (x,y,z) at time `t` to latitude and longitude.
Returns a tuple of latitude, longitude, and elevation whose units
are radians and meters. Based on Dr. T.S. Kelso's quite helpful
article "Orbital Coordinate Systems, Part III":
https://www.celestrak.com/columns/v02n03/
"""
x, y, z = xyz_au
R = sqrt(x*x + y*y)
lon = (arctan2(y, x) - 15 * DEG2RAD * gast - pi) % tau - pi
lat = arctan2(z, R)
a = ERAD / AU_M
f = 1.0 / IERS_2010_INVERSE_EARTH_FLATTENING
e2 = 2.0*f - f*f
i = 0
C = 1.0
while i < iterations:
i += 1
C = 1.0 / sqrt(1.0 - e2 * (sin(lat) ** 2.0))
lat = arctan2(z + a * C * e2 * sin(lat), R)
elevation_m = ((R / cos(lat)) - a * C) * AU_M
earth_R = (a*C)*AU_M
return lat, lon, elevation_m, earth_R
def subpoint(self, iterations):
"""Return the latitude an longitude directly beneath this position.
Returns a :class:`~skyfield.toposlib.Topos` whose ``longitude``
and ``latitude`` are those of the point on the Earth's surface
directly beneath this position (according to the center of the
earth), and whose ``elevation`` is the height of this position
above the Earth's center.
"""
if self.center != 399: # TODO: should an __init__() check this?
raise ValueError("you can only ask for the geographic subpoint"
" of a position measured from Earth's center")
t = self.t
xyz_au = einsum('ij...,j...->i...', t.M, self.position.au)
lat, lon, elevation_m, self.earth_R = reverse_terra(xyz_au, t.gast, iterations)
from skyfield.toposlib import Topos
return Topos(latitude=Angle(radians=lat),
longitude=Angle(radians=lon),
elevation_m=elevation_m)
def earth_radius(self):
return self.earth_R
def satellite_visiable_area(earth_radius, satellite_elevation):
"""Returns the visible area from a satellite in square meters.
Formula is in the form is 2piR^2h/R+h where:
R = earth radius
h = satellite elevation from center of earth
"""
return ((2 * pi * ( earth_radius ** 2 ) *
( earth_radius + satellite_elevation)) /
(earth_radius + earth_radius + satellite_elevation))
stations_url = 'http://celestrak.com/NORAD/elements/stations.txt'
satellites = api.load.tle(stations_url)
satellite = satellites['ISS (ZARYA)']
print(satellite)
ts = api.load.timescale()
t = ts.now()
geocentric = satellite.at(t)
geocentric.subpoint = subpoint.__get__(geocentric, Geocentric)
geocentric.earth_radius = earth_radius.__get__(geocentric, Geocentric)
geodetic_sub = geocentric.subpoint(3)
print('Geodetic latitude:', geodetic_sub.latitude)
print('Geodetic longitude:', geodetic_sub.longitude)
print('Geodetic elevation (m)', int(geodetic_sub.elevation.m))
print('Geodetic earth radius (m)', int(geocentric.earth_radius()))
geocentric_sub = geocentric.subpoint(0)
print('Geocentric latitude:', geocentric_sub.latitude)
print('Geocentric longitude:', geocentric_sub.longitude)
print('Geocentric elevation (m)', int(geocentric_sub.elevation.m))
print('Geocentric earth radius (m)', int(geocentric.earth_radius()))
print('Visible area (m^2)', satellite_visiable_area(geocentric.earth_radius(),
geocentric_sub.elevation.m))

Efficiently apply function to spheric neighbourhood in numpy array

I have a 3D numpy array of float values in Python.
I need to retrieve all the elements in a sphere of radius r starting from
a center point P(x, y, z). Then, I want to apply to the sphere points a function that
updates their values and needs the distance to the center point to do this. I do these steps a lot of times and for
large radius values, so I would like to have a solution that is as efficient
as possible.
My current solution checks only the points in the bounding box of the sphere,
as indicated here: Using a QuadTree to get all points within a bounding circle.
A sketch of the code looks like this:
# P(x, y, z): center of the sphere
for k1 in range(x - r, x + r + 1):
for k2 in range(y - r, y + r + 1):
for k3 in range(z - r, z + r + 1):
# Sphere center - current point distance
dist = np.sum((np.array([k1, k2, k3]) - np.array([x, y, z])) ** 2)
if (dist <= r * r):
# computeUpdatedValue(distance, radius): function that computes the new value of the matrix in the current point
newValue = computeUpdatedValue(dist, r)
# Update the matrix
mat[k1, k2, k3] = newValue
However, I thought that applying a mask to retrive the points and, then,
update them based on distance in a vectorized manner is more efficient.
I have seen how to apply a circular kernel
(How to apply a disc shaped mask to a numpy array?),
but I do no know how to efficiently apply the function (depending on the indices) on each of the mask's elements.
EDIT: If your array is very big compared to the region you are updating, the solution below will take much more memory than necessary. You can apply the same idea but only to the region where the sphere may fall:
def updateSphereBetter(mat, center, radius):
# Find beginning and end of region of interest
center = np.asarray(center)
start = np.minimum(np.maximum(center - radius, 0), mat.shape)
end = np.minimum(np.maximum(center + radius + 1, 0), mat.shape)
# Slice region of interest
mat_sub = mat[tuple(slice(s, e) for s, e in zip(start, end))]
# Center coordinates relative to the region of interest
center_rel = center - start
# Same as before but with mat_sub and center_rel
ind = np.indices(mat_sub.shape)
ind = np.moveaxis(ind, 0, -1)
dist_squared = np.sum(np.square(ind - center_rel), axis=-1)
mask = dist_squared <= radius * radius
mat_sub[mask] = computeUpdatedValue(dist_squared[mask], radius)
Note that since mat_sub is a view of mat, updating it updates the original array, so this produces the same result as before, but with less resources.
Here is a little proof of concept. I defined computeUpdatedValue so that it shows the distance from the center, and then plotted a few "sections" of an example:
import numpy as np
import matplotlib.pyplot as plt
def updateSphere(mat, center, radius):
# Make array of all index coordinates
ind = np.indices(mat.shape)
# Compute the squared distances to each point
ind = np.moveaxis(ind, 0, -1)
dist_squared = np.sum(np.square(ind - center), axis=-1)
# Make a mask for squared distances within squared radius
mask = dist_squared <= radius * radius
# Update masked values
mat[mask] = computeUpdatedValue(dist_squared[mask], radius)
def computeUpdatedValue(dist_squared, radius):
# 1 at the center of the sphere and 0 at the surface
return np.clip(1 - np.sqrt(dist_squared) / radius, 0, 1)
mat = np.zeros((100, 60, 80))
updateSphere(mat, [50, 20, 40], 20)
plt.subplot(131)
plt.imshow(mat[:, :, 30], vmin=0, vmax=1)
plt.subplot(132)
plt.imshow(mat[:, :, 40], vmin=0, vmax=1)
plt.subplot(133)
plt.imshow(mat[:, :, 55], vmin=0, vmax=1)
Output:

How to Expand a Polygon Until One of the Borders Reaches a Point

I have code to expand the polygon, it works by multiplying the xs and ys by a factor then re centering the resultant polyon at the center of the original.
I also have code to find the value for the expansion factor, given a point that the polygon needs to reach:
import numpy as np
import itertools as IT
import copy
from shapely.geometry import LineString, Point
def getPolyCenter(points):
"""
http://stackoverflow.com/a/14115494/190597 (mgamba)
"""
area = area_of_polygon(*zip(*points))
result_x = 0
result_y = 0
N = len(points)
points = IT.cycle(points)
x1, y1 = next(points)
for i in range(N):
x0, y0 = x1, y1
x1, y1 = next(points)
cross = (x0 * y1) - (x1 * y0)
result_x += (x0 + x1) * cross
result_y += (y0 + y1) * cross
result_x /= (area * 6.0)
result_y /= (area * 6.0)
return (result_x, result_y)
def expandPoly(points, factor):
points = np.array(points, dtype=np.float64)
expandedPoly = points*factor
expandedPoly -= getPolyCenter(expandedPoly)
expandedPoly += getPolyCenter(points)
return np.array(expandedPoly, dtype=np.int64)
def distanceLine2Point(points, point):
points = np.array(points, dtype=np.float64)
point = np.array(point, dtype=np.float64)
points = LineString(points)
point = Point(point)
return points.distance(point)
def distancePolygon2Point(points, point):
distances = []
for i in range(len(points)):
if i==len(points)-1:
j = 0
else:
j = i+1
line = [points[i], points[j]]
distances.append(distanceLine2Point(line, point))
minDistance = np.min(distances)
#index = np.where(distances==minDistance)[0][0]
return minDistance
"""
Returns the distance from a point to the nearest line of the polygon,
AND the distance from where the normal to the line (to reach the point)
intersets the line to the center of the polygon.
"""
def distancePolygon2PointAndCenter(points, point):
distances = []
for i in range(len(points)):
if i==len(points)-1:
j = 0
else:
j = i+1
line = [points[i], points[j]]
distances.append(distanceLine2Point(line, point))
minDistance = np.min(distances)
i = np.where(distances==minDistance)[0][0]
if i==len(points)-1:
j = 0
else:
j = i+1
line = copy.deepcopy([points[i], points[j]])
centerDistance = distanceLine2Point(line, getPolyCenter(points))
return minDistance, centerDistance
minDistance, centerDistance = distancePolygon2PointAndCenter(points, point)
expandedPoly = expandPoly(points, 1+minDistance/centerDistance)
This code only works when the point is directly opposing one of the polygons lines.
Modify your method distancePolygon2PointAndCenter to instead of
Returns the distance from a point to the nearest line of the polygon
To return the distance from a point to the segment intersected by a ray from the center to the point. This is the line that will intersect the point once the polygon is fully expanded. To get this segment, take both endpoints of each segment of your polygon, and plug them into the equation for the line parallel & intersecting the ray mentioned earlier. That is y = ((centerY-pointY)/(centerX-pointX)) * (x - centerX) + centerY. You want to want to find endpoints where either one of them intersect the line, or the two are on opposite sides of the line.
Then, the only thing left to do is make sure that we pick the segment intersecting the right "side" of the line. To do this, there are a few options. The fail-safe method would be to use the formula cos(theta) = sqrt((centerX**2 + centerY**2)*(pointX**2 + pointY**2)) / (centerX * pointX + centerY * pointY) however, you could use methods such as comparing x and y values, taking the arctan2(), and such to figure out which segment is on the correct "side" of center. You'll just have lots of edge cases to cover. After all this is said and done, your two (unless its not convex, in which case take the segment farthest from you center) endpoints makeup the segment to expand off of.
Determine what is "polygon center" as central point C of expanding. Perhaps it is centroid (or some point with another properties?).
Make a segment from your point P to C. Find intersection point I between PC and polygon edges. If polygon is concave and there are some intersection points, choose the closest one to P.
Calculate coefficient of expanding:
E = Length(PC) / Length(CI)
Calculate new vertex coordinates. For i-th vertex of polygon:
V'[i].X = C.X + (V[i].X - C.X) * E
V'[i].Y = C.Y + (V[i].Y - C.Y) * E
Decide which point you want to reach, then calculate how much % your polygon needs to expand to reach that point and use the shapely.affinity.scale function. For example, in my case I just needed to make the polygon 5% bigger:
region = shapely.affinity.scale(myPolygon,
xfact=1.05, yfact=1.05 )

How to calculate area of a polygon with latitude and longitude?

I have the following method that checks whether is points are polygon
from shapely import wkt
def validate_polygon(points):
try:
wkt.loads("POLYGON((%s))" % points)
except Exception as ex:
raise WrongRequestDataError("Incorrect points format. " + str(ex))
How can I calculate area of the polygon and throw exception if it's greater than 400 square miles?
I have tried to check this:
polygon = wkt.loads("POLYGON((%s))" % "34.093523 -118.274893,34.091414 -118.275887,34.092082 -118.278062,34.093867 -118.276609,34.093523 -118.274893")
print(polygon.area)
4.406979500001112e-06
but it seems like the incorrect answer or what type of units it uses for this value and how to translate it to square miles or km^2?
typically you would compute the area like this:
from shapely.geometry import Polygon
points = [(34.093523, -118.274893), (34.091414, -118.275887), (34.092082, -118.278062), (34.093867, -118.276609), (34.093523, -118.274893)]
polygon = Polygon(points)
# the area in square degrees
area_sdeg = polygon.area
note: for area calculation in square meters, you have to use projections as described in https://gist.github.com/robinkraft/c6de2f988c9d3f01af3c
This is the best solution that works perfectly for me
def compute_polygon_area(points):
coordinates = (tuple(map(float, x.split())) for x in points.split(', '))
xy_coordinates = switch_to_xy_coordinates(coordinates)
return Polygon(xy_coordinates).area
def switch_to_xy_coordinates(coordinates):
earth_radius = 6371 # in km
lat_dist = pi * earth_radius / 180.0
latitudes, longitudes = zip(*coordinates)
y = (lat * lat_dist for lat in latitudes)
x = (lon * lat_dist * cos(radians(lat))
for lat, lon in zip(latitudes, longitudes))
return list(zip(x, y))

Categories