graph theory DFS get the path from start to end node - python

i need only a one path from source to destination node,to return from this function, but this function doesn't stop after the path is discovered.
i only used return when the end node is found.
how can i end this when the path is found.
my situation only have one path , and no loops
one node have maximum 4 child nodes
def dfs(gpdic,start,end,visited,path):
visited[start] = 1
path.append(start)
print(f"start node {start}")
if start == end:
print(f"this is the path {path}")
return path
else:
print(f"stack {path}")
for node in gpdic[start]:
print(f" in node - {node}")
if visited[node]== -1 and node != -1 and node != 0 :
print(f" calling for next recursive funtion {node} ")
dfs(gpdic,node,end,visited,path)
#return path
po = path.pop()
print(f" poped last {po}")
visited[start] = -1
if __name__ == '__main__':
gp = {1: [2, -1, -1, -1], 2: [3, 4, 1, 5], 3: [6, -1, 2, 7],
4:[-1, -1, -1, 2], 5: [-1, 2, -1, -1], 6: [-1, -1, 3, -1],
7[-1, 3, -1, -1]}
visited = [-1] * 12
path = []
pathret = dfs(gp,7,4,visited,path)
print(f"finale path - > {pathret}")

problem solved just need to get the return variable from function and compare it
def dfs(gpdic,start,end,visited,path):
visited[start] = 1
path.append(start)
print(f"start node {start}")
if start == end:
print(f"this is the path {path}")
return path
else:
print(f"stack {path}")
for node in gpdic[start]:
print(f" in node - {node}")
if visited[node]== -1 and node != -1 and node != 0 :
print(f" calling for next recursive funtion {node} ")
l = dfs(gpdic,node,end,visited,path)
if l is not None:
return path
po = path.pop()
print(f" poped last {po}")
visited[start] = -1
if __name__ == '__main__':
gp = {1: [2, -1, -1, -1], 2: [3, 4, 1, 5], 3: [6, -1, 2, 7],
4:[-1, -1, -1, 2], 5: [-1, 2, -1, -1], 6: [-1, -1, 3, -1],
7[-1, 3, -1, -1]}
visited = [-1] * 12
path = []
pathret = dfs(gp,7,4,visited,path)
print(f"finale path - > {pathret}")

Related

Travelling Salesman implementation

# def shortest_path(grid: List[List[int]]) -> List[Tuple[int, int]]:
# ROW, COL = len(grid), len(grid[0])
# extra = []
# start, dest = None, None
Expand
message.txt
4 KB
Help me please

```# from typing import List, Tuple
# def shortest_path(grid: List[List[int]]) -> List[Tuple[int, int]]:
# ROW, COL = len(grid), len(grid[0])
# extra = []
# start, dest = None, None
# # find the starting and ending points and the extra
# for row in range(ROW):
# for col in range(COL):
# if grid[row][col] == 3:
# start = (row, col)
# elif grid[row][col] == 4:
# dest = (row, col)
# elif grid[row][col] == 5:
# extra.append((row, col))
# print(extra)
# # add the destination to the end of the list of extra
# extra.append(dest)
# def bfs(curr, dest, extra, path, visited):
# if not extra and curr == dest:
# return path
# for row, col in [(0,1), (0,-1), (1,0), (-1,0)]:
# r, c = curr[0] + row, curr[1] + col
# if (0 <= r < ROW) and (0 <= c < COL) and (grid[r][c] != 0) and ((r,c) not in visited):
# if (r,c) in extra:
# index = extra.index((r,c))
# for i in range(index, len(extra)):
# res = bfs((r,c), extra[i], extra[i+1:], path + [(r,c)], visited + [(r,c)])
# if res:
# # print(res)
# return res
# else:
# res = bfs((r,c), dest, extra, path + [(r,c)], visited + [(r,c)])
# if res:
# # print(res)
# return res
# return []
# return bfs(start, dest, extra, [start], [start])
from typing import List, Tuple
def shortest_path(maze: List[List[int]]) -> List[Tuple[int, int]]:
ROW, COL = len(maze), len(maze[0])
extra = []
start, dest = None, None
for row in range(ROW):
for col in range(COL):
if maze[row][col] == 3:
start = (row, col)
elif maze[row][col] == 4:
dest = (row, col)
elif maze[row][col] == 5:
extra.append((row, col))
print(extra)
def bfs(curr, dest, extra, path, visited):
if not extra and curr == dest:
return path
for row, col in [(0,1), (0,-1), (1,0), (-1,0)]:
r, c = curr[0] + row, curr[1] + col
if (0 <= r < ROW) and (0 <= c < COL) and (maze[r][c] != 0) and ((r,c) not in visited):
if (r,c) in extra:
index = extra.index((r,c))
for i in range(index, len(extra)):
res = bfs((r,c), dest, extra[i+1:], path + [(r,c)], visited + [(r,c)])
if res:
return res
else:
res = bfs((r,c), dest, extra, path + [(r,c)], visited + [(r,c)])
if res:
return res
return None
result = bfs(start, dest, extra, [start], [start])
if result:
return result
else:
return []
GRID = [[0, 0, 0, 5, 0, 0, 1,1 , 1, 1, 1, 0],
[0, 1, 1, 1, 5,5, 1, 1, 1, 0, 4, 0],
[0, 1, 0, 1, 5, 1, 1, 0, 1, 0, 0, 0],
[0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 5, 0],
[0, 1, 1, 1, 1, 1, 5, 1, 1, 0, 1, 0],
[0, 3, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
]
path = shortest_path(GRID)
print(path)
Hey all, I have a question, given a grid above, with 1 as open path, 0 as closed path, 3 as start, 4 as end, 5 as extra points; how can i code a BFS (or any algorithms better) such that it is able to return me the individual coordinates to take to go from start point to end point, while passing through extra points(5). The code above does not really work, (does not pass through all extra points)

Find all (shortest) paths

For school i need to make an assignment. we have to find all paths.
This is the input
1->5
1, 2, 3; 2, 3; 3, 4; 4, 5; 5,
And this the output
1->2->3->4->5
1->3->4->5
However i am not even at this point yet, i am still trying to make my find path function work. I am trying to find my mistakes through print debugging, but i just do not understand why "graph[start]" gives me [2,3] instead of 1. Could anyone help me? I have provided my code below!
from typing import List
from collections import defaultdict
def stringify_path(path: List):
'''
Build string to print
'''
ret = ''
for id in path[:-1]:
ret = f'{ret}{id}->'
try:
ret = f'{ret}{path[-1]}'
except IndexError:
pass
return ret
def output(paths: List[List]):
'''
Prints all paths from the list in param
'''
paths_string = []
for p in paths:
paths_string.append(stringify_path(p))
print(*paths_string, sep='\n')
'''
DO NOT CHANGE ABOVE
'''
def find_paths(graph, start, target, visited, path):
print(graph)
# Mark the current node as visited and store in path
visited[start-1] = True
print(visited)
path.append(start)
print(path)
# If current vertex is same as destination, then print
# current path[]
if start == target:
print(path)
else:
# If current vertex is not destination
# Recur for all the vertices adjacent to this vertex
print(graph[start])
for i in graph[start]: #should start from 1??
if len(graph[start]) >= 1:
if visited[i] == False:
find_paths(graph, i, target, visited, path)
# Remove current vertex from path[] and mark it as unvisited
path.pop()
visited[start] = False
if __name__ == '__main__':
'''
Fetch starting and target node.
'''
start, target = [int(x) for x in input().split('->')]
'''
Fetch `;` separated twitter data. <id-1: str>, <follower_1-2: str>, ..<follower_1-2: str>; ...
i.e: 1, 2, 3; 2, 3, 1; 3, 2
'''
data = input()
data = data.split('; ')
#print(data)
graph = dict()
for d in data:
parts = d.split(',')
if len(parts) > 1:
id = parts[0]
id = id.strip()
followers = parts[1:]
followers = [x.strip() for x in followers if x.strip()]
# for f in followers:
# edges = [int(id), int(f)]
# print(edges)
#for i in followers:
#print(i)
if followers:
graph[int(id)] = ([int(x) for x in followers])
print('graph:', graph[start])
vertices = 5
visited = [False] * vertices
print(visited)
path = []
'''
TODO: Step 3: Call your 'find_paths` function with the parameters you defined.
'''
paths = find_paths(graph, start, target, visited, path)
print(paths)
'''
Print the paths.
'''
# output(paths)

identity test game of life

I'm writing the conway's game code in python. My code is like this:
def update_board(board: list[list[int]]) -> list[list[int]]:
rows = len(board)
cols = len(board[0])
count = 0
copy_board = deepcopy(board)
indx = [-1, -1, -1, 0, 0, 1, 1, 1]
indy = [-1, 0, 1, -1, 1, -1, 0, 1]
for i in range(rows):
for j in range(cols):
for k, value in enumerate(indx):
if check(i + value, j + indy[k], rows,
cols) and copy_board[i + indx[k]][j + indy[k]]:
count += 1
# Apply the rule to each cell
if count < 2 or count > 3:
board[i][j] = 0
elif count == 3:
board[i][j] = 1
# Reset the count for the next cell
count = 0
return board
It need to pass through the identity test:
def test_is_not_identity() -> None:
"""Test board update is not done in place."""
board = [[0 for _ in range(4)] for _ in range(4)]
assert board is not update_board(board)
and the stills test (I don't know what it does):
def test_stills(name: str, proto: str) -> None:
"""Test still lifes."""
board = parse_board(proto)
assert board == update_board(deepcopy(board)), name
but it doesn't pass although I updated the board in place so I don't understand.
You should return the copy_board instead of board. Also moodify copy_booard instead of board itself
def update_board(board: list[list[int]]) -> list[list[int]]:
rows = len(board)
cols = len(board[0])
count = 0
copy_board = deepcopy(board)
indx = [-1, -1, -1, 0, 0, 1, 1, 1]
indy = [-1, 0, 1, -1, 1, -1, 0, 1]
for i in range(rows):
for j in range(cols):
for k, value in enumerate(indx):
if check(i + value, j + indy[k], rows,
cols) and board[i + indx[k]][j + indy[k]]:
count += 1
# Apply the rule to each cell
if count < 2 or count > 3:
copy_board[i][j] = 0
elif count == 3:
copy_board[i][j] = 1
# Reset the count for the next cell
count = 0
return copy_board

output ==> elif mid_number<query: TypeError: '<' not supported between instances of 'list' and 'int'

cards= [20,19,18,17,16,15,13, 11, 10, 7, 4, 3, 1, 0],
query=1
def checker(cards,query,mid,lo,hi):
mid_number = cards[mid]
print('mid',mid,', mid_number: ',mid_number,' lo ',lo,' hi ',hi)
if mid_number == query:
if mid-1>=0 and cards[mid-1] == query:
return 'left'
else:
return 'found'
elif mid_number<query:
return 'left'
else:
return 'right'
def locate_card(cards, query):
lo, hi = 0, len(cards) - 1
while (lo + hi) // 2 != query:
mid = (lo + hi) // 2
result = checker(cards,query,mid,lo,hi)
if result == 'found':
return mid
elif result == 'left':
hi = mid - 1
elif result == 'right':
lo = mid + 1
print(locate_card(cards, query))
output
elif mid_number<query:
TypeError: '<' not supported between instances of 'list' and 'int'
In you code you write: (pay attention to , in the end of line)
cards= [20,19,18,17,16,15,13, 11, 10, 7, 4, 3, 1, 0],
this code convert cards to the tuple and when you write cards[0] this return :
>>> cards[0]
[20,19,18,17,16,15,13, 11, 10, 7, 4, 3, 1, 0]
to mid_number and when you check mid_number with int you check list with int and got an error.
Then you need to change this line like below:
>>> cards= [20,19,18,17,16,15,13, 11, 10, 7, 4, 3, 1, 0]
>>> cards[0]
20
Try comparing the values from a for loop.
for i in cards:
if i == mid:
if i < query:
return 'left'
{...}

N-puzzle problem using A-star search algorithm

I am making a n-puzzle solver for my Artificial Intelligence class using A* in Python. The problem I have with my solution is , that the solve_puzzle() is not working as it should. While searching through the nodes it gets just deeper and deeper, but it never ends, the depth goes into really high numbers (depth of some child node is 5k for example).
I think it gets stuck in some loop and it keeps just looping through the same nodes (That is just what I think, I am not sure about that). I don't really know, I tried 3 different A* solutions, but the result is the same - the search loop never ends and never reaches the Goal.
I can solve very primitive puzzle like
start -> 0, 1, 2, 3, 4, 5, 6, 7, 8 goal -> 1, 2, 0, 3, 4, 5, 6, 7, 8 (just two moves to left are made)
but for just a little more complex puzzle like
start = 0, 1, 2, 3, 4, 5, 6, 7, 8
goal = 1, 2, 5, 0, 3, 4, 6, 7, 8 it is a never ending search.
I move the tile with number, not the blank tile.
Below is the whole code:
'''
class Node():
def __init__(self, n_size, m_size, current_state, goal_state, choosen_heuristic, parent):
self.n_size = n_size
self.m_size = m_size
self.dimension = self.n_size * self.m_size
self.current_state = current_state
self.goal_state = goal_state
self.choosen_heuristic = choosen_heuristic
self.parent = parent
self.child = [None, None, None, None]
self.last_operator = None
self.heuristic_cost = 0
self.depth = 0
self.priority = self.depth + self.heuristic_cost
def check_if_goal_is_reached(self):
if (self.heuristic_cost == 0):
print("GOAL IS REACHED!")
exit(1) #for now
#return
def get_blank_tile_position(self):
blank_position = 0
for i in range(self.dimension):
if (self.current_state[i] == 0):
blank_position = i
return blank_position
def misplaced_tiles_heuristic(self):
misplaced_sum = 0
for i in range(self.dimension):
if self.current_state[i] != self.goal_state[i]:
misplaced_sum += 1
#print("Count of misplaced tiless in this node is : ", misplaced_sum)
self.heuristic_cost = "misplaced"
self.heuristic_cost = misplaced_sum
self.check_if_goal_is_reached()
return misplaced_sum
def manhattan_distance(self):
distance_sum = 0
for i in range(self.dimension):
current_x = self.current_state[i] % self.n_size
goal_x = self.goal_state[i] % self.n_size
current_y = self.current_state[i] // self.m_size
goal_y = self.goal_state[i] // self.m_size
distance_sum += abs(current_x - goal_x) + abs(current_y - goal_y)
#print("Sum of Manhattan distance for this node is : ", distance_sum)
self.heuristic_cost = "manhattan"
#print("Hĺbka tohto uzla : ", self.depth)
self.check_if_goal_is_reached()
return distance_sum
def generate_children(self, choosen_heuristic):
possible_directions = []
current_node_blank_position = self.get_blank_tile_position()
# UP - I move a tile with number on it, not the blank tile
if current_node_blank_position < (self.dimension - self.n_size):
self.child[0] = Node(self.n_size, self.m_size, self.current_state, self.goal_state, self.choosen_heuristic, self.current_state)
self.child[0] = copy.deepcopy(self)
self.child[0].parent = self.current_state
self.child[0].last_operator = "UP"
self.child[0].depth = self.depth + 1
new_blank_position = current_node_blank_position + self.m_size
temp = self.child[0].current_state[current_node_blank_position]
self.child[0].current_state[current_node_blank_position] = self.child[0].current_state[new_blank_position]
self.child[0].current_state[new_blank_position] = temp
if choosen_heuristic == "misplaced":
self.child[0].misplaced_tiles_heuristic()
if choosen_heuristic == "manhattan":
self.child[0].manhattan_distance()
possible_directions.append("UP")
print("Depth of this node is : : ", self.child[0].depth)
else:
self.child[0] = None
# DOWN - I move a tile with number on it, not the blank tile
if current_node_blank_position > (self.n_size - 1):
self.child[1] = Node(self.n_size, self.m_size, self.current_state, self.goal_state, self.choosen_heuristic, self.current_state)
self.child[1] = copy.deepcopy(self)
self.child[1].parent = self.current_state
self.child[1].last_operator = "DOWN"
self.child[1].depth = self.depth + 1
new_blank_position = current_node_blank_position - self.m_size
temp = self.child[1].current_state[current_node_blank_position]
self.child[1].current_state[current_node_blank_position] = self.child[1].current_state[new_blank_position]
self.child[1].current_state[new_blank_position] = temp
if choosen_heuristic == "misplaced":
self.child[1].misplaced_tiles_heuristic()
if choosen_heuristic == "manhattan":
self.child[1].manhattan_distance()
possible_directions.append("DOWN")
#print("Depth of this node is : : ", self.child[1].depth)
else:
self.child[1] = None
# RIGHT - I move a tile with number on it, not the blank tile
if (current_node_blank_position + self.n_size) % self.m_size:
self.child[2] = Node(self.n_size, self.m_size, self.current_state, self.goal_state, self.choosen_heuristic, self.current_state)
self.child[2] = copy.deepcopy(self)
self.child[2].parent = self.current_state
self.child[2].last_operator = "RIGHT"
self.child[2].depth = self.depth + 1
new_blank_position = current_node_blank_position - 1
temp = self.child[2].current_state[current_node_blank_position]
self.child[2].current_state[current_node_blank_position] = self.child[2].current_state[new_blank_position]
self.child[2].current_state[new_blank_position] = temp
if choosen_heuristic == "misplaced":
self.child[2].misplaced_tiles_heuristic()
if choosen_heuristic == "manhattan":
self.child[2].manhattan_distance()
possible_directions.append("RIGHT")
#print("Depth of this node is : : ", self.child[2].depth)
else:
self.child[2] = None
# LEFT - I move a tile with number on it, not the blank tile
if (current_node_blank_position + 1) % self.m_size:
self.child[3] = Node(self.n_size, self.m_size, self.current_state, self.goal_state, self.choosen_heuristic, self.current_state)
self.child[3] = copy.deepcopy(self)
self.child[3].parent = self.current_state
self.child[3].last_operator = "LEFT"
self.child[3].depth = self.depth + 1
new_blank_position = current_node_blank_position + 1
temp = self.child[3].current_state[current_node_blank_position]
self.child[3].current_state[current_node_blank_position] = self.child[3].current_state[new_blank_position]
self.child[3].current_state[new_blank_position] = temp
if choosen_heuristic == "misplaced":
self.child[3].misplaced_tiles_heuristic()
if choosen_heuristic == "manhattan":
self.child[3].manhattan_distance()
possible_directions.append("LEFT")
#print("Depth of this node is : ", self.child[3].depth)
else:
self.child[3] = None
#print("From this node (the parent node) I can move to -> ", possible_directions)
def get_node_priority(node):
return node.priority
def solve_puzzle(n_size, m_size, current_state, goal_state, choosen_heuristic):
open_list = []
closed_list = []
init_node_parent = None
init_node = Node(n_size, m_size, current_state, goal_state, choosen_heuristic, init_node_parent)
open_list.append(init_node)
while len(open_list) != 0:
if (len(open_list) == 0):
print("Fail - solution not found !")
else:
node = open_list.pop(0)
if (node.parent != None):
node.check_if_goal_is_reached()
node.generate_children(choosen_heuristic)
closed_list.append(node)
temp_list = []
for i in range(4):
if node.child[i] != None:
temp_list.insert(0, node.child[i])
sorted_temp_list = sorted(temp_list, key=get_node_priority, reverse=True)
for x in range(len(sorted_temp_list)):
if sorted_temp_list[x] != None:
open_list.insert(0, sorted_temp_list[x])
def print_current_node(current_node):
puzzle = ""
if current_node is None:
puzzle = ""
print(puzzle)
else:
puzzle = ""
count_lines = 0
for i in range(current_node.dimension):
puzzle += (str(current_node.current_state[i]) + " ")
count_lines += 1
if (count_lines % current_node.m_size == 0):
puzzle += "\n"
print(puzzle)
def main():
###################
# Static Data #
###################
# static for now, later I will let user to choose
n_size = 3
m_size = 3
current_state = [0, 1, 2, 3, 4, 5, 6, 7, 8]
goal_state = [8, 0, 6, 5, 4, 7, 2, 3, 1]
choosen_heuristic = "manhattan"
start_time = time.process_time()
solve_puzzle(n_size, m_size, current_state, goal_state, choosen_heuristic)
end_time = time.process_time()
search_time = end_time - start_time
print("Solved in : ", search_time, "seconds.")
main()
'''
Make sure you test with a solvable puzzle.
Here are some solvable tests:
goal: {1,2,3,4,5,6,7,8,0}
6 steps: {1,3,5,4,0,2,7,8,6}
18 steps: {1,4,0,5,2,8,7,6,3}
26 steps: {2,1,7,5,0,8,3,4,6}
27 steps: {8,5,3,4,7,0,6,1,2}
28 steps: {0,6,7,3,8,5,4,2,1}
30 steps: {5,7,0,4,6,8,1,2,3}
31 steps: {8,6,7,2,5,4,3,0,1} (highest number of steps possible for 3x3 )

Categories