How to use keras model inside other model in TPU - python

I am trying to convert a keras model to tpu model in google colab, but this model has another model inside.
Take a look at the code:
https://colab.research.google.com/drive/1EmIrheKnrNYNNHPp0J7EBjw2WjsPXFVJ
This is a modified version of one of the examples in the google tpu documentation:
https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/fashion_mnist.ipynb
If the sub_model is converted and used directly it works, but if the sub model is inside another model it does not work. I need the sub model type of network because i am trying to train a GAN network that has 2 networks inside (gan=generator+discriminator) so if this test works probably it will work with the gan too.
I have tried several things:
Convert to tpu the model without converting the sub model, in that case when training starts an error is prompted related to the inputs of the sub model.
Convert both the model and sub model to tpu, in that case an error is prompted when converting the "parent" model, the exception only says at the end "layers".
Convert only the sub model to tpu, in that case no error is prompted but the training is not accelerated by the tpu and it is extremely slow like if no conversion to tpu was made at all.
Using fixed batch size or not, both have the same result, the model does not work.
Any ideas? Thanks a lot.

Divide into parts only use submodel at tpu first. Then put something simple instead of submodel and use the model in TPU. If this does not work , create something very simple which includes similar structure with models you are sure that are working and then step by step add things to converge your complex model which you want to use in TPU.
I am struggling with such things. What I did at the very beginning using MNIST is trained the model and get the coefficients outside rewrite relu dense dropout and NN matricies myself and run the model using numpy and then cupy and then pyopencl and then I replaced functions with my own raw cuda C and opencl functions so that getting deeper and simpler I can find what is wrong when something does not work. At last I write my genetic selective training algo and learned a lot.
And most important it gave me the opportunity to try some crazy ideas for training and modelling and manuplating and making sense of NN coffecients.
The problem in my opinion is TF - Keras etc are too high level. Optimizers - Solvers , there is too much unknown. Even neural networks are not under control. GAN is problematic while training it does not converge everytime takes days to train most of the time. Even if you train. You dont know any idea how it converges. Most of the tricks - techniques which protects you from vanishing gradient are not mathematically backed they are nevertheless works very amazingly. (?!?)
**Go simpler deeper and and complexity step by step. Follow a practicing on which you comprehend as much as you can ** It will cost some time and energy but you will benefit it tremendously in my opinion.

Related

Tensorflow - What does Training and Prediction mode mean when making a model?

So, I've googled prior to asking this, obviously, however, there doesn't seem to be much mention on these modes directly. Tensorflow documentation mentions "test" mode in passing which, upon further reading, didn't make very much sense to me.
From what I've gathered, my best shot at this is that to reduce ram, when your model is in prediction mode, you just use a pretrained model to make some predictions based on your input?
If someone could help with this and help me understand, I would be extremely grateful.
Training refers to the part where your neural network learns. By learning I mean how your model changes it's weights to improve it's performance on a task given a dataset. This is achieved using the backpropogation algorithm.
Predicting, on the other hand, does not involve any learning. It is only to see how well your model performs after it has been trained. There are no changes made to the model when it is in prediction mode.

dataset training: converging on parameter tuning and pre-trained models

I have recently completed a "pretty good" TF2/keras model for image recog using a number of layers, SGD optimization AND starting with a MobileNetv2 pre-trained model.
I could tweak this forever: adding/removing layers, different optimization algos, learning rate, momentum, various dataset augmentation, etc. And I haven't even considered starting with other pre-trained models. I changed the optimizer from SGD to ADAM (which should be better, right?) and it was slightly more inaccurate.
So, how do I converge on a better pre-trained model, parameters, values? Is it just trial-and-error? It takes about 45min to train my model (10 epochs), which seems forever when I'm tweaking so many variables.
I think I could write a python framework to plug in various training attributes and then just let it run for a couple days.
I dont know if this is a suitable SO question or not.
This problem is called hyperparameter tuning (or optimization). You can decide to do this manually or by using search technique like grid search over all your parameters.
There is also more advanced techniques that use Bayesian optimization to automate this process.
One common and established tool for doing hyperparameter optimization in the ML community is called hyperopt.
https://github.com/hyperopt/hyperopt
Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which may include real-valued, discrete, and conditional dimensions.
Also, since you tagged Keras in the question, there is a tool called auto keras which also searches for hyperparameters https://autokeras.com/
Auto-Keras provides functions to automatically search for architecture and hyperparameters of deep learning models.

Do Python have a model which is similar to nnetar in R's package forecast?

R's package 'forecast' has a function nnetar, which uses feed-forward neural networks with a single hidden layer to predict in time series.
Now I am using Python to do the similar analysis. I want to use neural network which does not need to be as complex as deep learning. Maybe 2 layers and a couple of nodes are good enough for my case.
So, does Python have a model of simple neural networks which can be used in time series lik nnetar? If not, how to deal with this problem?
Any NN model that uses 1 or more hidden layers is a multi-layer perceptron model, and for that case it is trivial to make it extendable to N layers. So any library that you pick will support it. My guess for you not picking a complex library like pytorch/Tensorflow is its size.
Tensorflow does have TF-Lite which can work for smaller IOT devices.
Sklearn does have MLPRegressor that can train NNs if that is more to your liking.
You can always write your model. There are plenty of examples for this that use numpy and are plenty fast for cpu computation.( Single Hidden layer NN I am guessing will be more memory bound than computation bound)
Use another ML algorithm. Single Hidden layer NNs will not perform nearly as well as other other simpler algorithms.
If there are other reasons for not using a standard library like tensorflow/pytorch then you should mention them.

Is it possible to remove categories in a pretrained tensorflow model?

I am currently using Tensorflow Object Detection API for my human detection app.
I tried filtering in the API itself which worked but I am still not contended by it because it's slow. So I'm wondering if I could remove other categories in the model itself to also make it faster.
If it is not possible, can you please give me other suggestions to make the API faster since I will be using two cameras. Thanks in advance and also pardon my english :)
Your questions addresses several topics for using neural network pretrained models.
Theoretical methods
In general, you can always neutralize categories by removing the corresponding neurons in the softmax layer and compute a new softmax layer only with the relevant rows of the matrix.
This method will surely work (maybe that is what you meant by filtering) but will not accelerate the network computation time by much, since most of the flops (multiplications and additions) will remain.
Similar to decision trees, pruning is possible but may reduce performance. I will explain what pruning means, but note that the accuracy over your categories may remain since you are not just trimming, you are predicting less categories as well.
Transfer the learning to your problem. See stanford's course in computer vision here. Most of the times I've seen that works good is by keeping the convolution layers as-is, and preparing a medium-size dataset of the objects you'd like to detect.
I will add more theoretical methods if you request, but the above are the most common and accurate I know.
Practical methods
Make sure you are serving your tensorflow model, and not just using an inference python code. This could significantly accelerate performance.
You can export the parameters of the network and load them in a faster framework such as CNTK or Caffe. These frameworks work in C++/CSharp and can inference much faster. Make sure you load the weights correctly, some frameworks use different order in tensor dimensions when saving/loading (little/big endian-like issues).
If your application perform inference on several images, you can distribute the computation via several GPUs. **This can also be done in tensorflow, see Using GPUs.
Pruning a neural network
Maybe this is the most interesting method of adapting big networks for simple tasks. You can see a beginner's guide here.
Pruning means that you remove parameters from your network, specifically the whole nodes/neurons in a decision tree/neural network (resp). To do that in object detection, you can do as follows (simplest way):
Randomly prune neurons from the fully connected layers.
Train one more epoch (or more) with low learning rate, only on objects you'd like to detect.
(optional) Perform the above several times for validation and choose best network.
The above procedure is the most basic one, but you can find plenty of papers that suggest algorithms to do so. For example
Automated Pruning for Deep Neural Network Compression and An iterative pruning algorithm for feedforward neural networks.

Tensorflow LSTM model parameter learning inside parameter

I'm tryinig to train my LSTM model in tensorflow and my module has to calculate parameter inside parameter. And i want to train both parameters altogether.
More details are in the picture below.
I think that tensorflow LSTM module's input must be a perfect sequence and parameters like "tf.placeholder".
How can i do this in tensorflow? Or can you recommend another appropriate framework better than tensorflow in this task?
Sorry for my poor english.
First of all your usage of the word parameter is quite confusing. Normally parameters are referred as trainable parameters and therefore every variable which is trained by the optimizer. There are also so-called hyper-parameters, which have to be set per hand e.g. like the model topology.
Tensorflow work with tensors, which are representations of data which are used to build the workflow and are filled with data during run time via placeholder which is like an entry point for the data.
Also, if you have trouble to build your model in tensorflow, then there is also keras. Keras can run with tensorflow as its backend but model building is much easier. Also, keras is also available in the tensorflow API as tf.keras. In keras one or multiple LSTMs are simplified as a layer which can be added to your model.
If you like a more specific answer to your question, please provide code to describe your problem.

Categories