How define a boundary in matplotlib python? - python

I want to plot the following field equations:
dx/dt = x*(4*y+3*x-3)
dy/dt = y*(4*y+3*x-4)
but I do not know how can I restrict the boundary to a triangle: x>=0, y>=0, x<=1-y:
# stream plot with matplotlib
import numpy as np
import matplotlib.pyplot as plt
def velocity_i(x,y):
vx = x*(3*x+4*y-3)
vy = y*(3*x+4*y-4)
return vx, vy
n=100
x = np.linspace(0, 1, n)
y = np.linspace(0, 1, n)
X, Y = np.meshgrid(x, y)
Ux, Uy = velocity_i(X, Y)
vels = (Ux**2+Uy**2)**0.5
plt.figure(figsize=(5,4))
stream = plt.streamplot(X, Y,
Ux,Uy,
arrowsize=1,
arrowstyle='->',
color= vels,
density=1,
linewidth=1,
)
plt.xlabel(r"$\Omega_{\rm m}$",fontsize='14')
plt.ylabel(r"$\Omega_{\rm r}$",fontsize='14')
plt.colorbar(stream.lines)
plt.xlim((-.05,1.05))
plt.ylim((-.05,1.05))
plt.show()

This is quite straightforwardly achievable using NumPy masking and np.where function. I am only showing the relevant two lines of code (highlighted by a comment) needed to get the job done.
Explanation: X<=1-Y checks your required boundary condition and then at all those indices where this condition holds True, it assigns the actual computed value of Ux (or Uy) and at indices where the condition is False, it assigns 0. Here X<=1-Y acts as kind of a conditional mask.
Ux, Uy = velocity_i(X, Y)
Ux = np.where(X<=1-Y, Ux, 0) # <--- Boundary condition for Ux
Uy = np.where(X<=1-Y, Uy, 0) # <--- Boundary condition for Uy
vels = (Ux**2+Uy**2)**0.5

Related

Two plots with different x ranges on the same figure, with sympy

I'm plotting the curve of a function, and it's tangent at point p. I would like to manage xlim for the curve and the tangent independently. In this code the tangent half-length should be 1:
from sympy import init_printing, symbols, N, plot
from sympy import diff
from sympy import log, cos, atan
init_printing()
x = symbols('x')
# Plot a tangent at point (p_x, p_y), of length l
def plot_line(p_x, p_y, x, a, l):
# Compute b, build tangent expression
b = p_y - a*p_x
t = a*x + b
# Limit line length
r = atan(a) # angle in rad
dx = N(l*cos(r)) # half range for x
lims = {'xlim': (p_x-dx, p_x+dx)}
# Build plot
t_plot = plot(t, show=False, **lims)
return t_plot
# Function
y = 2.1*log(x)
# Point
px = 7
py = y.subs(x, px)
# Plot curve and point
marker = {'args': [px, py, 'bo']}
lims = {'xlim': (0,10), 'ylim': (0,5)}
plots = plot(y, markers=[marker], show=False, **lims)
# Find derivative, plot tangent
y_d = diff(y)
a = y_d.subs(x, px)
plots.extend(plot_line(px, py, x, a, 1))
# Finalize and show plots
plots.aspect_ratio=(1,1)
plots.show()
However this is not the case...
SymPy's plot() function signature is something similar to this:
plot(expr, range, **kwargs)
where range is a 3-elements tuple: (symbol, min_val, max_val). The plot function will evaluate expr starting from min_val up to max_val.
One of the **kwargs is xlim, which is a 2-element tuple: xlim=(x_min, x_max). It is used to restrict the visualization along the x-axis from x_min to x_max. Nonetheless, the numerical values computed by the plot function go from min_val to max_val.
With that said, you need to remove xlim from inside plot_line and provide the range argument instead:
from sympy import init_printing, symbols, N, plot
from sympy import diff
from sympy import log, cos, atan
init_printing()
x = symbols('x')
# Plot a tangent at point (p_x, p_y), of length l
def plot_line(p_x, p_y, x, a, l):
# Compute b, build tangent expression
b = p_y - a*p_x
t = a*x + b
# Limit line length
r = atan(a) # angle in rad
dx = N(l*cos(r)) # half range for x
# Build plot
# Need to provide the range to limit the line length
t_plot = plot(t, (x, p_x-dx, p_x+dx), show=False)
return t_plot
# Function
y = 2.1*log(x)
# Point
px = 7
py = y.subs(x, px)
# Plot curve and point
marker = {'args': [px, py, 'bo']}
lims = {'xlim': (0,10), 'ylim': (0,5)}
plots = plot(y, markers=[marker], show=False, **lims)
# Find derivative, plot tangent
y_d = diff(y)
a = y_d.subs(x, px)
plots.extend(plot_line(px, py, x, a, 1))
# Finalize and show plots
plots.aspect_ratio=(1,1)
plots.show()

How to convert a cartesian problem in a cylindrical problem?

I display a gyroid structure (TPMS) in a cartesian system using Pyvista. I try now to display the structure in cylindrical coordinates. Pyvista displays something cylindrical indeed but it seems that the unit cell length is not uniform (while there is no reason to change this my parameter "a" being steady. This change seems to appear especially along z but I don't understand why (see image).
I have this:
Here is a part of my code.
Thank you for your help.
import pyvista as pv
import numpy as np
from numpy import cos, sin, pi
from random import uniform
lattice_par = 1.0 # Unit cell length
a = (2*pi)/lattice_par
res = 200j
r, theta, z = np.mgrid[0:2:res, 0:2*pi:res, 0:4:res]
# consider using non-equidistant r for uniformity
def GyroidCyl(r, theta, z, b=0.8):
return (sin(a*(r*cos(theta) - 1))*cos(a*(r*sin(theta) - 1))
+ sin(a*(r*sin(theta) - 1))*cos(a*(z - 1))
+ sin(a*(z - 1))*cos(a*(r*cos(theta) - 1))
- b)
vol3 = GyroidCyl(r, theta, z)
# compute Cartesian coordinates for grid points
x = r * cos(theta)
y = r * sin(theta)
grid = pv.StructuredGrid(x, y, z)
grid["vol3"] = vol3.flatten()
contours3 = grid.contour([0]) # Isosurface = 0
pv.set_plot_theme('document')
p = pv.Plotter()
p.add_mesh(contours3, scalars=contours3.points[:, 2], show_scalar_bar=False, interpolate_before_map=True,
show_edges=False, smooth_shading=False, render=True)
p.show_axes_all()
p.add_floor()
p.show_grid()
p.add_title('Gyroid in cylindrical coordinates')
p.add_text('Volume Fraction Parameter = ' + str(b))
p.show(window_size=[2040, 1500])
So you've noted in comments that you're trying to replicate something like the strategy explained in this paper. What they do is take a regular gyroid unit cell, and then transform it to build a cylindrical shell. If igloos were cylindrical, then a gyroid cell would be a single piece of snow brick. Put them next to one another and stack them in a column, and you get a cylinder.
Since I can't use figures from the paper we'll have to recreate some ourselves. So you have to start from a regular gyroid defined by the implicit function
cos(x) sin(y) + cos(y) sin(z) + cos(z) sin(x) = 0
(or some variation thereof). Here's how a single unit cell looks:
import pyvista as pv
import numpy as np
res = 100j
a = 2*np.pi
x, y, z = np.mgrid[0:a:res, 0:a:res, 0:a:res]
def Gyroid(x, y, z):
return np.cos(x)*np.sin(y) + np.cos(y)*np.sin(z) + np.cos(z)*np.sin(x)
# compute implicit function
fun_values = Gyroid(x, y, z)
# create grid for contouring
grid = pv.StructuredGrid(x, y, z)
grid["vol3"] = fun_values.ravel('F')
contours3 = grid.contour([0]) # isosurface for 0
# plot the contour, i.e. the gyroid
pv.set_plot_theme('document')
plotter = pv.Plotter()
plotter.add_mesh(contours3, scalars=contours3.points[:, -1],
show_scalar_bar=False)
plotter.add_bounding_box()
plotter.enable_terrain_style()
plotter.show_axes()
plotter.show()
Using the "unit cell" term implies there's an underlying infinite lattice, which can be built by stacking these (rectangular) unit cells neatly next to one another. With some imagination we can convince ourselves that this is true. Or we can look at the formula and note that due to the trigonometric functions the function is periodic in x, y and z, with period 2*pi. This also tells us that we can transform the unit cell to have arbitrary rectangular dimensions by introducing lattice parameters a, b and c:
cos(kx x) sin(ky y) + cos(ky y) sin(kz z) + cos(kz z) sin(kx x) = 0, where
kx = 2 pi/a
ky = 2 pi/b
kz = 2 pi/c
(These kx, ky and kz quantities are called wave vectors in solid state physics.)
The corresponding change only affects the header:
res = 100j
a, b, c = lattice_params = 1, 2, 3
kx, ky, kz = [2*np.pi/lattice_param for lattice_param in lattice_params]
x, y, z = np.mgrid[0:a:res, 0:b:res, 0:c:res]
def Gyroid(x, y, z):
return ( np.cos(kx*x)*np.sin(ky*y)
+ np.cos(ky*y)*np.sin(kz*z)
+ np.cos(kz*z)*np.sin(kx*x))
This is where we start. What we have to do is take this unit cell, bend it so that it corresponds to a 30-degree circular arc on a cylinder, and stack the cylinder using this unit. According to the paper, they used 12 unit cells to create a circle in a plane (hence the 30-degree magic number), and stacked three such circular bands on top of each other to build the cylinder.
The actual mapping is also fairly clearly explained in the paper. Whereas your original x, y and z parameters of the function essentially interpolated between [0, a], [0, b] and [0, c], respectively, in the new setup x interpolates in the radius range [r1, r2], y interpolates in the angular range [0, pi/6] and z is just z. (In the paper x and y seem to be reversed with respect to this convention, but this shouldn't matter. If it matters, that's left as an exercise to the reader.)
So what we need to do is more or less keep the current grid points, but transform the corresponding x, y and z grid points so that they lie on a cylinder instead. Here's one take:
import pyvista as pv
import numpy as np
res = 100j
a, b, c = lattice_params = 1, 1, 1
kx, ky, kz = [2*np.pi/lattice_param for lattice_param in lattice_params]
r_aux, phi, z = np.mgrid[0:a:res, 0:b:res, 0:3*c:res]
# convert r_aux range to actual radii
r1, r2 = 1.5, 2
r = r2/a*r_aux + r1/a*(1 - r_aux)
def Gyroid(x, y, z):
return ( np.cos(kx*x)*np.sin(ky*y)
+ np.cos(ky*y)*np.sin(kz*z)
+ np.cos(kz*z)*np.sin(kx*x))
# compute data for cylindrical gyroid
# r_aux is x, phi / 12 is y and z is z
fun_values = Gyroid(r_aux, phi * 12, z)
# compute Cartesian coordinates for grid points
x = r * np.cos(phi*ky)
y = r * np.sin(phi*ky)
grid = pv.StructuredGrid(x, y, z)
grid["vol3"] = fun_values.ravel('F')
contours3 = grid.contour([0])
# plot cylindrical gyroid
pv.set_plot_theme('document')
plotter = pv.Plotter()
plotter.add_mesh(contours3, scalars=contours3.points[:, -1],
show_scalar_bar=False)
plotter.add_bounding_box()
plotter.show_axes()
plotter.enable_terrain_style()
plotter.show()
If you want to look at a single transformed unit cell in the cylindrical setting, use a single domain of phi and z for the function and only convert to 1/12 a full circle for the grid points:
fun_values = Gyroid(r_aux, phi, z/3)
# compute Cartesian coordinates for grid points
x = r * np.cos(phi*ky/12)
y = r * np.sin(phi*ky/12)
grid = pv.StructuredGrid(x, y, z/3)
But it's not easy to see the curvature in the (no longer a) unit cell:

Inverse of numpy.gradient function

I need to create a function which would be the inverse of the np.gradient function.
Where the Vx,Vy arrays (Velocity component vectors) are the input and the output would be an array of anti-derivatives (Arrival Time) at the datapoints x,y.
I have data on a (x,y) grid with scalar values (time) at each point.
I have used the numpy gradient function and linear interpolation to determine the gradient vector Velocity (Vx,Vy) at each point (See below).
I have achieved this by:
#LinearTriInterpolator applied to a delaunay triangular mesh
LTI= LinearTriInterpolator(masked_triang, time_array)
#Gradient requested at the mesh nodes:
(Vx, Vy) = LTI.gradient(triang.x, triang.y)
The first image below shows the velocity vectors at each point, and the point labels represent the time value which formed the derivatives (Vx,Vy)
The next image shows the resultant scalar value of the derivatives (Vx,Vy) plotted as a colored contour graph with associated node labels.
So my challenge is:
I need to reverse the process!
Using the gradient vectors (Vx,Vy) or the resultant scalar value to determine the original Time-Value at that point.
Is this possible?
Knowing that the numpy.gradient function is computed using second order accurate central differences in the interior points and either first or second order accurate one-sides (forward or backwards) differences at the boundaries, I am sure there is a function which would reverse this process.
I was thinking that taking a line derivative between the original point (t=0 at x1,y1) to any point (xi,yi) over the Vx,Vy plane would give me the sum of the velocity components. I could then divide this value by the distance between the two points to get the time taken..
Would this approach work? And if so, which numpy integrate function would be best applied?
An example of my data can be found here [http://www.filedropper.com/calculatearrivaltimefromgradientvalues060820]
Your help would be greatly appreciated
EDIT:
Maybe this simplified drawing might help understand where I'm trying to get to..
EDIT:
Thanks to #Aguy who has contibuted to this code.. I Have tried to get a more accurate representation using a meshgrid of spacing 0.5 x 0.5m and calculating the gradient at each meshpoint, however I am not able to integrate it properly. I also have some edge affects which are affecting the results that I don't know how to correct.
import numpy as np
from scipy import interpolate
from matplotlib import pyplot
from mpl_toolkits.mplot3d import Axes3D
#Createmesh grid with a spacing of 0.5 x 0.5
stepx = 0.5
stepy = 0.5
xx = np.arange(min(x), max(x), stepx)
yy = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xx, yy)
grid_z1 = interpolate.griddata((x,y), Arrival_Time, (xgrid, ygrid), method='linear') #Interpolating the Time values
#Formatdata
X = np.ravel(xgrid)
Y= np.ravel(ygrid)
zs = np.ravel(grid_z1)
Z = zs.reshape(X.shape)
#Calculate Gradient
(dx,dy) = np.gradient(grid_z1) #Find gradient for points on meshgrid
Velocity_dx= dx/stepx #velocity ms/m
Velocity_dy= dy/stepx #velocity ms/m
Resultant = (Velocity_dx**2 + Velocity_dy**2)**0.5 #Resultant scalar value ms/m
Resultant = np.ravel(Resultant)
#Plot Original Data F(X,Y) on the meshgrid
fig = pyplot.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(x,y,Arrival_Time,color='r')
ax.plot_trisurf(X, Y, Z)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.set_zlabel('Time (ms)')
pyplot.show()
#Plot the Derivative of f'(X,Y) on the meshgrid
fig = pyplot.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(X,Y,Resultant,color='r',s=0.2)
ax.plot_trisurf(X, Y, Resultant)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.set_zlabel('Velocity (ms/m)')
pyplot.show()
#Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1)*stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0)*stepy
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum([dxintegral[0, len(xx) // 2],
dyintegral[i, len(yy) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
Now the np.gradient is applied at every meshnode (dx,dy) = np.gradient(grid_z1)
Now in my process I would analyse the gradient values above and make some adjustments (There is some unsual edge effects that are being create which I need to rectify) and would then integrate the values to get back to a surface which would be very similar to f(x,y) shown above.
I need some help adjusting the integration function:
#Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1)*stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0)*stepy
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum([dxintegral[0, len(xx) // 2],
dyintegral[i, len(yy) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
And now I need to calculate the new 'Time' values at the original (x,y) point locations.
UPDATE (08-09-20) : I am getting some promising results using the help from #Aguy. The results can be seen below (with the blue contours representing the original data, and the red contours representing the integrated values).
I am still working on an integration approach which can remove the inaccuarcies at the areas of min(y) and max(y)
from matplotlib.tri import (Triangulation, UniformTriRefiner,
CubicTriInterpolator,LinearTriInterpolator,TriInterpolator,TriAnalyzer)
import pandas as pd
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate
#-------------------------------------------------------------------------
# STEP 1: Import data from Excel file, and set variables
#-------------------------------------------------------------------------
df_initial = pd.read_excel(
r'C:\Users\morga\PycharmProjects\venv\Development\Trial'
r'.xlsx')
Inputdata can be found here link
df_initial = df_initial .sort_values(by='Delay', ascending=True) #Update dataframe and sort by Delay
x = df_initial ['X'].to_numpy()
y = df_initial ['Y'].to_numpy()
Arrival_Time = df_initial ['Delay'].to_numpy()
# Createmesh grid with a spacing of 0.5 x 0.5
stepx = 0.5
stepy = 0.5
xx = np.arange(min(x), max(x), stepx)
yy = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xx, yy)
grid_z1 = interpolate.griddata((x, y), Arrival_Time, (xgrid, ygrid), method='linear') # Interpolating the Time values
# Calculate Gradient (velocity ms/m)
(dy, dx) = np.gradient(grid_z1) # Find gradient for points on meshgrid
Velocity_dx = dx / stepx # x velocity component ms/m
Velocity_dy = dy / stepx # y velocity component ms/m
# Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1) * stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0) * stepy
valintegral = np.ma.zeros(dxintegral.shape) # Makes an array filled with 0's the same shape as dx integral
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum(
[dxintegral[0, len(xx) // 2], dyintegral[i, len(xx) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral[np.isnan(dx)] = np.nan
min_value = np.nanmin(valintegral)
valintegral = valintegral + (min_value * -1)
##Plot Results
fig = plt.figure()
ax = fig.add_subplot()
ax.scatter(x, y, color='black', s=7, zorder=3)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.contour(xgrid, ygrid, valintegral, levels=50, colors='red', zorder=2)
ax.contour(xgrid, ygrid, grid_z1, levels=50, colors='blue', zorder=1)
ax.set_aspect('equal')
plt.show()
TL;DR;
You have multiple challenges to address in this issue, mainly:
Potential reconstruction (scalar field) from its gradient (vector field)
But also:
Observation in a concave hull with non rectangular grid;
Numerical 2D line integration and numerical inaccuracy;
It seems it can be solved by choosing an adhoc interpolant and a smart way to integrate (as pointed out by #Aguy).
MCVE
In a first time, let's build a MCVE to highlight above mentioned key points.
Dataset
We recreate a scalar field and its gradient.
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
def f(x, y):
return x**2 + x*y + 2*y + 1
Nx, Ny = 21, 17
xl = np.linspace(-3, 3, Nx)
yl = np.linspace(-2, 2, Ny)
X, Y = np.meshgrid(xl, yl)
Z = f(X, Y)
zl = np.arange(np.floor(Z.min()), np.ceil(Z.max())+1, 2)
dZdy, dZdx = np.gradient(Z, yl, xl, edge_order=1)
V = np.hypot(dZdx, dZdy)
The scalar field looks like:
axe = plt.axes(projection='3d')
axe.plot_surface(X, Y, Z, cmap='jet', alpha=0.5)
axe.view_init(elev=25, azim=-45)
And, the vector field looks like:
axe = plt.contour(X, Y, Z, zl, cmap='jet')
axe.axes.quiver(X, Y, dZdx, dZdy, V, units='x', pivot='tip', cmap='jet')
axe.axes.set_aspect('equal')
axe.axes.grid()
Indeed gradient is normal to potential levels. We also plot the gradient magnitude:
axe = plt.contour(X, Y, V, 10, cmap='jet')
axe.axes.set_aspect('equal')
axe.axes.grid()
Raw field reconstruction
If we naively reconstruct the scalar field from the gradient:
SdZx = np.cumsum(dZdx, axis=1)*np.diff(xl)[0]
SdZy = np.cumsum(dZdy, axis=0)*np.diff(yl)[0]
Zhat = np.zeros(SdZx.shape)
for i in range(Zhat.shape[0]):
for j in range(Zhat.shape[1]):
Zhat[i,j] += np.sum([SdZy[i,0], -SdZy[0,0], SdZx[i,j], -SdZx[i,0]])
Zhat += Z[0,0] - Zhat[0,0]
We can see the global result is roughly correct, but levels are less accurate where the gradient magnitude is low:
Interpolated field reconstruction
If we increase the grid resolution and pick a specific interpolant (usual when dealing with mesh grid), we can get a finer field reconstruction:
r = np.stack([X.ravel(), Y.ravel()]).T
Sx = interpolate.CloughTocher2DInterpolator(r, dZdx.ravel())
Sy = interpolate.CloughTocher2DInterpolator(r, dZdy.ravel())
Nx, Ny = 200, 200
xli = np.linspace(xl.min(), xl.max(), Nx)
yli = np.linspace(yl.min(), yl.max(), Nx)
Xi, Yi = np.meshgrid(xli, yli)
ri = np.stack([Xi.ravel(), Yi.ravel()]).T
dZdxi = Sx(ri).reshape(Xi.shape)
dZdyi = Sy(ri).reshape(Xi.shape)
SdZxi = np.cumsum(dZdxi, axis=1)*np.diff(xli)[0]
SdZyi = np.cumsum(dZdyi, axis=0)*np.diff(yli)[0]
Zhati = np.zeros(SdZxi.shape)
for i in range(Zhati.shape[0]):
for j in range(Zhati.shape[1]):
Zhati[i,j] += np.sum([SdZyi[i,0], -SdZyi[0,0], SdZxi[i,j], -SdZxi[i,0]])
Zhati += Z[0,0] - Zhati[0,0]
Which definitely performs way better:
So basically, increasing the grid resolution with an adhoc interpolant may help you to get more accurate result. The interpolant also solve the need to get a regular rectangular grid from a triangular mesh to perform integration.
Concave and convex hull
You also have pointed out inaccuracy on the edges. Those are the result of the combination of the interpolant choice and the integration methodology. The integration methodology fails to properly compute the scalar field when it reach concave region with few interpolated points. The problem disappear when choosing a mesh-free interpolant able to extrapolate.
To illustrate it, let's remove some data from our MCVE:
q = np.full(dZdx.shape, False)
q[0:6,5:11] = True
q[-6:,-6:] = True
dZdx[q] = np.nan
dZdy[q] = np.nan
Then the interpolant can be constructed as follow:
q2 = ~np.isnan(dZdx.ravel())
r = np.stack([X.ravel(), Y.ravel()]).T[q2,:]
Sx = interpolate.CloughTocher2DInterpolator(r, dZdx.ravel()[q2])
Sy = interpolate.CloughTocher2DInterpolator(r, dZdy.ravel()[q2])
Performing the integration we see that in addition of classical edge effect we do have less accurate value in concave regions (swingy dot-dash lines where the hull is concave) and we have no data outside the convex hull as Clough Tocher is a mesh-based interpolant:
Vl = np.arange(0, 11, 1)
axe = plt.contour(X, Y, np.hypot(dZdx, dZdy), Vl, cmap='jet')
axe.axes.contour(Xi, Yi, np.hypot(dZdxi, dZdyi), Vl, cmap='jet', linestyles='-.')
axe.axes.set_aspect('equal')
axe.axes.grid()
So basically the error we are seeing on the corner are most likely due to integration issue combined with interpolation limited to the convex hull.
To overcome this we can choose a different interpolant such as RBF (Radial Basis Function Kernel) which is able to create data outside the convex hull:
Sx = interpolate.Rbf(r[:,0], r[:,1], dZdx.ravel()[q2], function='thin_plate')
Sy = interpolate.Rbf(r[:,0], r[:,1], dZdy.ravel()[q2], function='thin_plate')
dZdxi = Sx(ri[:,0], ri[:,1]).reshape(Xi.shape)
dZdyi = Sy(ri[:,0], ri[:,1]).reshape(Xi.shape)
Notice the slightly different interface of this interpolator (mind how parmaters are passed).
The result is the following:
We can see the region outside the convex hull can be extrapolated (RBF are mesh free). So choosing the adhoc interpolant is definitely a key point to solve your problem. But we still need to be aware that extrapolation may perform well but is somehow meaningless and dangerous.
Solving your problem
The answer provided by #Aguy is perfectly fine as it setups a clever way to integrate that is not disturbed by missing points outside the convex hull. But as you mentioned there is inaccuracy in concave region inside the convex hull.
If you wish to remove the edge effect you detected, you will have to resort to an interpolant able to extrapolate as well, or find another way to integrate.
Interpolant change
Using RBF interpolant seems to solve your problem. Here is the complete code:
df = pd.read_excel('./Trial-Wireup 2.xlsx')
x = df['X'].to_numpy()
y = df['Y'].to_numpy()
z = df['Delay'].to_numpy()
r = np.stack([x, y]).T
#S = interpolate.CloughTocher2DInterpolator(r, z)
#S = interpolate.LinearNDInterpolator(r, z)
S = interpolate.Rbf(x, y, z, epsilon=0.1, function='thin_plate')
N = 200
xl = np.linspace(x.min(), x.max(), N)
yl = np.linspace(y.min(), y.max(), N)
X, Y = np.meshgrid(xl, yl)
#Zp = S(np.stack([X.ravel(), Y.ravel()]).T)
Zp = S(X.ravel(), Y.ravel())
Z = Zp.reshape(X.shape)
dZdy, dZdx = np.gradient(Z, yl, xl, edge_order=1)
SdZx = np.nancumsum(dZdx, axis=1)*np.diff(xl)[0]
SdZy = np.nancumsum(dZdy, axis=0)*np.diff(yl)[0]
Zhat = np.zeros(SdZx.shape)
for i in range(Zhat.shape[0]):
for j in range(Zhat.shape[1]):
#Zhat[i,j] += np.nansum([SdZy[i,0], -SdZy[0,0], SdZx[i,j], -SdZx[i,0]])
Zhat[i,j] += np.nansum([SdZx[0,N//2], SdZy[i,N//2], SdZx[i,j], -SdZx[i,N//2]])
Zhat += Z[100,100] - Zhat[100,100]
lz = np.linspace(0, 5000, 20)
axe = plt.contour(X, Y, Z, lz, cmap='jet')
axe = plt.contour(X, Y, Zhat, lz, cmap='jet', linestyles=':')
axe.axes.plot(x, y, '.', markersize=1)
axe.axes.set_aspect('equal')
axe.axes.grid()
Which graphically renders as follow:
The edge effect is gone because of the RBF interpolant can extrapolate over the whole grid. You can confirm it by comparing the result of mesh-based interpolants.
Linear
Clough Tocher
Integration variable order change
We can also try to find a better way to integrate and mitigate the edge effect, eg. let's change the integration variable order:
Zhat[i,j] += np.nansum([SdZy[N//2,0], SdZx[N//2,j], SdZy[i,j], -SdZy[N//2,j]])
With a classic linear interpolant. The result is quite correct, but we still have an edge effect on the bottom left corner:
As you noticed the problem occurs at the middle of the axis in region where the integration starts and lacks a reference point.
Here is one approach:
First, in order to be able to do integration, it's good to be on a regular grid. Using here variable names x and y as short for your triang.x and triang.y we can first create a grid:
import numpy as np
n = 200 # Grid density
stepx = (max(x) - min(x)) / n
stepy = (max(y) - min(y)) / n
xspace = np.arange(min(x), max(x), stepx)
yspace = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xspace, yspace)
Then we can interpolate dx and dy on the grid using the same LinearTriInterpolator function:
fdx = LinearTriInterpolator(masked_triang, dx)
fdy = LinearTriInterpolator(masked_triang, dy)
dxgrid = fdx(xgrid, ygrid)
dygrid = fdy(xgrid, ygrid)
Now comes the integration part. In principle, any path we choose should get us to the same value. In practice, since there are missing values and different densities, the choice of path is very important to get a reasonably accurate answer.
Below I choose to integrate over dxgrid in the x direction from 0 to the middle of the grid at n/2. Then integrate over dygrid in the y direction from 0 to the i point of interest. Then over dxgrid again from n/2 to the point j of interest. This is a simple way to make sure most of the path of integration is inside the bulk of available data by simply picking a path that goes mostly in the "middle" of the data range. Other alternative consideration would lead to different path selections.
So we do:
dxintegral = np.nancumsum(dxgrid, axis=1) * stepx
dyintegral = np.nancumsum(dygrid, axis=0) * stepy
and then (by somewhat brute force for clarity):
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(n):
for j in range(n):
valintegral[i, j] = np.ma.sum([dxintegral[0, n // 2], dyintegral[i, n // 2], dxintegral[i, j], - dxintegral[i, n // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
valintegral would be the result up to an arbitrary constant which can help put the "zero" where you want.
With your data shown here:
ax.tricontourf(masked_triang, time_array)
This is what I'm getting reconstructed when using this method:
ax.contourf(xgrid, ygrid, valintegral)
Hopefully this is somewhat helpful.
If you want to revisit the values at the original triangulation points, you can use interp2d on the valintegral regular grid data.
EDIT:
In reply to your edit, your adaptation above has a few errors:
Change the line (dx,dy) = np.gradient(grid_z1) to (dy,dx) = np.gradient(grid_z1)
In the integration loop change the dyintegral[i, len(yy) // 2] term to dyintegral[i, len(xx) // 2]
Better to replace the line valintegral = valintegral * np.isfinite(dxintegral) with valintegral[np.isnan(dx)] = np.nan

Why is my 2D interpolant generating a matrix with swapped axes in SciPy?

I solve a differential equation with vector inputs
y' = f(t,y), y(t_0) = y_0
where y0 = y(x)
using the explicit Euler method, which says that
y_(i+1) = y_i + h*f(t_i, y_i)
where t is a time vector, h is the step size, and f is the right-hand side of the differential equation.
The python code for the method looks like this:
for i in np.arange(0,n-1):
y[i+1,...] = y[i,...] + dt*myode(t[i],y[i,...])
The result is a k,m matrix y, where k is the size of the t dimension, and m is the size of y.
The vectors y and t are returned.
t, x, and y are passed to scipy.interpolate.RectBivariateSpline(t, x, y, kx=1, ky=1):
g = scipy.interpolate.RectBivariateSpline(t, x, y, kx=1, ky=1)
The resulting object g takes new vectors ti,xi ( g(p,q) ) to give y_int, which is y interpolated at the points defined by ti and xi.
Here is my problem:
The documentation for RectBivariateSpline describes the __call__ method in terms of x and y:
__call__(x, y[, mth]) Evaluate spline at the grid points defined by the coordinate arrays
The matplotlib documentation for plot_surface uses similar notation:
Axes3D.plot_surface(X, Y, Z, *args, **kwargs)
with the important difference that X and Y are 2D arrays which are generated by numpy.meshgrid().
When I compute simple examples, the input order is the same in both and the result is exactly what I would expect. In my explicit Euler example, however, the initial order is ti,xi, yet the surface plot of the interpolant output only makes sense if I reverse the order of the inputs, like so:
ax2.plot_surface(xi, ti, u, cmap=cm.coolwarm)
While I am glad that it works, I'm not satisfied because I cannot explain why, nor why (apart from the array geometry) it is necessary to swap the inputs. Ideally, I would like to restructure the code so that the input order is consistent.
Here is a working code example to illustrate what I mean:
# Heat equation example with explicit Euler method
import numpy as np
import matplotlib.pyplot as mplot
import matplotlib.cm as cm
import scipy.sparse as sp
import scipy.interpolate as interp
from mpl_toolkits.mplot3d import Axes3D
import pdb
# explicit Euler method
def eev(myode,tspan,y0,dt):
# Preprocessing
# Time steps
tspan[1] = tspan[1] + dt
t = np.arange(tspan[0],tspan[1],dt,dtype=float)
n = t.size
m = y0.shape[0]
y = np.zeros((n,m),dtype=float)
y[0,:] = y0
# explicit Euler recurrence relation
for i in np.arange(0,n-1):
y[i+1,...] = y[i,...] + dt*myode(t[i],y[i,...])
return y,t
# generate matrix A
# u'(t) = A*u(t) + g*u(t)
def a_matrix(n):
aa = sp.diags([1, -2, 1],[-1,0,1],(n,n))
return aa
# System of ODEs with finite differences
def f(t,u):
dydt = np.divide(1,h**2)*A.dot(u)
return dydt
# homogenous Dirichlet boundary conditions
def rbd(t):
ul = np.zeros((t,1))
return ul
# Initial value problem -----------
def main():
# Metal rod
# spatial discretization
# number of inner nodes
m = 20
x0 = 0
xn = 1
x = np.linspace(x0,xn,m+2)
# Step size
global h
h = x[1]-x[0]
# Initial values
u0 = np.sin(np.pi*x)
# A matrix
global A
A = a_matrix(m)
# Time
t0 = 0
tend = 0.2
# Time step width
dt = 0.0001
tspan = [t0,tend]
# Test r for stability
r = np.divide(dt,h**2)
if r <= 0.5:
u,t = eev(f,tspan,u0[1:-1],dt)
else:
print('r = ',r)
print('r > 0.5. Explicit Euler method will not be stable.')
# Add boundary values back
rb = rbd(t.size)
u = np.hstack((rb,u,rb))
# Interpolate heat values
# Create interpolant. Note the parameter order
fi = interp.RectBivariateSpline(t, x, u, kx=1, ky=1)
# Create vectors for interpolant
xi = np.linspace(x[0],x[-1],100)
ti = np.linspace(t0,tend,100)
# Compute function values from interpolant
u_int = fi(ti,xi)
# Change xi, ti in to 2D arrays
xi,ti = np.meshgrid(xi,ti)
# Create figure and axes objects
fig3 = mplot.figure(1)
ax3 = fig3.gca(projection='3d')
print('xi.shape =',xi.shape,'ti.shape =',ti.shape,'u_int.shape =',u_int.shape)
# Plot surface. Note the parameter order, compare with interpolant!
ax3.plot_surface(xi, ti, u_int, cmap=cm.coolwarm)
ax3.set_xlabel('xi')
ax3.set_ylabel('ti')
main()
mplot.show()
As I can see you define :
# Change xi, ti in to 2D arrays
xi,ti = np.meshgrid(xi,ti)
Change this to :
ti,xi = np.meshgrid(ti,xi)
and
ax3.plot_surface(xi, ti, u_int, cmap=cm.coolwarm)
to
ax3.plot_surface(ti, xi, u_int, cmap=cm.coolwarm)
and it works fine (if I understood well ).

Color matplotlib quiver field according to magnitude and direction

I'm attempting to achieve the same behavior as this function in Matlab, whereby the color of each arrow corresponds to both its magnitude and direction, essentially drawing its color from a wheel. I saw this question, but it only seems to work for barbs. I also saw this answer, but quiver complains that the color array must be two-dimensional.
What is the best way to compute C for matplotlib.pyplot.quiver, taking into account both magnitude and direction?
Even though this is quite old now, I've come across the same problem. Based on matplotlibs quiver demo and my own answer to this post, I created the following example. The idea is to convert the angle of a vector to the color using HSV colors Hue value. The absolute value of the vector is used as the saturation and the value.
import numpy as np
import matplotlib.colors
import matplotlib.pyplot as plt
def vector_to_rgb(angle, absolute):
"""Get the rgb value for the given `angle` and the `absolute` value
Parameters
----------
angle : float
The angle in radians
absolute : float
The absolute value of the gradient
Returns
-------
array_like
The rgb value as a tuple with values [0..1]
"""
global max_abs
# normalize angle
angle = angle % (2 * np.pi)
if angle < 0:
angle += 2 * np.pi
return matplotlib.colors.hsv_to_rgb((angle / 2 / np.pi,
absolute / max_abs,
absolute / max_abs))
X = np.arange(-10, 10, 1)
Y = np.arange(-10, 10, 1)
U, V = np.meshgrid(X, Y)
angles = np.arctan2(V, U)
lengths = np.sqrt(np.square(U) + np.square(V))
max_abs = np.max(lengths)
c = np.array(list(map(vector_to_rgb, angles.flatten(), lengths.flatten())))
fig, ax = plt.subplots()
q = ax.quiver(X, Y, U, V, color=c)
plt.show()
The color wheel is the following. The code for generating it is mentioned in the Edit.
Edit
I just noticed, that the linked matlab function "renders a vector field as a grid of unit-length arrows. The arrow direction indicates vector field direction, and the color indicates the magnitude". So my above example is not really what is in the question. Here are some modifications.
The left graph is the same as above. The right one does, what the cited matlab function does: A unit-length arrow plot with the color indicating the magnitude. The center one does not use the magnitude but only the direction in the color which might be useful too. I hope other combinations are clear from this example.
import numpy as np
import matplotlib.colors
import matplotlib.pyplot as plt
def vector_to_rgb(angle, absolute):
"""Get the rgb value for the given `angle` and the `absolute` value
Parameters
----------
angle : float
The angle in radians
absolute : float
The absolute value of the gradient
Returns
-------
array_like
The rgb value as a tuple with values [0..1]
"""
global max_abs
# normalize angle
angle = angle % (2 * np.pi)
if angle < 0:
angle += 2 * np.pi
return matplotlib.colors.hsv_to_rgb((angle / 2 / np.pi,
absolute / max_abs,
absolute / max_abs))
X = np.arange(-10, 10, 1)
Y = np.arange(-10, 10, 1)
U, V = np.meshgrid(X, Y)
angles = np.arctan2(V, U)
lengths = np.sqrt(np.square(U) + np.square(V))
max_abs = np.max(lengths)
# color is direction, hue and value are magnitude
c1 = np.array(list(map(vector_to_rgb, angles.flatten(), lengths.flatten())))
ax = plt.subplot(131)
ax.set_title("Color is lenth,\nhue and value are magnitude")
q = ax.quiver(X, Y, U, V, color=c1)
# color is length only
c2 = np.array(list(map(vector_to_rgb, angles.flatten(),
np.ones_like(lengths.flatten()) * max_abs)))
ax = plt.subplot(132)
ax.set_title("Color is direction only")
q = ax.quiver(X, Y, U, V, color=c2)
# color is direction only
c3 = np.array(list(map(vector_to_rgb, 2 * np.pi * lengths.flatten() / max_abs,
max_abs * np.ones_like(lengths.flatten()))))
# create one-length vectors
U_ddash = np.ones_like(U)
V_ddash = np.zeros_like(V)
# now rotate them
U_dash = U_ddash * np.cos(angles) - V_ddash * np.sin(angles)
V_dash = U_ddash * np.sin(angles) + V_ddash * np.cos(angles)
ax = plt.subplot(133)
ax.set_title("Uniform length,\nColor is magnitude only")
q = ax.quiver(X, Y, U_dash, V_dash, color=c3)
plt.show()
To plot the color wheel use the following code. Note that this uses the max_abs value from above which is the maximum value that the color hue and value can reach. The vector_to_rgb() function is also re-used here.
ax = plt.subplot(236, projection='polar')
n = 200
t = np.linspace(0, 2 * np.pi, n)
r = np.linspace(0, max_abs, n)
rg, tg = np.meshgrid(r, t)
c = np.array(list(map(vector_to_rgb, tg.T.flatten(), rg.T.flatten())))
cv = c.reshape((n, n, 3))
m = ax.pcolormesh(t, r, cv[:,:,1], color=c, shading='auto')
m.set_array(None)
ax.set_yticklabels([])
I don't know if you've since found that quiver with matplotlib 1.4.x has 3d capability. This capability is limited when attempting to colour the arrows however.
A friend and I write the following script (in half an hour or so) to plot my experiment data using hex values from a spreadsheet, for my thesis. We're going to make this more automated once we're done with the semester but the issue with passing a colour map to quiver is that it can't accept a vector form for some reason.
This link is to my git repository where the code I used, slightly neatened up by another friend, is hosted.
I hope I can save someone the time it took me.

Categories