Differing behavior in c++ fread and python implementation - python

I'm trying to implement the following c++ code in python. However, the data of the two differs when I print it out. I read this post Receiving 16-bit integers in Python and tried both "> h" and "< h" for the unpack function, but it still doesn't seem to give me the same data as the c++ code. I do however successfully read the width and height correctly. Just the data is wrong. What am I missing?
int16_t* loadDepthImageCompressed( const char* fname ){
//now read the depth image
FILE* pFile = fopen(fname, "rb");
if(!pFile){
std::cerr << "could not open file " << fname << std::endl;
return NULL;
}
int im_width = 0;
int im_height = 0;
bool success = true;
std::cout << sizeof(int) << std::endl;
std::cout << sizeof(int16_t) << std::endl;
success &= ( fread(&im_width,sizeof(int),1,pFile) == 1 ); // read width of depthmap
success &= ( fread(&im_height,sizeof(int),1,pFile) == 1 ); // read height of depthmap
int16_t* depth_img = new int16_t[im_width*im_height];
std::cout << im_width << std::endl;
std::cout << im_height << std::endl;
int numempty;
int numfull;
int p = 0;
while(p < im_width*im_height ){
success &= ( fread( &numempty,sizeof(int),1,pFile) == 1 );
for(int i = 0; i < numempty; i++)
depth_img[ p + i ] = 0;
success &= ( fread( &numfull,sizeof(int), 1, pFile) == 1 );
success &= ( fread( &depth_img[ p + numempty ], sizeof(int16_t), numfull, pFile) == (unsigned int) numfull );
p += numempty+numfull;
}
fclose(pFile);
if(success)
return depth_img;
else{
delete [] depth_img;
return NULL;
}
}
The python Code
def loadDepthImageCompressed(fname):
with open(fname,'rb') as depth_file:
im_width = struct.unpack('i',depth_file.read(4))[0]
im_height = struct.unpack('i',depth_file.read(4))[0]
depth_img = [None] * (im_width * im_height)
p = 0
while(p < im_width * im_height):
numempty = struct.unpack('i',depth_file.read(4))[0]
for i in range(numempty):
depth_img[p + i] = 0;
numfull = struct.unpack('i',depth_file.read(4))[0]
for i in range(numfull):
depth_img[p+numempty + i] = struct.unpack('>h',depth_file.read(2))[0]
p += numempty+numfull
return depth_img

Related

How to convert integer sizes and pointer declarations from C++ to Python?

I am trying to convert this C++ function into Python code but I am having trouble in doing so for the pointer and turning the python variables into uint32_t and uint8_t respectively. I am not sure how to declare the functions such that it returns uint32_t and also what to do with the pointer uint8_t *buf. Please help me in figuring out on how to convert the function, from C++ to python.
This is my C++ code:
uint32_t Functions::Do_calc(uint8_t *buf, uint32_t len){
return Do_calc(25, buf, len);
}
uint32_t Functions::Do_calc(uint32_t val, uint8_t *buf, uint32_t len){
uint32_t temp_int, c = val;
uint32_t ip_buf[128];
uint32_t j, rem = 0, tf = 0, p = 0;
rem = len;
while(rem > 0){
if(rem <= 512){
tf = rem;
}
else{
tf = 512;
}
for(j = 0; j < 128; j++){
ip_buf[j]=0;
}
for(j = 0; j < tf; j += 2){
temp = ((buf[p * 512 + (j + 3)]<<24) +
(buf[p * 512 + (j + 2)]<<16) +
(buf[p * 512 + (j + 1)]<<8) +
buf[p * 512 + j]);
ip_buf[j / 4] = temp;
}
c = c_cal(ip_buf, tf, c, 0x04C22AB9, 2, true);
p++
}
return c;
}
uint32_t Functions::c_cal(uint32_t *d_base, uint32_t d_size, uint32_t c, uint32_t poly, uint8_t c_size, bool b_r_ip)
{
unsigned long d_offset;
unsigned long d, d_temp;
unsigned char c_bit;
d = 0;
for(d_offset = 0; d_offset < d_size; (d_offset += c_size))
{
u32_d_temp = 0;
d_temp = d_base[d_offset/c_size];
if(FALSE == b_r_ip)
{
d = d_temp;
}
else
{
d = 0;
for(c_bit = 0; c_bit < (c_size << 3); c_bit++)
{
d <<= 1;
d |= (d_temp & 1);
d_temp >>= 1;
}
}
for(c_bit = 0; c_bit < (c_size << 3); c_bit++)
{
if(((c >> ((c_size << 3) - 1)) ^ d) & 1)
{
c <<= 1;
d >>= 1;
c ^= poly;
}
else
{
c <<= 1;
d >>= 1;
}
}
}
return (c & (0xFFFFFFFF >> (32 - (c_size << 3))));
}
This is my attempted Python implementation. As you can see I just did a basic implementation as I did not worry about the pointer and the size of the integer which is very much needed:
def Do_calc(buf, len):
return Do_calc(0, buf, len)
def Do_calc(val, buf, len):
ip_buf = []
c = val
p = 0
rem = len
while rem > 0:
if rem <= 512:
tf = rem
else:
tf = 512
for j in range(128):
ip_buf[j].append = 0
for j in xrange(0, tf, 2):
temp_int = ((buffer[packet * 512 + (i + 3)] << 24) +
(buffer[packet * 512 + (i + 2)] << 16) +
(buffer[packet * 512 + (i + 1)] << 8) +
buffer[packet * 512 + i])
ip_buf[j/4] = temp
c = c_cal(ip_buf, tf, c, 0x04C22AB9, 2, true)
p += 1
return c
How do I properly do the conversion after taking care of all the aspects?

Python like Slicing operation in c++

I have following code, where 'Snap.JPG' is a RGB format type.
import cv2
img = cv2.imread("./Snap.JPG")
img[:,:,:2] = 255
cv2.imshow("Img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
I want to convert this code into c++. What is the fastest way to implement img[:,:,:2] = 255 part of the code? Channel splitting and merging is one of the options i know, but is there any smarter way to do slicing in c++?
Edit:
Apologies, i should have mentioned what i want in the output. I need a fading effect, because i wanted to overlay a drawing on top of it.
This is an example of how to change pixels:
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
int main(int argc, char** argv) {
cv::Mat src_image = cv::imread("image.jpg", CV_LOAD_IMAGE_COLOR);
if(!src_image.data) {
std::cout << "Error: the image wasn't correctly loaded." << std::endl;
return -1;
}
cv::Mat image = src_image.clone();
// We iterate over all pixels of the image
for(int r = 0; r < image.rows; r++) {
// We obtain a pointer to the beginning of row r
cv::Vec3b* ptr = image.ptr<cv::Vec3b>(r);
for(int c = 0; c < image.cols; c++) {
ptr[c] = cv::Vec3b(255, 255, ptr[c][2]);
}
}
cv::imshow("Inverted Image", image);
cv::waitKey();
return 0;
}
Thanks for #Manuel's reply, it works quite well. but i could achieve the same result with faster speeds. I have added my code snippets inline your code.
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <iomanip>
int main(int argc, char** argv) {
clock_t start, end;
cv::Mat src_image = cv::imread("Snap.JPG", CV_LOAD_IMAGE_COLOR);
if(!src_image.data) {
std::cout << "Error: the image wasn't correctly loaded." << std::endl;
return -1;
}
/* 1st method */
cv::Mat image = src_image.clone();
start = clock();
// We iterate over all pixels of the image
for(int r = 0; r < image.rows; r++) {
// We obtain a pointer to the beginning of row r
cv::Vec3b* ptr = image.ptr<cv::Vec3b>(r);
for(int c = 0; c < image.cols; c++) {
ptr[c] = cv::Vec3b(255, 255, ptr[c][2]);
}
}
end = clock();
double time_taken = double(end - start) / double(CLOCKS_PER_SEC);
std::cout << "Time taken by 1st method : " << std::fixed << time_taken << std::setprecision(5);
std::cout << " sec " << std::endl;
/* 2nd Method */
start = clock();
src_image = src_image | cv::Scalar(255, 255, 0);
end = clock();
time_taken = double(end - start) / double(CLOCKS_PER_SEC);
std::cout << "Time taken by 2nd method : " << std::fixed << time_taken << std::setprecision(5);
std::cout << " sec " << std::endl;
bool isEqual = (sum(src_image != image) == cv::Scalar(0,0,0,0));
if (isEqual)
{
std::cout << "\nIdentical Mats !" << std::endl;
}
cv::imshow("Inverted Image", image);
cv::waitKey();
return 0;
}
output is following:
Time taken by 1st method : 0.001765 sec
Time taken by 2nd method : 0.00011 sec
Identical Mats !

How to get the output from YOLO model using tensorflow with C++ correctly?

I'm trying to write an inference program with YOLO model in C++. I've searched for some info about darknet, but it has to use .cfg file to import the model structure(which is a bit too complicated for me...), thus I want to do the program with tensorflow.
(My model weight is converted from .hdf5(used in python) to .pb(used in C++))
I've found some examples written in python, it seems like they have done some work before the inference process... Source
def yolo_eval(yolo_outputs,
anchors,
num_classes,
image_shape,
max_boxes=50,
score_threshold=.6,
iou_threshold=.5):
"""Evaluate YOLO model on given input and return filtered boxes."""
num_layers = len(yolo_outputs)
anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]] # default setting
input_shape = K.shape(yolo_outputs[0])[1:3] * 32
boxes = []
box_scores = []
for l in range(num_layers):
_boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l],
anchors[anchor_mask[l]], num_classes, input_shape, image_shape)
boxes.append(_boxes)
box_scores.append(_box_scores)
boxes = K.concatenate(boxes, axis=0)
box_scores = K.concatenate(box_scores, axis=0)
mask = box_scores >= score_threshold
max_boxes_tensor = K.constant(max_boxes, dtype='int32')
boxes_ = []
scores_ = []
classes_ = []
for c in range(num_classes):
# TODO: use keras backend instead of tf.
class_boxes = tf.boolean_mask(boxes, mask[:, c])
class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
nms_index = tf.image.non_max_suppression(
class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold)
class_boxes = K.gather(class_boxes, nms_index)
class_box_scores = K.gather(class_box_scores, nms_index)
classes = K.ones_like(class_box_scores, 'int32') * c
boxes_.append(class_boxes)
scores_.append(class_box_scores)
classes_.append(classes)
boxes_ = K.concatenate(boxes_, axis=0)
scores_ = K.concatenate(scores_, axis=0)
classes_ = K.concatenate(classes_, axis=0)
return boxes_, scores_, classes_
I've printed out the return value
and it looks like this
boxes-> Tensor("concat_11:0", shape=(?, 4), dtype=float32)
scores-> Tensor("concat_12:0", shape=(?,), dtype=float32)
classes-> Tensor("concat_13:0", shape=(?,), dtype=int32)
the original output of my YOLO model(.hdf5) is (I got this by printed out model.output)
tf.Tensor 'conv2d_59_1/BiasAdd:0' shape=(?, ?, ?, 21) dtype=float32
tf.Tensor 'conv2d_67_1/BiasAdd:0' shape=(?, ?, ?, 21) dtype=float32
tf.Tensor 'conv2d_75_1/BiasAdd:0' shape=(?, ?, ?, 21) dtype=float32
And the inference part of the python code is
out_boxes, out_scores, out_classes = sess.run(
[boxes, scores, classes],
feed_dict={
yolo_model.input: image_data,
input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
Compare to the python version of inference code,
C++ part is... (Reference)
int main()
{
string image = "test.jpg";
string graph = "yolo_weight.pb";
string labels = "coco.names";
int32 input_width = 416;
int32 input_height = 416;
float input_mean = 0;
float input_std = 255;
string input_layer = "input_1:0";
std::vector<std::string> output_layer = {"conv2d_59/BiasAdd:0", "conv2d_67/BiasAdd:0", "conv2d_75/BiasAdd:0" };
std::unique_ptr<tensorflow::Session> session;
string graph_path = tensorflow::io::JoinPath(root_dir, graph);
Status load_graph_status = LoadGraph(graph_path, &session);
std::vector<Tensor> resized_tensors;
string image_path = tensorflow::io::JoinPath(root_dir, image);
Status read_tensor_status = ReadTensorFromImageFile(image_path, input_height, input_width,
input_mean, input_std, &resized_tensors);
Tensor inpTensor = Tensor(DT_FLOAT, TensorShape({ 1, input_height, input_width, 3 }));
std::vector<Tensor> outputs;
cv::Mat srcImage = cv::imread(image);
cv::resize(srcImage, srcImage, cv::Size(input_width, input_height));
srcImage.convertTo(srcImage, CV_32FC3);
srcImage = srcImage / 255;
string ty = type2str(srcImage.type());
float *p = (&inpTensor)->flat<float>().data();
cv::Mat tensorMat(input_height, input_width, CV_32FC3, p);
srcImage.convertTo(tensorMat, CV_32FC3);
Status run_status = session->Run({{ input_layer, inpTensor }}, { output_layer }, {}, &outputs);
int cc = 1;
auto output_detection_class = outputs[0].tensor<float, 4>();
std::cout << "detection scores" << std::endl;
std::cout << "typeid(output_detection_scoreclass).name->" << typeid(output_detection_class).name() << std::endl;
for (int i = 0; i < 13; ++i)
{
for (int j = 0; j < 13; ++j)
{
for (int k = 0; k < 21; ++k)
{
// using (index_1, index_2, index_3) to access the element in a tensor
printf("i->%d, j->%d, k->%d\t", i, j, k);
std::cout << output_detection_class(1, i, j, k) << "\t";
cc += 1;
if (cc % 4 == 0)
{
std::cout << "\n";
}
}
}
std::cout << std::endl;
}
return 0;
}
The output of c++ version inference part is
outputs.size()-> 3
outputs[0].shape()-> [1,13,13,21]
outputs[1].shape()-> [1,26,26,21]
outputs[2].shape()-> [1,52,52,21]
But the output I get is pretty weird...
(The output value of outputs[0] doesn't seems like any one of score, class, or coordinates...)
So I'm wondering is it because I miss the part written in python before its inference? Or I use the wrong way to get my output data?
I've checked some related questions and answers...
1.Yolo v3 model output clarification with keras
2.Convert YoloV3 output to coordinates of bounding box, label and confidence
3.How to access tensorflow::Tensor C++
But I still can't figure out how to make it :(
I also found a repo which might be helpful,
I've taken a look at its yolo.cpp, but its model output tensor's shape is different from mine, I'm not sure if I can revise the code directly, its output tensor is
tf.Tensor 'import/output:0' shape=(?, 735) dtype = float32
Any help or advice is appreciated...
In case you're still struggling with this, I don't see where you are applying the Sigmoid and Exp to the output layer values.
You might look at this paper, which describes how to handle the output.
https://medium.com/analytics-vidhya/yolo-v3-theory-explained-33100f6d193
As Bryan said, there're still some actions need to be done with the output layer.
So in my case (according to this repo), I add this to the YOLO class (at file yolo.py) for adding those post-processing when saving model:
def output_pb(self, out_dir, out_pb):
out_bx = self.boxes.name.split(":")[0]
out_sc = self.scores.name.split(":")[0]
out_cs = self.classes.name.split(":")[0]
print(out_bx, out_sc, out_cs)
frozen_graph = tf.graph_util.remove_training_nodes(tf.graph_util.convert_variables_to_constants(self.sess, self.sess.graph.as_graph_def(), [out_bx, out_sc, out_cs]))
tf.io.write_graph(frozen_graph, out_dir, out_pb, as_text=False)
print("===== FINISH saving new pb file =====")
When saving model, I called the function like this:
yolo = YOLO(**config)
yolo.output_pb(output_dir, output_pb_name)
And when doing inference in C++,
the whole process goes like this:
// initialize model
YOLO* YOLO_data = (YOLO*)Init_DllODM_object(config);
// do some stuff to set data in YOLO_data
cv::Mat input_pic = "whatever_pic.png";
predict(YOLO_data, input_pic, YOLO_data ->bbox_res, YOLO_data ->score_res, YOLO_data ->class_res);
// draw result on pic
cv::Mat res = show_result(YOLO_data, input_pic);
Detailed code is here:
// yolo_cpp.h
struct YOLO
{
float score_thres;
std::vector<int> class_res;
std::vector<float> bbox_res, score_res;
std::string inp_tensor_name;
std::string placeholder_name;
std::vector<std::string> out_tensors;
Session* session;
Tensor t, inpTensor;
std::vector<tensorflow::Tensor> outTensor;
std::vector<int> MD_size;
std::vector<int> inp_pic_size;
std::vector<std::string> md_class_list;
std::vector<cv::Scalar> color_list;
int show_score;
int score_type;
int return_origin;
};
// yolo_cpp.cpp
void* Init_DllODM_object(json config)
{
std::string model_path = config["model"].get<std::string>();
YOLO* YOLO_data = new YOLO();
auto options = tensorflow::SessionOptions();
GraphDef graphdef;
// loading model to graph
Status status_load = ReadBinaryProto(Env::Default(), model_path, &graphdef);
options.config.mutable_gpu_options()->set_per_process_gpu_memory_fraction(0.7);
options.config.mutable_gpu_options()->set_allow_growth(true);
int node_count = graphdef.node_size();
for (int i = 0; i < node_count; i++)
{
auto n = graphdef.node(i);
if (n.name().find("input_") != string::npos)
{
YOLO_data->inp_tensor_name = n.name();
}
else if (n.name().find("Placeholder_") != string::npos)
{
YOLO_data->placeholder_name = n.name();
}
else if (i == node_count - 5)
{
YOLO_data->out_tensors.push_back(n.name());
}
else if (i == node_count - 3)
{
YOLO_data->out_tensors.push_back(n.name());
}
else if (i == node_count - 1)
{
YOLO_data->out_tensors.push_back(n.name());
}
}
if (!status_load.ok()) {
std::cout << "ERROR: Loading model failed..." << std::endl;
std::cout << model_path << status_load.ToString() << "\n";
}
std::vector<int> MD_size_ = config["input_size"];
YOLO_data->MD_size = MD_size_;
std::vector<int> inp_pic_size_ = config["input_pic_size"];
YOLO_data->inp_pic_size = inp_pic_size_;
YOLO_data->inpTensor = Tensor(DT_FLOAT, TensorShape({ 1, YOLO_data->MD_size[0], YOLO_data->MD_size[1], 3 })); // input tensor
YOLO_data->t = Tensor(DT_FLOAT, TensorShape({ 2 }));
//ref: https://stackoverflow.com/questions/36804714/define-a-feed-dict-in-c-for-tensorflow-models
auto t_matrix = YOLO_data->t.tensor<float, 1>();
t_matrix(0) = YOLO_data->inp_pic_size[0];
t_matrix(1) = YOLO_data->inp_pic_size[1];
// create session
Status status_newsess = NewSession(options, &YOLO_data->session); //for the usage of gpu setting
Status status_create = YOLO_data->session->Create(graphdef);
if (!status_create.ok()) {
std::cout << "ERROR: Creating graph in session failed.." << status_create.ToString() << std::endl;
}
else {
std::cout << "----------- Successfully created session and load graph -------------" << std::endl;
}
return YOLO_data;
}
int predict(YOLO* YOLO_, cv::Mat srcImage, std::vector<float>& bbox_res, std::vector<float>& score_res, std::vector<int>& class_res)
{
// read image -> input image
if (srcImage.empty()) // check if image can open correctly
{
std::cout << "can't open the image!!!!!!!" << std::endl;
int res = -1;
return res;
}
// ref: https://ppt.cc/f7ERNx
std::vector<std::pair<string, tensorflow::Tensor>> inputs = {
{ YOLO_->inp_tensor_name, YOLO_->inpTensor },
{ YOLO_->placeholder_name, YOLO_->t },
};
srcImage = letterbox_image(srcImage, YOLO_->MD_size[0], YOLO_->MD_size[1]);
convertCVMatToTensor(YOLO_, srcImage);
Status status_run = YOLO_->session->Run({ inputs }, { YOLO_->out_tensors }, {}, &YOLO_->outTensor);
if (!status_run.ok()) {
std::cout << "ERROR: RUN failed..." << std::endl;
std::cout << status_run.ToString() << "\n";
int res = -1;
return res;
}
TTypes<float>::Flat pp1 = YOLO_->outTensor[0].flat<float>();
TTypes<float>::Flat pp2 = YOLO_->outTensor[1].flat<float>();
TTypes<int>::Flat pp3 = YOLO_->outTensor[2].flat<int>();
int pp1_idx;
for (int i = 0; i < pp2.size(); i++)
{
pp1_idx = i * 4;
bbox_res.push_back(pp1(pp1_idx));
bbox_res.push_back(pp1(pp1_idx + 1));
bbox_res.push_back(pp1(pp1_idx + 2));
bbox_res.push_back(pp1(pp1_idx + 3));
score_res.push_back(pp2(i));
class_res.push_back(pp3(i));
}
return 0;
}
cv::Mat show_result(YOLO* inf_obj, cv::Mat inp_pic)
{
int bbox_idx;
std::string plot_str;
bool under_thresh = false;
std::vector<int> del_idx;
for (int i = 0; i < inf_obj->class_res.size(); i++)
{
int y_min, y_max, x_min, x_max;
bbox_idx = i * 4;
y_min = std::max(0, (int)floor(inf_obj->bbox_res[bbox_idx] + 0.5));
x_min = std::max(0, (int)floor(inf_obj->bbox_res[bbox_idx + 1] + 0.5));
y_max = std::max(0, (int)floor(inf_obj->bbox_res[bbox_idx + 2] + 0.5));
x_max = std::max(0, (int)floor(inf_obj->bbox_res[bbox_idx + 3] + 0.5));
//std::cout << md_class_list[class_res[i]] << ", ";
//std::cout << score_res[i] << ",";
//std::cout << "[" << x_min << ", " << y_min << ", " << x_max << ", " << y_max << "]\n";
if (inf_obj->show_score)
{
if (inf_obj->score_type)
plot_str = inf_obj->md_class_list[inf_obj->class_res[i]] + ", " + std::to_string(rounding(inf_obj->score_res[i] * 100, 2)).substr(0, 5) + "%";
else
plot_str = inf_obj->md_class_list[inf_obj->class_res[i]] + ", " + std::to_string(rounding(inf_obj->score_res[i], 2)).substr(0, 4);
}
else
plot_str = inf_obj->md_class_list[inf_obj->class_res[i]];
if (inf_obj->score_res[i] >= inf_obj->score_thres)
{
inp_pic = plot_one_box(inp_pic, x_min, y_min, x_max, y_max, plot_str, inf_obj->color_list[inf_obj->class_res[i]]);
}
else
{
//std::cout << "score_res[i]->" << score_res[i] << "under thresh!!" << std::endl;
under_thresh = true;
del_idx.push_back(i);
}
}
if (under_thresh)
{
//std::cout << "*** deleting element" << std::endl;
for (int x = 0; x < del_idx.size(); x++)
{
bbox_idx = (del_idx[x] - x) * 4;
inf_obj->bbox_res.erase(inf_obj->bbox_res.begin() + bbox_idx + 3);
inf_obj->bbox_res.erase(inf_obj->bbox_res.begin() + bbox_idx + 2);
inf_obj->bbox_res.erase(inf_obj->bbox_res.begin() + bbox_idx + 1);
inf_obj->bbox_res.erase(inf_obj->bbox_res.begin() + bbox_idx);
inf_obj->score_res.erase(inf_obj->score_res.begin() + del_idx[x] - x);
inf_obj->class_res.erase(inf_obj->class_res.begin() + del_idx[x] - x);
}
del_idx.clear();
}
return inp_pic;
}
Since my code is used for dll, I arranged in this way.
There are still some redundant code I didn't delete,
but I think the whole process can be done with these provided code so far.
Hope this help :D

Using a named (fifo) pipe to transport arrays (images) between python and c++

I need to send an array (representing an image) through a named FIFO pipe from a python process to a c++ process, and then back the other way (on a Linux system).
The below code works great when using named pipes between two Python processes. It uses numpy's tostring() and fromstring() functions:
Send frames over named pipe (Python)
import cv2
import numpy as np
from time import sleep
##########################################################
FIFO_Images = "./../pipes/images.fifo"
videoName = "./../../videos/videoName.avi"
delim = "break"
##########################################################
def sendImage(h, w, d, pixelarray):
imageString = pixelarray.tostring()
with open(FIFO_Images, "w") as f:
f.write(str(h)+ delim + str(w)+ delim + str(d) + delim + imageString)
sleep(.01)
return
##########################################################
cap = cv2.VideoCapture(videoName)
while(cap.isOpened()):
ret, frame_rgb = cap.read()
h, w, d = frame_rgb.shape
sendImage(h, w, d, frame_rgb)
cap.release()
cv2.destroyAllWindows()
Read frames over named pipe (Python)
import cv2
import numpy as np
##########################################################
FIFO_Images = "./../pipes/images.fifo"
delim = "break"
##########################################################
def getFrame():
with open(FIFO_Images, "r") as f:
data = f.read().split(delim)
#parse incoming string, which has format (height, width, depth, imageData)
h=int(data[0])
w=int(data[1])
d=int(data[2])
imageString = data[3]
#convert array string into numpy array
array = np.fromstring(imageString, dtype=np.uint8)
#reshape numpy array into the required dimensions
frame = array.reshape((h,w,d))
return frame
##########################################################
while(True):
frame = getFrame()
cv2.imshow('frame', frame)
cv2.waitKey(1) & 0xFF
However, I couldn't figure out how to read the entire image from the pipe on the cpp side, since it takes "\n" as a delimiter for the read automatically.
My workaround was to do a base64 encoding on the "tostring()" image, then send that over the pipe. This works, but the base64 decoding on the other slide is much too slow for real-time applications (~0.2 seconds per frame). Code:
Send base64-encoded images over named pipe (Python)
import cv2
import numpy as np
from time import time
from time import sleep
import base64
##########################################################
FIFO_Images = "./../pipes/images.fifo"
videoName = "./../../videos/videoName.avi"
delim = ";;"
##########################################################
def sendImage(h, w, d, pixelarray):
flat = pixelarray.flatten()
imageString = base64.b64encode(pixelarray.tostring())
fullString = str(h)+ delim + str(w)+ delim + str(d)+ delim + imageString + delim + "\n"
with open(FIFO_Images, "w") as f:
f.write(fullString)
return
##########################################################
cap = cv2.VideoCapture(videoName)
count = 0
while(cap.isOpened()):
ret, frame_rgb = cap.read()
h, w, d = frame_rgb.shape
frame_gbr = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2BGR)
sendImage(h, w, d, frame_rgb)
cap.release()
cv2.destroyAllWindows()
Read base64-encoded images over named pipe (C++)
#include "opencv2/opencv.hpp"
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <linux/stat.h>
#include <ctime>
using namespace std;
using namespace cv;
#define FIFO_FILE "./../../../pipes/images.fifo"
#define MAX_BUF 10000000
FILE *fp;
char readbuf[MAX_BUF + 1]; //add 1 to the expected size to accomodate the mysterious "extra byte", which I think signals the end of the line.
/************************BASE64 Decoding*********************************************/
std::string base64_encode(unsigned char const* , unsigned int len);
std::string base64_decode(std::string const& s);
static const std::string base64_chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(unsigned char c) {
return (isalnum(c) || (c == '+') || (c == '/'));
}
std::string base64_encode(unsigned char const* bytes_to_encode, unsigned int in_len) {
std::string ret;
int i = 0;
int j = 0;
unsigned char char_array_3[3];
unsigned char char_array_4[4];
while (in_len--) {
char_array_3[i++] = *(bytes_to_encode++);
if (i == 3) {
char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4);
char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6);
char_array_4[3] = char_array_3[2] & 0x3f;
for(i = 0; (i <4) ; i++)
ret += base64_chars[char_array_4[i]];
i = 0;
}
}
if (i)
{
for(j = i; j < 3; j++)
char_array_3[j] = '\0';
char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4);
char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6);
char_array_4[3] = char_array_3[2] & 0x3f;
for (j = 0; (j < i + 1); j++)
ret += base64_chars[char_array_4[j]];
while((i++ < 3))
ret += '=';
}
return ret;
}
std::string base64_decode(std::string const& encoded_string) {
int in_len = encoded_string.size();
int i = 0;
int j = 0;
int in_ = 0;
unsigned char char_array_4[4], char_array_3[3];
std::string ret;
while (in_len-- && ( encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
char_array_4[i++] = encoded_string[in_]; in_++;
if (i ==4) {
for (i = 0; i <4; i++)
char_array_4[i] = base64_chars.find(char_array_4[i]);
char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++)
ret += char_array_3[i];
i = 0;
}
}
if (i) {
for (j = i; j <4; j++)
char_array_4[j] = 0;
for (j = 0; j <4; j++)
char_array_4[j] = base64_chars.find(char_array_4[j]);
char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; (j < i - 1); j++) ret += char_array_3[j];
}
return ret;
}
/*********************************************************************/
int stringToInt(string str)
{
int num;
if (!(istringstream(str) >> num)) num = 0;
return num;
}
/*********************************************************************/
bool timerOn = 0;
clock_t timerStart;
void Timer(string process)
{
if (!timerOn)
{
timerStart = clock();
timerOn = true;
}
else if (timerOn)
{
double duration = (clock() - timerStart) / (double) CLOCKS_PER_SEC;
cout << "Time to complete: ";
printf("%.2f", duration);
cout << ": " << process << endl;
timerOn = false;
}
}
/*********************************************************************/
void getFrame()
{
string fullString;
string delimiter = ";;";
size_t pos = 0;
string token;
int h;
int w;
int d;
string imgString;
int fifo;
bool cont(true);
/***************************
Read from the pipe
www.tldp.org/LDP/lpg/node18.html
***************************/
Timer("Read from pipe");
fp = fopen(FIFO_FILE, "r");
fgets(readbuf, MAX_BUF + 1, fp); // Stops when MAX_BUF characters are read, the newline character ("\n") is read, or the EOF (end of file) is reached
string line(readbuf);
fclose(fp);
Timer("Read from pipe");
//////parse the string into components
Timer("Parse string");
int counter = 0;
while ((pos = line.find(delimiter)) != string::npos)
{
token = line.substr(0,pos);
if (counter == 0)
{
h = stringToInt(token);
}
else if (counter == 1)
{
w = stringToInt(token);
}
else if (counter == 2)
{
d = stringToInt(token);
}
else if (counter == 3)
{
imgString = token;
//cout << imgString[0] << endl;
}
else
{
cout << "ERROR: Too many paramaters passed" << endl;
return;
}
line.erase(0, pos + delimiter.length());
counter ++;
}
if (counter == 3)
{
imgString = token;
}
if (counter < 3)
{
cout << "ERROR: Not enough paramaters passed: " << counter << endl;
//return;
}
Timer("Parse string");
/***************************
Convert from Base64
***************************/
Timer("Decode Base64");
std::string decoded = base64_decode(imgString);
Timer("Decode Base64");
/***************************
Convert to vector of ints
***************************/
Timer("Convert to vector of ints");
std::vector<uchar> imgVector;
for (int i = 0; i < decoded.length(); i = i+1) // + 4)
{
int temp = (char(decoded[i]));
imgVector.push_back(temp);
}
Timer("Convert to vector of ints");
//////convert the vector into a matrix
Mat frame = Mat(imgVector).reshape(d, h);
namedWindow("Frame", WINDOW_AUTOSIZE);
imshow("Frame", frame);
waitKey(1);
}
int main()
{
/* Create the FIFO if it does not exist */
umask(0);
mknod(FIFO_FILE, S_IFIFO|0666, 0);
while(1)
{
getFrame();
}
return 0;
}
There must be a more efficient way to accomplish this. Can anyone make a recommendation? While I'm happy to hear suggestions for other methods to accomplish this, I am constrained to using named pipes for now.
This is overcomplicated. If you need to send binary data, send their length first, then newline (\n), and then the data (raw, no base64). Receive it on the other side by readling a line, parsing the number and then just reading a block of data of given length.
Example - writing binary data to a FIFO (or file) in Python:
#!/usr/bin/env python3
import os
fifo_name = 'fifo'
def main():
data = b'blob\n\x00 123'
try:
os.mkfifo(fifo_name)
except FileExistsError:
pass
with open(fifo_name, 'wb') as f:
# b for binary mode
f.write('{}\n'.format(len(data)).encode())
f.write(data)
if __name__ == '__main__':
main()
Reading binary data from FIFO in C++:
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <sys/stat.h>
int main(int argc, char *argv[]) {
const char *fifo_name = "fifo";
mknod(fifo_name, S_IFIFO | 0666, 0);
std::ifstream f(fifo_name);
std::string line;
getline(f, line);
auto data_size = std::stoi(line);
std::cout << "Size: " << data_size << std::endl;
std::string data;
{
std::vector<char> buf(data_size);
f.read(buf.data(), data_size);
// write to vector data is valid since C++11
data.assign(buf.data(), buf.size());
}
if (!f.good()) {
std::cerr << "Read failed" << std::endl;
}
std::cout << "Data size: " << data.size() << " content: " << data << std::endl;
}

create document from c++ code from command in python

I'm working on a project using opencv. I choosed to make this project in python to ease my task. But for some tasks, python is very slow and I must code in C++ in order to have a reasonable time of execution.
My first solution was to try to use a wrapper but after two days, I couldn't manage to make it work.
I made another solution: compiling my C++ code and call it from python with a os.system command.
My code is like this:
In C++
#include <iostream>
#include <opencv2/opencv.hpp>
#include "opencv2/core/core.hpp"
using namespace cv;
using namespace std;
int main(int argc, char** argv){
Mat src = imread(argv[1], 1);
Mat dst = imread(argv[2], 1);
unsigned char *sinput = (unsigned char*)(src.data);
int lo = atoi(argv[3]);
int up = atoi(argv[4]);
int connectivity = 4;
int newMaskVal = 255;
int ffillMode = 1;
int flags = connectivity + (newMaskVal << 8) + (ffillMode == 1 ? CV_FLOODFILL_FIXED_RANGE : 0);
Rect ccomp;
unsigned int counter = 0;
for(int j = 0;j < src.rows;j++){
for(int i = 0;i < src.cols;i++){
unsigned short b = sinput[(src.cols * j * 3) + i*3 ] ;
unsigned short g = sinput[(src.cols * j * 3) + i*3 + 1];
unsigned short r = sinput[(src.cols * j * 3) + i*3 + 2];
if (r == 0 and g == 255 and b == 0){
unsigned char *dinput = (unsigned char*)(dst.data);
unsigned short db = dinput[(dst.cols * j * 3) + i*3 ] ;
unsigned short dg = dinput[(dst.cols * j * 3) + i*3 + 1];
unsigned short dr = dinput[(dst.cols * j * 3) + i*3 + 2];
if (dr != 0 or dg != 255 or db != 0){
floodFill(dst, Point(i,j), Scalar(0,255,0), &ccomp, Scalar(lo, lo, lo), Scalar(up, up, up), flags);
counter++;
if (counter > 100 && counter % 100 == 0){
cout << counter << endl;
}
}
}
}
}
imwrite("/home/gaetan/Dropbox/Projects/PyCharm/FacadeClipper/tmp/flooded.png", dst);
cout << "Image wrote!" << endl;
return 0;
}
and in python
def floodFill(self):
lo = 20
up = 20
cv2.imwrite("../tmp/im.png", self.img)
cv2.imwrite("../tmp/imG.png", self.lineImg)
os.system("./../Methods/flood ../tmp/imG.png ../tmp/im.png " + str(lo) + " " + str(up))
time.sleep(1)
self.floodImg = cv2.imread("../tmp/flooded.png")
image = Image.fromarray(cv2.cvtColor(self.floodImg, cv2.COLOR_BGR2RGB))
self.displayImage(image)
os.system('rm ../tmp/im.png ../tmp/imG.png ../tmp/flooded.png')
but sadly, the image "flooded.png" doesn't seems to be created when I use the python code, but when I use the bash command
$ ./flood /home/gaetan/ang.JPG /home/gaetan/an.JPG 20 20
the file is created. What am I doing wrong?
I know this solution is really gross and I'm really hesitating in recode it entirely in C++, but as it is already a very big bunch of code, I would rather not be forced to do it.
Thanks :)

Categories