change space between ticks in first y-axis in plt.imshow - python

Hey I have used the following code:
import matplotlib.pyplot as plt
import numpy as np
Class1=np.array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 1., 0., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 1., 1., 1., 0., 1., 0., 1., 0., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 1., 1., 1., 0.]])
Unique=np.array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,
13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,
26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.])
counts=np.array([56184982, 2904400, 4950837, 114746, 4270, 182052,
844444, 106292, 47007, 68480, 23522, 13838,
23990, 301704, 50462, 21345, 12263, 7217,
64194, 251, 885, 2947045, 4895643, 102992,
4401, 180136, 844872, 281, 107200, 48703,
69791, 22651, 50295, 22772, 7020, 62543,
43, 1103, 48])
list_y2=[]
list_x=[]
list_y1=[]
for i in np.arange(len(Unique)):
list_y2.append( np.array2string(round(counts[i]/Class1.sum(axis=1)[i],2)))
if i < 9:
list_x.append(str(i+1))
else:
list_x.append( str(i+1))
list_y1.append( str(38-int(Unique[i])))
fig, ax1 = plt.subplots()
F=16
ax1.set_xlabel('Brain image',fontsize=F)
ax1.set_yticks(np.arange(len(list_y1)))
ax1.set_yticklabels(list_y1)
ax1.set_xticks(np.arange(len(list_x)))
ax1.set_xticklabels(list_x)
ax1.set_ylabel('class',fontsize=F)
ax2 = ax1.twinx()
ax2.set_yticks(np.arange(len(list_y2)))
ax2.set_yticklabels(list_y2, va='baseline')
ax2.set_ylabel('size',fontsize=F)
#Rotate the tick labels and set their alignment.
plt.setp(ax1.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
plt.imshow(Class1, aspect='auto')
fig.tight_layout()
plt.show()
which makes the following plot:
The problem with this is that the first y-axis doesn't fit the plot properly. The length between the ticks in the first y-axis should be the same as in the second y-axis and the 0 in the top and the 38 in bottom should be moved a bit inward on the y-axis. Hope one of you can help me.

I had the same problem recently and found the following workaround: Setting the same limits for the twin axis ax2 as for the parent axis (ax1). This aligns the ticks on both y-axes and then you proceed by setting the ticks and the labels as desired as you are doing.
ax2 = ax1.twinx()
ax2.set_ylim(ax1.get_ylim()) # This was the fix for me
ax2.set_yticks(np.arange(len(list_y2)))
ax2.set_yticklabels(list_y2, va='baseline')
ax2.set_ylabel('size',fontsize=F)
Let me know if it works.

Related

Why does my image convert to a tensor with only ones?

I am using the GTZAN dataset (containing 1000 songs with 10 genres) to make a music genre classification project.
I tried to convert a dataset of images, which are spectrograms of the songs, into tensors but it only returns a tensor of ones.
This is how I tried to do it:
transform = T.Compose([
T.Resize(image_size),
T.ToTensor()
])
data = torchvision.datasets.ImageFolder(root = root, transform = transform)
train_loader = DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = DataLoader(test_dataset,
batch_size*2)
dataiter = iter(train_loader)
images, labels = dataiter.next()
When I return images it gives a tensor of pure ones, e.g.
images[1]
tensor([[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
...,
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
...,
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
...,
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]]])
Are you sure it is all ones? Try to compute maximum/minimum/mean.
If that's the case, maybe you are reading the files assuming the wrong format.
This notebook could be of help https://www.kaggle.com/code/mireiaboneta/cnnmodel

Numpy ValueError broadcasting list of tuples into an array

I'm observing some odd behaviour using numpy broadcasting. The problem is illustrated below, where running the first piece of code produces an error:
A = np.ones((10))
B = np.ones((10, 4))
C = np.ones((10))
np.asarray([A, B, C])
ValueError: could not broadcast input array from shape (10,4) into shape (10)
If I instead expand the dimensions of B, using B = np.expand_dims(B, axis=0), it will successfully create the array, but it now has (not surprisingly) the wrong dimensions:
array([array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),
array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]),
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=float32)
Why does it fail to broadcast the first example, and how can I end up with an array like below (notice only double brackets around the second array)? Any feedback is much appreciated.
array([array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]),
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=object)
Including, say, None prevents the broadcasting, so this workaround is an option:
np.asarray([A, B, C, None])[:-1]
Here the outcome:
array([array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),
array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]]),
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=object)

Switch triangular matrix

Is there an easy way to turn around a triangular matrix.
import numpy as np
shape=(4,8)
x3=np.ones(shape)
for m in range(len(x3)):
step = (m * int(2)+1) #per step of 2 zeros
for n in range(int(step), len(x3[m])):
x3[m][n] = 0
Gives me this matrix:
array([[1., 0., 0., 0., 0., 0., 0., 0.],
[1., 1., 1., 0., 0., 0., 0., 0.],
[1., 1., 1., 1., 1., 0., 0., 0.],
[1., 1., 1., 1., 1., 1., 1., 0.]])
I want to switch this to something like this:
array([[0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 1., 1., 1.],
[0., 0., 0., 1., 1., 1., 1., 1.],
[0., 1., 1., 1., 1., 1., 1., 1.]])
Is there a simple way of doing this?
np.flip from numpy package does the trick :
A = array([[1., 0., 0., 0., 0., 0., 0., 0.],
[1., 1., 1., 0., 0., 0., 0., 0.],
[1., 1., 1., 1., 1., 0., 0., 0.],
[1., 1., 1., 1., 1., 1., 1., 0.]])
np.flip(A, 1)
#returns what you want : 1 for vertical symetry
array([[0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 1., 1., 1.],
[0., 0., 0., 1., 1., 1., 1., 1.],
[0., 1., 1., 1., 1., 1., 1., 1.]])

cluster_selection_method error in dbscan

I am experimenting with clustering using the hdbscan package (0.8.3) in Python. Reading through the documentation leads me to want to test the different settings for cluster_selection_method (notably, setting it to 'leaf'). When I try to make this change I get:
__init__() got an unexpected keyword argument 'cluster_selection_method'
Here is how I call it:
clusterer = hdbscan.HDBSCAN(algorithm=algorithm,alpha=alpha,metric=metric,min_cluster_size=min_cluster_size \
,min_samples=min_samples,p=p,cluster_selection_method='leaf')
clusterer.fit(data['values'])
In this case data['values'] are all 1D arrays with each element having a value of 1.0 or 10.0 as shown below. Any advice on what might be preventing me from setting the cluster_selection_method would be appreciated.
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 10., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
10., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 10.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 10., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 10., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 10., 1., 10., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 10., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
10., 10., 10., 10., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 10., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 10., 1., 1., 10., 10., 10.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 10., 10.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 10., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 10., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1.])
You may want to upgrade to a newer release of hdbscan; the cluster_selection_method was a relatively new addition.

How to plot the outlines of specific squares within a 2D grid using pcolormesh?

I have a (21 x 25) 2D array which contains two discrete values, "1" & "2".
The values are shown below:
value = np.array(
[[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 2.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])
If I plot this using pcolor, the resulting figure looks like this:
I want to draw the outlines of the grid squares where value == 2:
xx,yy = np.linspace(0,26,25),np.linspace(0,22,22)
xx,yy = np.meshgrid(xx,yy)
plt.pcolormesh(xx, yy, value, facecolor='none', edgecolor='b', alpha=0.8, zorder=2)
It seems like the outline isn't uniform (the lines have different shades), and I can't set the grid line colors by changing edgecolor.
You can render the squares where value == 1 as transparent by creating an np.ma.masked_array from value:
c = np.ma.masked_array(value, value == 1.) # mask squares where value == 1
plt.pcolormesh(xx, yy, c, alpha=0.8, zorder=2, facecolor='none', edgecolors='k',
cmap='gray')
Setting the colormap to 'gray' is a bit of a hack - unfortunately it seems that the default colormap overrides the edge color, even if you try to set it explicitly using edgecolor= or edgecolors=. I'm not sure whether or not this should be considered a bug in matplotlib.

Categories