I am having a hard time figuring out how to get "rolling weights" based off of one of my columns, then factor these weights onto another column.
I've tried groupby.rolling.apply (function) on my data but the main problem is just conceptualizing how I'm going to take a running/rolling average of the column I'm going to turn into weights, and then factor this "window" of weights onto another column that isn't rolled.
I'm also purposely setting min_period to 1, so you'll notice my first two rows in each group final output "rwag" mirror the original.
W is the rolling column to derive the weights from.
B is the column to apply the rolled weights to.
Grouping is only done on column a.
df is already sorted by a and yr.
def wavg(w,x):
return (x * w).sum() / w.sum()
n=df.groupby(['a1'])[['w']].rolling(window=3,min_periods=1).apply(lambda x: wavg(df['w'],df['b']))
Input:
id | yr | a | b | w
---------------------------------
0 | 1990 | a1 | 50 | 3000
1 | 1991 | a1 | 40 | 2000
2 | 1992 | a1 | 10 | 1000
3 | 1993 | a1 | 20 | 8000
4 | 1990 | b1 | 10 | 500
5 | 1991 | b1 | 20 | 1000
6 | 1992 | b1 | 30 | 500
7 | 1993 | b1 | 40 | 4000
Desired output:
id | yr | a | b | rwavg
---------------------------------
0 1990 a1 50 50
1 1991 a1 40 40
2 1992 a1 10 39.96
3 1993 a1 20 22.72
4 1990 b1 10 10
5 1991 b1 20 20
6 1992 b1 30 20
7 1993 b1 40 35.45
apply with rolling usually have some wired behavior
df['Weight']=df.b*df.w
g=df.groupby(['a']).rolling(window=3,min_periods=1)
g['Weight'].sum()/g['w'].sum()
df['rwavg']=(g['Weight'].sum()/g['w'].sum()).values
Out[277]:
a
a1 0 50.000000
1 46.000000
2 40.000000
3 22.727273
b1 4 10.000000
5 16.666667
6 20.000000
7 35.454545
dtype: float64
Related
Problem:
I have a DataFrame like so:
import pandas as pd
df = pd.DataFrame({
"name":["john","jim","eric","jim","john","jim","jim","eric","eric","john"],
"category":["a","b","c","b","a","b","c","c","a","c"],
"amount":[100,200,13,23,40,2,43,92,83,1]
})
name | category | amount
----------------------------
0 john | a | 100
1 jim | b | 200
2 eric | c | 13
3 jim | b | 23
4 john | a | 40
5 jim | b | 2
6 jim | c | 43
7 eric | c | 92
8 eric | a | 83
9 john | c | 1
I would like to add two new columns: first; the total amount for the relevant category for the name of the row (eg: the value in row 0 would be 140, because john has a total of 100 + 40 of the a category). Second; the counts of those name and category combinations which are being summed in the first new column (eg: the row 0 value would be 2).
Desired output:
The output I'm looking for here looks like this:
name | category | amount | sum_for_category | count_for_category
------------------------------------------------------------------------
0 john | a | 100 | 140 | 2
1 jim | b | 200 | 225 | 3
2 eric | c | 13 | 105 | 2
3 jim | b | 23 | 225 | 3
4 john | a | 40 | 140 | 2
5 jim | b | 2 | 225 | 3
6 jim | c | 43 | 43 | 1
7 eric | c | 92 | 105 | 2
8 eric | a | 83 | 83 | 1
9 john | c | 1 | 1 | 1
I don't want to group the data by the features because I want to keep the same number of rows. I just want to tag on the desired value for each row.
Best I could do:
I can't find a good way to do this. The best I've been able to come up with is the following:
names = df["name"].unique()
categories = df["category"].unique()
sum_for_category = {i:{
j:df.loc[(df["name"]==i)&(df["category"]==j)]["amount"].sum() for j in categories
} for i in names}
df["sum_for_category"] = df.apply(lambda x: sum_for_category[x["name"]][x["category"]],axis=1)
count_for_category = {i:{
j:df.loc[(df["name"]==i)&(df["category"]==j)]["amount"].count() for j in categories
} for i in names}
df["count_for_category"] = df.apply(lambda x: count_for_category[x["name"]][x["category"]],axis=1)
But this is extremely clunky and slow; far too slow to be viable on my actual dataset (roughly 700,000 rows x 10 columns). I'm sure there's a better and faster way to do this... Many thanks in advance.
You need two groupby.transform:
g = df.groupby(['name', 'category'])['amount']
df['sum_for_category'] = g.transform('sum')
df['count_or_category'] = g.transform('size')
output:
name category amount sum_for_category count_or_category
0 john a 100 140 2
1 jim b 200 225 3
2 eric c 13 105 2
3 jim b 23 225 3
4 john a 40 140 2
5 jim b 2 225 3
6 jim c 43 43 1
7 eric c 92 105 2
8 eric a 83 83 1
9 john c 1 1 1
Another possible solution:
g = df.groupby(['name', 'category']).amount.agg(['sum','count']).reset_index()
df.merge(g, on = ['name', 'category'], how = 'left')
Output:
name category amount sum count
0 john a 100 140 2
1 jim b 200 225 3
2 eric c 13 105 2
3 jim b 23 225 3
4 john a 40 140 2
5 jim b 2 225 3
6 jim c 43 43 1
7 eric c 92 105 2
8 eric a 83 83 1
9 john c 1 1 1
import pandas as pd
df = pd.DataFrame({
"name":["john","jim","eric","jim","john","jim","jim","eric","eric","john"],
"category":["a","b","c","b","a","b","c","c","a","c"],
"amount":[100,200,13,23,40,2,43,92,83,1]
})
df_Count =
df.groupby(['name','category']).count().reset_index().rename({'amount':'Count_For_Category'}, axis=1)
df_Sum = df.groupby(['name','category']).sum().reset_index().rename({'amount':'Sum_For_Category'},axis=1)
df_v2 = pd.merge(df,df_Count[['name','category','Count_For_Category']], left_on=['name','category'], right_on=['name','category'], how='left')
df_v2 = pd.merge(df_v2,df_Sum[['name','category','Sum_For_Category']], left_on=['name','category'], right_on=['name','category'], how='left')
df_v2
Hi There,
Use a simple code to easy understand, please try these code below, Just run it you will get what you want.
Thanks
Leon
Assuming I have the following DataFrame:
Row | Temperature | Measurement
A1 | 26.7 | 12
A1 | 25.7 | 13
A2 | 27.3 | 11
A2 | 28.3 | 12
A3 | 25.6 | 17
A3 | 23.4 | 14
----------------------------
P3 | 25.7 |14
I want to remove the duplicate rows with respect to column 'Row', and I want to retain only the rows with value closest to 25 in column Temperature.
For example:
Row | Temperature | Measurement
A1 | 25.7 | 13
A2 | 27.3 | 11
A3 | 25.6 | 17
----------------------------
P3 | 25.7 |14
I am trying to use this function to find the nearest within an array:
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
array = df['Temperature']
value = 25
But I am not sure how to go about pandas.drop_duplicates in the df. Thank you!
python pandas dataframe
One way to do is create a temporary column and sort on that, then drop duplicates:
df['key'] = df['Temperature'].sub(25).abs()
# sort by key, drop duplicates, and resort
df.sort_values('key').drop_duplicates('Row').sort_index()
Output:
Row Temperature Measurement key
1 A1 25.7 13 0.7
2 A2 27.3 11 2.3
4 A3 25.6 17 0.6
6 P3 25.7 14 0.7
Another option, similar to what you are trying to do, is to use np.argsort on the key, and sort by iloc. This avoids creation of a new column in the data:
orders = np.argsort(df['Temperature'].sub(25).abs())
df.iloc[orders].drop_duplicates('Row').sort_index()
Output:
Row Temperature Measurement
1 A1 25.7 13
2 A2 27.3 11
4 A3 25.6 17
6 P3 25.7 14
I have the following dataframe:
-----+-----+-------------+-------------+-------------------------+
| ID1 | ID2 | Box1_weight | Box2_weight | Average Prev Weight ID1 |
+-----+-----+-------------+-------------+-------------------------+
| 19 | 677 | 3 | 2 | - |
+-----+-----+-------------+-------------+-------------------------+
| 677 | 19 | 1 | 0 | 2 |
+-----+-----+-------------+-------------+-------------------------+
| 19 | 677 | 3 | 1 | (0 + 3 )/2=1.5 |
+-----+-----+-------------+-------------+-------------------------+
| 19 | 677 | 7 | 0 | (3+0+3)/3=2 |
+-----+-----+-------------+-------------+-------------------------+
| 677 | 19 | 1 | 3 | (0+1+1)/3=0.6 |
I want to work out the moving average of weight the past 3 boxes, based on ID. I want to do this for all IDs in ID1.
I have put the column I want to calculate, along with the calculations is in the table above, labelled "Average Prev Weight ID1"
I can get a a rolling average for each individual column using the following:
df_copy.groupby('ID1')['Box1_weight'].apply(lambda x: x.shift().rolling(period_length, min_periods=1).mean())
However, this does not take into account that the item may also have been packed in the column labelled "Box2_weight"
How can I get a rolling average that is per ID, across the two columns?
Any guidance is appreciated.
Here is my attempt
stack the 2 ids and 2 weights columns to create dataframe with 1 ids and 1 weight column. Calculate the running average and assign back the running average for ID1 back to the dataframe
I have used your code of calculating rolling average but I arranged data to df2 before doing ti
import pandas as pd
d = {
"ID1": [19,677,19,19,677],
"ID2": [677, 19, 677,677, 19],
"Box1_weight": [3,1,3,7,1],
"Box2_weight": [2,0,1,0,3]
}
df = pd.DataFrame(d)
display(df)
period_length=3
ids = df[["ID1", "ID2"]].stack().values
weights = df[["Box1_weight", "Box2_weight"]].stack().values
df2=pd.DataFrame(dict(ids=ids, weights=weights))
rolling_avg = df2.groupby("ids")["weights"] \
.apply(lambda x: x.shift().rolling(period_length, min_periods=1)
.mean()).values.reshape(-1,2)
df["rolling_avg"] = rolling_avg[:,0]
display(df)
Result
ID1 ID2 Box1_weight Box2_weight
0 19 677 3 2
1 677 19 1 0
2 19 677 3 1
3 19 677 7 0
4 677 19 1 3
ID1 ID2 Box1_weight Box2_weight rolling_avg
0 19 677 3 2 NaN
1 677 19 1 0 2.000000
2 19 677 3 1 1.500000
3 19 677 7 0 2.000000
4 677 19 1 3 0.666667
Not sure if this is what you want. I had trouble understanding your requirements. But here's a go:
ids = ['ID1', 'ID2']
ind = np.argsort(df[ids].to_numpy(), 1)
make_sort = lambda s, ind: np.take_along_axis(s, ind, axis=1)
f = make_sort(df[ids].to_numpy(), ind)
s = make_sort(df[['Box1_weight', 'Box2_weight']].to_numpy(), ind)
df2 = pd.DataFrame(np.concatenate([f,s], 1), columns=df.columns)
res1 = df2.groupby('ID1').Box1_weight.rolling(3, min_periods=1).mean().shift()
res2 = df2.groupby('ID2').Box2_weight.rolling(3, min_periods=1).mean().shift()
means = pd.concat([res1,res2], 1).rename(columns={'Box1_weight': 'w1', 'Box2_weight': 'w2'})
x = df.set_index([df.ID1.values, df.index])
final = x[ids].merge(means, left_index=True, right_index=True)[['w1','w2']].sum(1).sort_index(level=1)
df['final_weight'] = final.tolist()
ID1 ID2 Box1_weight Box2_weight final_weight
0 19 677 3 2 0.000000
1 677 19 1 0 2.000000
2 19 677 3 1 1.500000
3 19 677 7 0 2.000000
4 677 19 1 3 0.666667
I want to create a new column based on the value of other columns in pandas dataframe. My data is about a truck that moves back and forth from loading to dumping location. I want calculates the distance of current road segment to the last segment. The example of the data shown below:
State | segment length |
-----------------------------
Loaded | 20 |
Loaded | 10 |
Loaded | 10 |
Empty | 15 |
Empty | 10 |
Empty | 10 |
Loaded | 30 |
Loaded | 20 |
Loaded | 10 |
So, the end of the road will be the record where the State changes. Hence I want to calculate the distance from end of the road. The final dataframe will be:
State | segment length | Distance to end
Loaded | 20 | 40
Loaded | 10 | 20
Loaded | 10 | 10
Empty | 15 | 35
Empty | 10 | 20
Empty | 10 | 10
Loaded | 30 | 60
Loaded | 20 | 30
Loaded | 10 | 10
Can anyone help?
Thank you in advance
Use GroupBy.cumsum with DataFrame.iloc for swap ordering and custom Series for get unique consecutive groups with shift and cumsum:
g = df['State'].ne(df['State'].shift()).cumsum()
df['Distance to end'] = df.iloc[::-1].groupby(g)['segment length'].cumsum()
print (df)
State segment length Distance to end
0 Loaded 20 40
1 Loaded 10 20
2 Loaded 10 10
3 Empty 15 35
4 Empty 10 20
5 Empty 10 10
6 Loaded 30 60
7 Loaded 20 30
8 Loaded 10 10
Detail:
print (g)
0 1
1 1
2 1
3 2
4 2
5 2
6 3
7 3
8 3
Name: State, dtype: int32
df['Distance to end'] = (
df.assign(i=df.State.ne(df.State.shift()).cumsum())
.assign(s=lambda x: x.groupby(by='i')['segment length'].transform(sum))
.groupby(by='i')
.apply(lambda x: x.s.sub(x['segment length'].shift().cumsum().fillna(0)))
.values
)
State segment length Distance to end
0 Loaded 20 40.0
1 Loaded 10 20.0
2 Loaded 10 10.0
3 Empty 15 35.0
4 Empty 10 20.0
5 Empty 10 10.0
6 Loaded 30 60.0
7 Loaded 20 30.0
8 Loaded 10 10.0
Sorry in advance the number of images, but they help demonstrate the issue
I have built a dataframe which contains film thickness measurements, for a number of substrates, for a number of layers, as function of coordinates:
| | Sub | Result | Layer | Row | Col |
|----|-----|--------|-------|-----|-----|
| 0 | 1 | 2.95 | 3 - H | 0 | 72 |
| 1 | 1 | 2.97 | 3 - V | 0 | 72 |
| 2 | 1 | 0.96 | 1 - H | 0 | 72 |
| 3 | 1 | 3.03 | 3 - H | -42 | 48 |
| 4 | 1 | 3.04 | 3 - V | -42 | 48 |
| 5 | 1 | 1.06 | 1 - H | -42 | 48 |
| 6 | 1 | 3.06 | 3 - H | 42 | 48 |
| 7 | 1 | 3.09 | 3 - V | 42 | 48 |
| 8 | 1 | 1.38 | 1 - H | 42 | 48 |
| 9 | 1 | 3.05 | 3 - H | -21 | 24 |
| 10 | 1 | 3.08 | 3 - V | -21 | 24 |
| 11 | 1 | 1.07 | 1 - H | -21 | 24 |
| 12 | 1 | 3.06 | 3 - H | 21 | 24 |
| 13 | 1 | 3.09 | 3 - V | 21 | 24 |
| 14 | 1 | 1.05 | 1 - H | 21 | 24 |
| 15 | 1 | 3.01 | 3 - H | -63 | 0 |
| 16 | 1 | 3.02 | 3 - V | -63 | 0 |
and this continues for >10 subs (per batch), and 13 sites per sub, and for 3 layers - this df is a composite.
I am attempting to present the data as a facetgrid of heatmaps (adapting code from How to make heatmap square in Seaborn FacetGrid - thanks!)
I can plot a subset of the df quite happily:
spam = df.loc[df.Sub== 6].loc[df.Layer == '3 - H']
spam_p= spam.pivot(index='Row', columns='Col', values='Result')
sns.heatmap(spam_p, cmap="plasma")
BUT - there are some missing results, where the layer measurement errors (returns '10000') so I've replaced these with NaNs:
df.Result.replace(10000, np.nan)
To plot a facetgrid to show all subs/layers, I've written the following code:
def draw_heatmap(*args, **kwargs):
data = kwargs.pop('data')
d = data.pivot(columns=args[0], index=args[1],
values=args[2])
sns.heatmap(d, **kwargs)
fig = sns.FacetGrid(spam, row='Wafer',
col='Feature', height=5, aspect=1)
fig.map_dataframe(draw_heatmap, 'Col', 'Row', 'Result', cbar=False, cmap="plasma", annot=True, annot_kws={"size": 20})
which yields:
It has automatically adjusted axes to not show any positions where there is a NaN.
I have tried masking (see https://github.com/mwaskom/seaborn/issues/375) but just errors out with Inconsistent shape between the condition and the input (got (237, 15) and (7, 7)).
And the result of this is, when not using the cropped down dataset (i.e. df instead of spam, the code generates the following Facetgrid):
Plots featuring missing values at extreme (edge) coordinate positions make the plot shift within the axes - here all apparently to the upper left. Sub #5, layer 3-H should look like:
i.e. blanks in the places where there are NaNs.
Why is the facetgrid shifting the entire plot up and/or left? The alternative is dynamically generating subplots based on a sub/layer-count (ugh!).
Any help very gratefully received.
Full dataset for 2 layers of sub 5:
Sub Result Layer Row Col
0 5 2.987 3 - H 0 72
1 5 0.001 1 - H 0 72
2 5 1.184 3 - H -42 48
3 5 1.023 1 - H -42 48
4 5 3.045 3 - H 42 48
5 5 0.282 1 - H 42 48
6 5 3.083 3 - H -21 24
7 5 0.34 1 - H -21 24
8 5 3.07 3 - H 21 24
9 5 0.41 1 - H 21 24
10 5 NaN 3 - H -63 0
11 5 NaN 1 - H -63 0
12 5 3.086 3 - H 0 0
13 5 0.309 1 - H 0 0
14 5 0.179 3 - H 63 0
15 5 0.455 1 - H 63 0
16 5 3.067 3 - H -21 -24
17 5 0.136 1 - H -21 -24
18 5 1.907 3 - H 21 -24
19 5 1.018 1 - H 21 -24
20 5 NaN 3 - H -42 -48
21 5 NaN 1 - H -42 -48
22 5 NaN 3 - H 42 -48
23 5 NaN 1 - H 42 -48
24 5 NaN 3 - H 0 -72
25 5 NaN 1 - H 0 -72
You may create a list of unique column and row labels and reindex the pivot table with them.
cols = df["Col"].unique()
rows = df["Row"].unique()
pivot = data.pivot(...).reindex_axis(cols, axis=1).reindex_axis(rows, axis=0)
as seen in this answer.
Some complete code:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
r = np.repeat([0,-2,2,-1,1,-3],2)
row = np.concatenate((r, [0]*2, -r[::-1]))
c = np.array([72]*2+[48]*4 + [24]*4 + [0]* 3)
col = np.concatenate((c,-c[::-1]))
df = pd.DataFrame({"Result" : np.random.rand(26),
"Layer" : list("AB")*13,
"Row" : row, "Col" : col})
df1 = df.copy()
df1["Sub"] = [5]*len(df1)
df1.at[10:11,"Result"] = np.NaN
df1.at[20:,"Result"] = np.NaN
df2 = df.copy()
df2["Sub"] = [3]*len(df2)
df2.at[0:2,"Result"] = np.NaN
df = pd.concat([df1,df2])
cols = np.unique(df["Col"].values)
rows = np.unique(df["Row"].values)
def draw_heatmap(*args, **kwargs):
data = kwargs.pop('data')
d = data.pivot(columns=args[0], index=args[1],
values=args[2])
d = d.reindex_axis(cols, axis=1).reindex_axis(rows, axis=0)
print d
sns.heatmap(d, **kwargs)
grid = sns.FacetGrid(df, row='Sub', col='Layer', height=3.5, aspect=1 )
grid.map_dataframe(draw_heatmap, 'Col', 'Row', 'Result', cbar=False,
cmap="plasma", annot=True)
plt.show()