I am trying to program a neural network and was trying to minimize the cost function using scipy.optimize_bfgs() and after attempting to use this I get the error that "TypeError: cost() takes 3 positional arguments but 4 were given". Where are these four arguments coming from and how can I rectify this?
The cost function is defined by:
def cost(param,X,y):
Theta1 = np.reshape(param[0:106950:1],(75,1426))
Theta2 = np.reshape(param[106950:112650:1],(75,76))
Theta3 = np.reshape(param[112650::1],(1,76))
m = len(X)
J = 0
a1 = X
z2 = np.dot(a1,np.transpose(Theta1))
a2 = sigmoid(z2)
a2 = np.concatenate((np.ones((len(a2),1)),a2),axis=1)
z3 = np.dot(a2,Theta2.T)
a3 = sigmoid(z3)
a3 = np.concatenate((np.ones((len(a3),1)),a3),axis=1)
z4 = np.dot(a3,Theta3.T)
a4 = sigmoid(z4)
h = a4
##Calculate cost
J = np.sum(np.sum(np.multiply(-y,np.log(h)) - np.multiply((1-y),np.log(1-h))))/(2*m)
theta1_reg[:,0] = 0
theta2_reg[:,0] = 0
theta3_reg[:,0] = 0
Reg = (lamb/(2*m))*(np.sum(np.sum(np.square(theta1_reg)))+np.sum(np.sum(np.sqaure(theta2_reg)))+np.sum(np.sum(np.square(theta3_reg))))
J = J + Reg
return J
The gradient is then calculated with:
def grad(param,X,y):
Theta1 = np.reshape(param[0:106950:1],(75,1426))
Theta2 = np.reshape(param[106950:112650:1],(75,76))
Theta3 = np.reshape(param[112650::1],(1,76))
Theta1_grad = np.zeros(Theta1.shape)
Theta2_grad = np.zeros(Theta2.shape)
Theta3_grad = np.zeros(Theta3.shape)
m = len(X)
##Forward propogation
a1 = X
z2 = np.dot(a1,np.transpose(Theta1))
a2 = sigmoid(z2)
a2 = np.concatenate((np.ones((len(a2),1)),a2),axis=1)
z3 = np.dot(a2,Theta2.T)
a3 = sigmoid(z3)
a3 = np.concatenate((np.ones((len(a3),1)),a3),axis=1)
z4 = np.dot(a3,Theta3.T)
a4 = sigmoid(z4)
h = a4
##Backward propogation
d4 = a4 - y
d3 = np.multiply(np.dot(d4,Theta3[:,1:]),sigmoidGradient(z3))
d2 = np.multiply(np.dot(d3,Theta2[:,1:]),sigmoidGradient(z2)) ## or sigmoid(z2) .* ( 1 - sigmoid(z2))
D1 = np.dot(d2.T,a1)
D2 = np.dot(d3.T,a2)
D3 = np.dot(d4.T,a3)
##Unregularized gradients
Theta1_grad = (1/m)*D1
Theta2_grad = (1/m)*D2
Theta3_grad = (1/m)*D3
##Regularize gradients
theta1_reg = Theta1
theta2_reg = Theta2
theta3_reg = Theta3
theta1_reg[:,0] = 0
theta2_reg[:,0] = 0
theta3_reg[:,0] = 0
theta1_reg = (lamb/m)*theta1_reg
theta2_reg = (lamb/m)*theta2_reg
theta3_reg = (lamb/m)*theta3_reg
Theta1_grad = Theta1_grad + theta1_reg
Theta2_grad = Theta2_grad + theta2_reg
Theta3_grad = Theta3_grad + theta3_reg
##Concatenate gradients
grad = np.concatenate((Theta1_grad,Theta2_grad,Theta3_grad),axis=None)
return grad
Other functions defined are
def sigmoid(z):
sig = 1 / (1 + np.exp(z))
return sig
def randInitializeWeights(l_in, l_out):
epsilon = 0.12;
W = np.random.rand(l_out, 1+l_in)*2*epsilon - epsilon;
return W
def sigmoidGradient(z):
g = np.multiply(sigmoid(z),(1-sigmoid(z)))
return g
As an example:
import numpy as np
import scipy.optimize
X = np.random.rand(479,1426)
y1 = np.zeros((frames,1))
y2 = np.ones((framesp,1))
y = np.concatenate((y1,y2),axis=0)
init_param = np.random.rand(112726,)
lamb = 0.5
scipy.optimize.fmin_bfgs(cost,fprime=grad,x0=init_param,args=(param,X,y))
Then the error appears.
Thanks for any help
The arguments passed into the cost functions are the parameters, followed by the extra arguments. The parameters are chosen by the minimization function, the extra arguments are passed through.
When calling fmin_bfgs, only pass the extra arguments as args, not the actual parameters to optimize:
scipy.optimize.fmin_bfgs(..., args=(X,y))
Related
I should find optimal value of model by Koshi simulated annealing.
Model:
Index Height Weight
0 1 65.78331 112.9925
1 2 71.51521 136.4873
2 3 69.39874 153.0269
3 4 68.21660 142.3354
4 5 67.78781 144.2971
def mse(w):
height = dataset['Height']
weight = dataset['Weight']
predicts = list(map(lambda x: w[0] + w[1] * x, weight))
mse = mean_squared_error(height, predicts)
return mse
Initial values:
Tmax = 13
Tmin = -9.5
T = Tmax
wop0 = 1
wop1 = 100
Eglob = random.random()
w0_ = random.uniform(0, 100)
w1_ = random.uniform(0, 5)
w0 = w0_
w1 = w1_
E = mse([w0, w1])
Main function:
iteration = 0
while T > Tmin:
i = 1
for i in range(1,6000):
w0 = w0 + T * np.random.standard_cauchy()
w1 = w1 + T * np.random.standard_cauchy()
E = mse([w0, w1])
dE = E - mse([wop0, wop1])
if dE < 0:
wop0 = w0
wop1 = w1
Eglob = E
else:
a = random.random()
#h = 1 / (1 + np.exp(dE / T))
h = np.exp(-dE / T)
if a < h:
wop0 = w0
wop1 = w1
Eglob = E
T= Tmax / math.log(1+i);
iteration += 1
break
Result:
iteration: 5999
wop0: -706.4779870159789
wop1: 3.716864959467018
mse: 93084.16405699923
But if I use basinhopping function:
from scipy.optimize import basinhopping
ret = basinhopping(mse, [0, 1], niter = 50)
print("global min: w = [%.4f, %.4f], mse(w0, w1) = %.4f" % (ret.x[0], ret.x[1], ret.fun))
Result:
global min: w = [57.5718, 0.0820], mse(w0, w1) = 2.7018
What I'm doing wrong?
Thanks
I'm trying solve a system of coupled ordinary differential equations, formed by 7 ODEs in python, using solve_ivp or either implement a fuction for RK4.
The general physical problem is as follows:
Cooling of photovoltaic modules with heat exchanger coupling to the module. In this way, the module generates electrical energy and thermal energy.
I have a polynomial function, G(t) = 9.8385e-13*t^4 - 1.82918e-8*t^3 + 5.991355e-05*t^2 + 2.312059e-1*t + 25, which works for an approximate range of 0 < t < 9000, which represents solar radiation as a function of time of day.
This function was obtained through a "polyfit" applied to real data (file upload here. Its a CSV - https://files.fm/u/9y4evkf6c).
This function is used as input for the ODEs, which represent an electrical and a thermal system as a function of time.
To solve the electrical model, I created some scripts that solve the diode equation for the photovoltaic module in question, and the output of this script is the photovoltaic power (called in the PPV thermal model) generated as a function of the module temperature and radiation. This script works great and solves part of my problem.
My difficulty lies in solving the equations of the thermal model, which receives as input parameters G(t) and PPV.
The equations result in this system:
System of EDOS
Labels:
Tvidro = Tglass = T1
Tcel = Tpv = T2
Ttedlar = T3
Tabs = Tabsorber = T4
Ttubo = Ttube = T5
Tfsai = Tfluid_out = T6
Tiso = Tinsulation = T7
Using method/function for RK4, the complete code is like this (you can go direct to part "#DEFINE MODEL EQUATIONS - ODES)" :
import numpy as np
import matplotlib.pyplot as plt
import csv
from numpy.polynomial.polynomial import polyval
############################################################
with open('directory of data called teste_dados_radiacao',"r") as i:
rawdata = list(csv.reader(i, delimiter = ";"))
exampledata = np.array(rawdata[1:], dtype=float)
xdata = exampledata[:,0]
ydata = exampledata[:,1]
curve = np.array(np.polyfit(xdata, ydata, 4))
rev_curve = np.array(list(reversed(curve)), dtype=float)
print(rev_curve)
#G_ajustado = polyval(xdata, rev_curve)
""" plt.plot(xdata, ydata, label = "dados experimentais")
plt.plot(xdata, model, label = "model")
plt.legend()
plt.show() """
#############################################################
#CONSTANTS
Tamb = 25 #°C #ambient temperatura
SIGMA = 5.67e-8 #W/m2K4
E_VIDRO = 0.90 #between 0.85 e 0.83 #nasrin2017 0.04
VENTO = 2 #m/s
T_GROUND = Tamb + 2 #°C
T_CEU = 0.00552*Tamb**1.5
Vf = 1 #m/s
Do = 10e-3 #m
Di = 8e-3 #m
NS = 6*10 #number of cells
T_F_ENT = 20 #°C
#INPUTS
Tcel = 25
Tv = 25
Tiso = 30
Av = 1.638*0.982
ALPHA_VIDRO = 0.9
L_VIDRO = 3e-3 #m
RHO_VIDRO = 2500 #kg/m3
M_VIDRO = Av*L_VIDRO*RHO_VIDRO #kg
CP_VIDRO = 500 #j/kgK
K_VIDRO = 2 #W/mK
TAU_VIDRO = 0.95
Pac = 0.85
H_CELL = 0.156 #m
A_CELL = NS*H_CELL**2
ALPHA_CELL = 0.9
L_CEL = 3e-3
RHO_CEL = 2330
M_CEL = A_CELL*L_CEL*RHO_CEL #kg - estimated
CP_CEL = 900 #J/kgK
K_CEL = 140 #W/mK
BETA_T = 0.43/100 # %/°C
N_ELE_REF = 0.1368 #13.68%
N_ELE = N_ELE_REF*(1 - BETA_T*(Tcel - 25)) #273 + 25 - tcel kelvin
A_tedlar = Av
L_TEDLAR = 0.33e-3
RHO_TEDLAR = 1500
M_TEDLAR = Av*L_TEDLAR*RHO_TEDLAR
CP_TEDLAR = 1090 #1090 OU 2090
K_TEDLAR = 0.35
ALPHA_TEDLAR = 0.34 #doc nasa ou zero
#parameters
RHO_ABS = 2700
A_ABS = Av
CP_ABS =900
L_ABS = 3e-3 #mm
M_ABS = A_ABS*RHO_ABS*L_ABS
K_ABS = 300
A_ABS_TUBO = 10*1.60*0.01+0.154*9*0.01
A_ABS_ISO = Av-A_ABS_TUBO
RHO_TUBO = 2700
CP_TUBO = 900
N_TUBOS = 10
L_TUBO = N_TUBOS*1.6
M_TUBO = RHO_TUBO*L_TUBO*(3.1415/4)*(Do**2 - Di**2)
K_TUBO = 300
A_TUBO_F = 0.387 #pi*Di*(L*10 VOLTAS + R(156MM)*9)
A_TUBO_ISO = 0.484 #pi*Do*(L*10 VOLTAS + R(156MM)*9)
A_ISO = Av
RHO_ISO = 50
L_ISO = 40e-3
M_ISO = A_ISO*RHO_ISO*L_ISO
CP_ISO = 670
K_ISO = 0.0375
E_ISO = 0.75 #ESTIMATED
RHO_FLUIDO = 997
M_FLUIDO = L_TUBO*(3.1415/4)*Di**2*RHO_FLUIDO
CP_FLUIDO = 4186 #j/kgK
MI_FLUIDO = 0.890e-3 #Pa*s ou N/m2 * s
K_FLUIDO = 0.607
M_PONTO = 0.05 #kg/s ou 0.5 kg/m3
#DIMENSIONLESS
Pr = CP_FLUIDO*MI_FLUIDO/K_FLUIDO #water 25°C
Re = RHO_FLUIDO*Vf*Di/MI_FLUIDO
if (Re<=2300):
Nuf = 4.364
else:
Nuf = 0.023*(Re**0.8)*(Pr*0.4)*Re
#COEFFICIENTS
h_rad_vidro_ceu = SIGMA*E_VIDRO*(Tv**2 - T_CEU)*(Tv + T_CEU)
h_conv_vidro_amb = 2.8 + 3*VENTO
h_conv_tubo_fluido = 0.5*30#Nuf
h_cond_vidro_cel = 1/((L_VIDRO/K_VIDRO) + (L_CEL/K_CEL))
h_cond_cel_tedlar = 1/((L_TEDLAR/K_TEDLAR) + (L_CEL/K_CEL))
h_cond_tedlar_abs = 1/((L_TEDLAR/K_TEDLAR) + (L_ABS/K_ABS))
h_cond_abs_tubo = 1/((L_TUBO/K_TUBO) + (L_ABS/K_ABS))
h_cond_abs_iso = 1/((L_ISO/K_ISO) + (L_ABS/K_ABS))
h_cond_tubo_iso = 1/((L_ISO/K_ISO) + (L_TUBO/K_TUBO))
h_conv_iso_amb = h_conv_vidro_amb
h_rad_iso_ground = SIGMA*E_ISO*(Tiso**2 - T_GROUND**2)*(Tiso + T_GROUND)
#GROUPS
A1 = (1/(M_VIDRO*CP_VIDRO))*(ALPHA_VIDRO*Av)#*G(t)) G_ajustado = polyval(dt,rev_curve)
A2 = (1/(M_VIDRO*CP_VIDRO))*(Av*(h_rad_vidro_ceu + h_conv_vidro_amb + h_cond_vidro_cel))
A3 = (1/(M_VIDRO*CP_VIDRO))*Av*h_cond_vidro_cel
A4 = (1/(M_VIDRO*CP_VIDRO))*Av*(h_conv_vidro_amb + h_rad_vidro_ceu)
A5 = (1/(M_CEL*CP_CEL))*(Pac*A_CELL*TAU_VIDRO*ALPHA_CELL) #*G(t)
A6 = -1*A5*N_ELE #*G(t)
A7 = (1/(M_CEL*CP_CEL))*A_CELL*h_cond_vidro_cel
A8 = (1/(M_CEL*CP_CEL))*A_CELL*(h_cond_vidro_cel + h_cond_cel_tedlar)
A9 = (1/(M_CEL*CP_CEL))*A_CELL*h_cond_cel_tedlar
A10 = (1/(M_TEDLAR*CP_TEDLAR))*A_tedlar*(1 - Pac)*TAU_VIDRO*ALPHA_TEDLAR#G(t)
A11 = (1/(M_TEDLAR*CP_TEDLAR))*A_tedlar*(h_cond_cel_tedlar + h_cond_tedlar_abs)
A12 = (1/(M_TEDLAR*CP_TEDLAR))*A_tedlar*h_cond_cel_tedlar
A13 = (1/(M_TEDLAR*CP_TEDLAR))*A_tedlar*h_cond_tedlar_abs
A14 = (1/(M_ABS*CP_ABS))*A_ABS*h_cond_tedlar_abs
A15 = (1/(M_ABS*CP_ABS))*(A_ABS*h_cond_tedlar_abs + A_ABS_TUBO*h_cond_abs_tubo + A_ABS_ISO*h_cond_abs_iso)
A16 = (1/(M_ABS*CP_ABS))*A_ABS_TUBO*h_cond_abs_tubo
A17 = (1/(M_ABS*CP_ABS))*A_ABS_ISO*h_cond_abs_iso
A18 = (1/(M_TUBO*CP_TUBO))*A_ABS_TUBO*h_cond_abs_tubo
A19 = (1/(M_TUBO*CP_TUBO))*(A_ABS_TUBO*h_cond_abs_tubo + A_TUBO_F*h_conv_tubo_fluido + A_TUBO_ISO*h_cond_tubo_iso)
A20 = (1/(M_TUBO*CP_TUBO))*A_TUBO_F*h_conv_tubo_fluido*0.5
A21 = (1/(M_TUBO*CP_TUBO))*A_TUBO_ISO*h_cond_tubo_iso
A22 = (1/(M_FLUIDO*CP_FLUIDO))*A_TUBO_F*h_conv_tubo_fluido
A23 = (1/(M_FLUIDO*CP_FLUIDO))*(A_TUBO_F*h_conv_tubo_fluido*0.5 + M_PONTO*CP_FLUIDO)
A24 = (1/(M_FLUIDO*CP_FLUIDO))*(T_F_ENT*(M_PONTO*CP_FLUIDO - h_conv_tubo_fluido*A_TUBO_F*0.5))
A25 = (1/(M_ISO*CP_ISO))*A_ABS_ISO*h_cond_abs_iso
A26 = (1/(M_ISO*CP_ISO))*(A_ABS_ISO*h_cond_abs_iso + A_TUBO_ISO*h_cond_tubo_iso + A_ISO*h_conv_iso_amb + A_ISO*h_rad_iso_ground)
A27 = (1/(M_ISO*CP_ISO))*A_TUBO_ISO*h_cond_tubo_iso
A28 = (1/(M_ISO*CP_ISO))*A_ISO*(h_conv_iso_amb*Tamb + h_rad_iso_ground*T_GROUND)
#DEFINE MODEL EQUATIONS - ODES - (GLASS, PV CELL, TEDLAR, ABSORBER, TUBE, FLUID, INSULATION) # dT1dt = A1*G_ajustado - A2*x[0] + A3*x[1] + A4 # dT2dt = A5*G_ajustado - A6*G_ajustado + A7*x[0] - A8*x[1] + A9*x[2]# dT3dt = A10*G_ajustado - A11*x[2] + A12*x[1] +A13*x[3]
def SysEdo(x, k):#tv-x[0] tcel-x[1] ttedlar-x[2] tabs-x[3] ttubo-x[4] tiso-x[5] tfs-x[6]
dT1dt = A1*polyval(k,rev_curve) - A2*x[0] + A3*x[1] + A4
dT2dt = A5*polyval(k,rev_curve) - A6*polyval(k,rev_curve) + A7*x[0] - A8*x[1] + A9*x[2]
dT3dt = A10*polyval(k,rev_curve) - A11*x[2] + A12*x[1] +A13*x[3]
dT4dt = A14*x[2] - A15*x[3] + A16*x[4] + A17*x[5]
dT5dt = A18*x[3] - A19*x[4] + A20*x[6] + A20*T_F_ENT + A21*x[5]
dT6dt = A22*x[4] - A23*x[6] + A24
dT7dt = A25*x[3] - A26*x[5] + A27*x[4] + A28
Tdot = np.array([dT1dt, dT2dt, dT3dt, dT4dt, dT5dt, dT6dt, dT7dt])
return Tdot
#RungeKutta4
def RK4(f, x0, t0, tf, dt):
t = np.arange(t0, tf, dt) #time vector
nt = t.size #lenght of time vector
nx = x0.size #length of state variables?
x = np.zeros((nx,nt)) #initialize 2D vector
x[:,0] = x0 #initial conditions
#RK4 constants
for k in range(nt-1):
k1 = dt*f(t[k], x[:,k],k)
k2 = dt*f(t[k] + dt/2, x[:,k] + k1/2, k)
k3 = dt*f(t[k] + dt/2, x[:,k] + k2/2, k)
k4 = dt*f(t[k] + dt, x[:,k] + k3, k)
dx = (k1 + 2*k2 + 2*k2 + k4)/6
x[:,k+1] = x[:,k] + dx
return x,t
#Define problems
f = lambda t, x, k : SysEdo(x, k)
#initial state - t0 is initial time - tf is final time - dt is time step
x0 = np.array([30, 30, 30, 30, 30, 30, 30])
t0 = 0
tf = 1000
dt = 1
#EDO SOLVE
x, t = RK4(f, x0, t0, tf, dt)
plt.figure()
plt.plot(t, x[0], '-', label='Tvidro')
"""
plt.plot(t, x[1], '-', label='Tpv')
plt.plot(t, x[2], '-', label='Ttedlar')
plt.plot(t, x[3], '-', label='Tabs')
plt.plot(t, x[4], '-', label='Tiso')
plt.plot(t, x[5], '-', label='Ttubo')
plt.plot(t, x[6], '-', label='Tfsai')"""
plt.title('Gráfico')
plt.legend(['Tvidro', 'Tpv', 'Ttedlar', 'Tabs', 'Tiso', 'Ttubo', 'Tfsai'], shadow=False)
plt.xlabel('t (s)')
plt.ylabel('Temperatura (°C)')
plt.xlim(0,20)
plt.ylim(0,150)
plt.grid('on')
plt.show()
Thank you in advance, I am also open to completely start the implementation from scratch if there is a better way to do this with python or matlab.
You can just replace
x, t = RK4(f, x0, t0, tf, dt)
with
t = arange(t0,tf+0.5*dt,dt)
res = solve_ivp(f,(t0,tf),x0,t_eval=t,args=(k,), method="DOP853", atol=1e-6,rtol=1e-8)
x = res.y[0]
Adapt the last 3 parameters to your liking.
This is maybe the most basic operation but still i had some issues, nothing changes after subs(), i understand the concept of sympy but what i am missing? I am trying to output a float value for epsilon.
a = 30 # MPa
k1 = 0.82
b = 365
bw = 300 # mm
hw = 600 # mm
p = 40 # mm
a1 = 1071 # mm^2
a2 = 1071 # mm^2
d = hw - p #
E = 2e5
c = sym.Symbol('c')
fcd = a/1.5
Fc = 0.85*fcd*bw*k1*c
epsilon = (0.003 * (c-p))/c
Fsu = epsilon*E*a2
Fs = a1 * b
expr = (Fc + Fsu - Fs)
c = sym.solve([expr],(c))
c = c[1]
z = epsilon.subs(c,c)
I tried to construct a neural network( with one hidden layer) to solve the XOR problem.
but it gives me approx 0.5 to every input I give. I guess there is a problem in Back Propagation.
I have used the Sigmoid Function as the activation function.
I have not used regularization.
I have tried multiple learning rates and tried multiple iteration numbers.
but the cost is not decreasing as it should be.
The code is as follows:-
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import matplotlib.pyplot as plt
# In[2]:
data = [[0,0], [0,1], [1,0], [1,1]]
X = np.array(data)
X = X.T
Y = [[1,0,0,1]]
Y = np.array(Y)
print(np.shape(X))
print(np.shape(Y))
# In[3]:
def set_nodes():
print("Enter number of nodes of Input Layer: ")
x_n = int(input())
print("Enter number of nodes of Hidden Layer: ")
h_n = int(input())
print("Enter number of nodes of Output Layer: ")
o_n = int(input())
nodes = {"x_n":x_n, "h_n":h_n, "o_n":o_n}
return(nodes)
# In[4]:
nodes = set_nodes()
# In[35]:
def set_param():
x_n = nodes["x_n"]
h_n = nodes["h_n"]
o_n = nodes["o_n"]
W1 = np.random.randn(h_n, x_n)*0.01
b1 = np.zeros((h_n,1))
W2 = np.random.randn(o_n, h_n)*0.01
b2 = np.zeros((o_n,1))
parameters = {"W1":W1, "b1":b1, "W2":W2, "b2":b2}
return parameters
# In[36]:
parameters = set_param()
np.shape(parameters["b2"])
# In[37]:
def sigmoid(z):
a_sig = 1/(1+np.exp(-z))
return a_sig
# In[38]:
def hypotheses(X_para, parameters):
z1 = np.dot(parameters["W1"], X_para)+parameters["b1"]
a1 = sigmoid(z1)
#print("A1 shape", np.shape(a1))
z2 = np.dot(parameters["W2"], a1) + parameters["b2"]
a2 = sigmoid(z2)
cache = {"Z1":z1, "A1":a1, "Z2":z2, "A2":a2}
return a2, cache
# In[39]:
A2, cache = hypotheses(X,parameters)
print(np.shape(A2))
print(A2)
print(np.shape(cache["A2"]))
print(1-Y[0])
# In[40]:
m = Y.shape[1]
def find_cost(A2, Y, cache):
Loss = (np.multiply(Y, np.log(A2)))+(np.multiply((1-Y), np.log(1-A2)))
cost = -1*(1/m)*np.sum(Loss)
cost = float(np.squeeze(cost))
return(cost)
# In[41]:
cost = find_cost(cache["A2"], Y, cache)
print(cost)
# In[42]:
def back_prop(cache, parameters):
dZ2 = cache["A2"]-Y
dW2 = (1/m)*(np.dot(dZ2, cache['A2'].T))
db2 = (1/m)*np.sum(dZ2, axis = 1, keepdims = True)
dZ1 = np.dot(parameters["W2"].T, dZ2) *(1 - np.power(cache["A1"],2))
dW1 = (1/m)*np.dot(dZ1, X.T)
db1 = (1/m)*np.sum(dZ1, axis=1, keepdims = True)
grads = {"dZ2":dZ2, "dW2":dW2, "db2":db2, "dZ1":dZ1, "dW1":dW1, "db1":db1}
return grads
# In[43]:
grads = back_prop(cache, parameters)
# print(grads["dZ1"])
print(np.shape(parameters["W2"]))
print(np.shape(np.power(cache["A1"],2)))
print(np.shape(grads["dZ1"]))
print(np.shape(grads["dW1"]))
print(grads["dW1"])
# In[44]:
def update_parameters(grads, parameters, learning_rate = 0.012):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
W2 = W2-learning_rate*grads["dW2"]
b2 = b2-learning_rate*grads["db2"]
W1 = W1-learning_rate*grads["dW1"]
b1 = b1-learning_rate*grads["db1"]
parameters = {"W2":W2, "b2": b2, "W1":W1, "b1":b1}
return(parameters)
# In[45]:
parameters = update_parameters(grads, parameters)
# In[46]:
def nn_final(X, Y, parameters, iterations = 1000):
X_temp = X
costl = []
for i in range(iterations):
a2, cache = hypotheses(X_temp, parameters)
cost = find_cost(a2, Y, cache)
costl.append(cost)
grads = back_prop(cache, parameters)
parameters = update_parameters(grads, parameters)
return costl, parameters
# In[47]:
costl, parameters = nn_final(X,Y,parameters)
plt.plot(costl)
plt.show()
# In[48]:
print(costl[len(costl)-2]-costl[len(costl)-1])
# In[49]:
print("Enter First Input: ")
inp1 = int(input())
print("Enter Second Input: ")
inp2 = int(input())
ls = [inp1, inp2]
print(ls)
inp = np.array(ls)
inp = inp.T
inp = np.array(inp)
inp = np.reshape(inp, (2,1))
print("inp",np.shape(inp))
a2,cache = hypotheses(inp, parameters)
print("A2=", a2)
What am I doing wrong below? I have installed Anaconda on my Mac and Numba along with it. I am trying to run Numba on my Python code, following the instructions given in the section Python with Numba here: https://www.continuum.io/blog/developer/accelerating-python-libraries-numba-part-1
I need to run this code overnight by changing zzzz from 5 to 40. I am just using zzzz = 5 now as a test case. Here is my code:
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from numba import double
from numba.decorators import jit, autojit
#jit
def Kcrit():
# The data of the plot will be added in these lists
x_data_plot=[]
y_data_plot=[]
zzzz = 5
for N in range(2,zzzz,2):
#Constants and parameters
epsilon = 0.01
if N in range(2,11,2):
K00 = np.logspace(0,3,100,10)
elif N in range(12,21,2):
K00 = np.logspace(3,3.75,100,10)
elif N in range(22,31,2):
K00 = np.logspace(3.75,4.15,100,10)
else:
K00 = np.logspace(4.15,4.5,100,10)
len1 = len(K00)
y0 = [0]*(3*N/2+3)
Kplot = np.zeros((len1,1))
Pplot = np.zeros((len1,1))
S = [np.zeros((len1,1)) for kkkk in range(N/2+1)]
KS = [np.zeros((len1,1)) for kkkk in range(N/2)]
PS = [np.zeros((len1,1)) for kkkk in range(N/2)]
Splot = [np.zeros((len1,1)) for kkkk in range(N/2+1)]
KSplot = [np.zeros((len1,1)) for kkkk in range(N/2)]
PSplot = [np.zeros((len1,1)) for kkkk in range(N/2)]
for series in range(0,len1):
K0 = K00[series]
Q = 10
r1 = 0.0001
r2 = 0.001
a = 0.001
d = 0.001
k = 0.999
S10 = 1e5
P0 = 1
tf = 1e10
time = np.linspace(0,tf,len1)
#Defining dy/dt's
def f(y,t):
for alpha in range(0,(N/2+1)):
S[alpha] = y[alpha]
for beta in range((N/2)+1,N+1):
KS[beta-N/2-1] = y[beta]
for gamma in range(N+1,3*N/2+1):
PS[gamma-N-1] = y[gamma]
K = y[3*N/2+1]
P = y[3*N/2+2]
# The model equations
ydot = np.zeros((3*N/2+3,1))
B = range((N/2)+1,N+1)
G = range(N+1,3*N/2+1)
runsumPS = 0
runsum1 = 0
runsumKS = 0
runsum2 = 0
for m in range(0,N/2):
runsumPS = runsumPS + PS[m]
runsum1 = runsum1 + S[m+1]
runsumKS = runsumKS + KS[m]
runsum2 = runsum2 + S[m]
ydot[B[m]] = a*K*S[m]-(d+k+r1)*KS[m]
for i in range(0,N/2-1):
ydot[G[i]] = a*P*S[i+1]-(d+k+r1)*PS[i]
for p in range(1,N/2):
ydot[p] = -S[p]*(r1+a*K+a*P)+k*KS[p-1]+d*(PS[p-1]+KS[p])
ydot[0] = Q-(r1+a*K)*S[0]+d*KS[0]+k*runsumPS
ydot[N/2] = k*KS[N/2-1]-(r2+a*P)*S[N/2]+d*PS[N/2-1]
ydot[G[N/2-1]] = a*P*S[N/2]-(d+k+r2)*PS[N/2-1]
ydot[3*N/2+1] = (d+k+r1)*runsumKS-a*K*runsum2
ydot[3*N/2+2] = (d+k+r1)*(runsumPS-PS[N/2-1])- \
a*P*runsum1+(d+k+r2)*PS[N/2-1]
ydot_new = []
for j in range(0,3*N/2+3):
ydot_new.extend(ydot[j])
return ydot_new
# Initial conditions
y0[0] = S10
for i in range(1,3*N/2+1):
y0[i] = 0
y0[3*N/2+1] = K0
y0[3*N/2+2] = P0
# Solve the DEs
soln = odeint(f,y0,time, mxstep = 5000)
for alpha in range(0,(N/2+1)):
S[alpha] = soln[:,alpha]
for beta in range((N/2)+1,N+1):
KS[beta-N/2-1] = soln[:,beta]
for gamma in range(N+1,3*N/2+1):
PS[gamma-N-1] = soln[:,gamma]
for alpha in range(0,(N/2+1)):
Splot[alpha][series] = soln[len1-1,alpha]
for beta in range((N/2)+1,N+1):
KSplot[beta-N/2-1][series] = soln[len1-1,beta]
for gamma in range(N+1,3*N/2+1):
PSplot[gamma-N-1][series] = soln[len1-1,gamma]
u1 = 0
u2 = 0
u3 = 0
for alpha in range(0,(N/2+1)):
u1 = u1 + Splot[alpha]
for beta in range((N/2)+1,N+1):
u2 = u2 + KSplot[beta-N/2-1]
for gamma in range(N+1,3*N/2+1):
u3 = u3 + PSplot[gamma-N-1]
K = soln[:,3*N/2+1]
P = soln[:,3*N/2+2]
Kplot[series] = soln[len1-1,3*N/2+1]
Pplot[series] = soln[len1-1,3*N/2+2]
utot = u1+u2+u3
#Plot
Kcrit = abs((Q/r2)*(1+epsilon)-utot)
v,i = Kcrit.min(0),Kcrit.argmin(0)
# Save the new points for x and y
x_data_plot.append(N)
y_data_plot.append(K00[i])
# Make the plot of all the points together
plt.plot(x_data_plot,y_data_plot)
plt.xlabel('N', fontsize = 20)
plt.ylabel('$K_{crit}$', fontsize = 20)
plt.show()
This is what I typed in the terminal:
from numba import autojit
numba_k = autojit()(Kcrit)
This is my error message:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'Kcrit' is not defined
Note that I am not asking whether Numba will actually speed up my code (that is an entirely different issue). I am just asking how to run it!
Help appreciated.