I have a time-series plot of data in which I want to examine a section in more detail. Kind of like this, but with the second plot being below the first, and instead of the box bounding the section of data, bounding the x-axis labels instead.
Is there a simple way to go about this or am I going to have to write this from scratch?
EDIT: This past question seems to be after the same thing, but was never solved.
Related
I'm trying to analyze a set of costs using python.
The columns in the data frame are,
'TotalCharges', 'TotalPayments', 'TotalDirectVariableCost', 'TotalDirectFixedCost', 'TotalIndirectVariableCost', 'TotalIndirectFixedCost.
When I tried to plot them using the whisker plots, this is how they could display
I need to properly analyze these data and understand their behavior.
The following are my questions.
Is there any way that I can use wisker plots more clearly?
I believe since these are costs, we cannot ignore them as outliars. So keeping the data as it is what else I can use to represent data more clearly?
Thanks
There are a couple of things you could do:
larger print area
rotate the axis
plot one axis log scale
That said, I think you should examine once again your understanding of what a box and whisker plot is for.
Additionally, you might consider posting this on the Math or Cross Validated site as this doesn't have much to do with code.
I’ve been working on bokeh plots and I’m trying to plot a line graph taking values from a database. But the plot kind of traces back to the initial point and I don’t want that. I want a plot which starts at one point and stops at a certain point (and circle back). I’ve tried plotting it on other tools like SQLite browser and Excel and the plot seems ok which means I must be doing something wrong with the bokeh stuff and that the data points itself are not in error.
I’ve attached the images for reference and the line of code doing the line plot. Is there something I’ve missed?
>>> image = fig.line(“x”, “y”, color=color, source=something)
(Assume x and y are integer values and I’ve specified x and y ranges as DataRange1d(bounds=(0,None)))
Bokeh does not "auto-close" lines. You can see this is the case by looking at any number of examples in the docs and repository, but here is one in particular:
http://docs.bokeh.org/en/latest/docs/gallery/stocks.html
Bokeh's .line method will only "close up" if that is what is in the data (i.e., if the last point in the data is a repeat of the first point). I suggest you actually inspect the data values in source.data and I believe you will find this to be the case. Then the question is why is that the case and how to prevent it from doing that, but that is not really a Bokeh question.
I've done some searching around, and cannot easily find a solution this problem. Effectively, I want to have multiple tick locators on a single axis such that I can do something like in the plot below.
Note how the x-axis starts off logarithmic, but becomes linear once 500 is reached. I figured one possible solution was to simply divide the data into two portions, plot it on two graphs, each with their own locators, and then put the graphs right next to each other so they're seamless, but that seems very unpythonic. Anyone have a better solution?
I suspect the following URL might be of use:
http://matplotlib.org/examples/axes_grid/parasite_simple2.html (click on the plot to have the python code)
If you need some specialized graphs, it's always a good idea to have a look at the Matplotlib gallery:
http://matplotlib.org/gallery.html
EDIT: It is possible to make custom ticks on the X-axis:
http://matplotlib.org/examples/ticks_and_spines/ticklabels_demo_rotation.html
You may find an implementation of this scale by Jesús Torrado here.
mayavi
I have some data which is on a structured grid in the X and Y directions and is unstructured in the Z direction. This is in the form of a list of data points, e.g [[x,y,z], [x2,y2,z2], ...]. There are 2 points corresponding to most x,y coordinates, and the data is double valued in the z dimension. I would like to plot this shape as an enclosed surface, and if possible remove one of the walls.
I have tried the advice here: http://docs.enthought.com/mayavi/mayavi/auto/example_surface_from_irregular_data.html#example-surface-from-irregular-data
When I try this only the bottom half of the plot is covered by the surface. I also get this message which I don' understand: No handlers could be found for logger "mayavi.core.common". I would love to know why this is.
I have tried plotting the top and bottom surfaces separately, but this looks a bit ugly. Here is what that looks like:
matplotlib
I have also tried to grid my data and follow the advice using the matplotlib demos. I can't post the link to this because I don't have the reputation, but if you google matplotlib plot3D demos it is in the first result.
I can't get this to produce anything reasonable. I think this is because I don't really understand how the sphere example on that web page could be adapted to work with data rather than a function.
Question
how can I adapt the code I have from the link I provided to produce a plot of an enclosed surface?
or, how can I use matplotlib to make the enclosed surface?
Or is there some other program/function I ought to be using for this kind of problem?
I am plotting some scalar data as a contour plot with matplotlib.contourf. On top of it, I am plotting some vector data with matplotlib.arrow. The basic plot has come along OK, but now I need to put a box on the plot with a default-size arrow plus the data value to which it corresponds, so the viewer will know what kind of scale he is looking at. For instance, I need a box with a horizontal arrow of some length and, below that, some text like "10 cm/sec".
First, if anyone can give me a simple approach to this, I would be grateful.
Second, the approach I have tried is to do the contour plot, then plot the arrows, then add a rectangle to the plot like so:
rect=pl.Rectangle((300,70),15,15,fc='white')
pl.gca().add_patch(rect)
and then, finally, put my scale arrow and text on top of this rectangle.
This isn't working because the rectangle patch covers up the contour, but it doesn't cover up the arrows in the plot. Is there a way to move the patch completely "to the front" of everything else?
Got it. Using pylab.quiver and pylab.quiverkey functions. quiver produces a nice vector field with just a few lines of code, and quiverkey makes it easy to produce a scaling vector with text. And, for some reason, the arrows plotted with quiver are indeed covered by my rectangle, so it is easy to make the scaling arrow very visible. There are still some mysteries in all of this for me. If anyone wants to try to clear them up, would be much obliged. But I have a way now to do what I need in this instance.