Implementing U-net for multi-class road segmentation - python

I am trying to train a U-net for image segmentation on satellite data and therewith extract a road network with nine different road types. Thus far I have tried many different U-net codes that are freely available on the web, however I was not able to tailor them to my specific case. I'm sincerely hoping you are able to help me.
The satellite image and associated labels can be downloaded via the following link:
Satellite image and associated labels
Additionally, I've written the following code to prep the data for the Unet
import skimage
from skimage.io import imread, imshow, imread_collection, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from sklearn.metrics import jaccard_similarity_score
from shapely.geometry import MultiPolygon, Polygon
import shapely.wkt
import shapely.affinity
from collections import defaultdict
#Importing image and labels
labels = skimage.io.imread("ede_subset_293_wegen.tif")
images = skimage.io.imread("ede_subset_293_20180502_planetscope.tif")[...,:-1]
#Scaling image
img_scaled = images / images.max()
#Make non-roads 0
labels[labels == 15] = 0
#Resizing image and mask and labels
img_scaled_resized = img_scaled[:6400, :6400,:4 ]
print(img_scaled_resized.shape)
labels_resized = labels[:6400, :6400]
print(labels_resized.shape)
#splitting images
split_img = [
np.split(array, 25, axis=0)
for array in np.split(img_scaled_resized, 25, axis=1)
]
split_img[-1][-1].shape
#splitting labels
split_labels = [
np.split(array, 25, axis=0)
for array in np.split(labels_resized, 25, axis=1)
]
#Convert to np.array
split_labels = np.array(split_labels)
split_img = np.array(split_img)
train_images = np.reshape(split_img, (625, 256, 256, 4))
train_labels = np.reshape(split_labels, (625, 256, 256))
x_trn = train_images[:400,:,:,:]
x_val = train_images[400:500,:,:,:]
x_test = train_images[500:625,:,:,:]
y_trn = train_labels[:400,:,:]
y_val = train_labels[400:500,:,:]
y_test = train_labels[500:625,:,:]
plt.imshow(train_images[88,:,:,:])
skimage.io.imshow(train_labels[88,:,:])
Furthermore, I found the following U-net on kaggle, which I think should have to work for this particular case:
def get_unet():
inputs = Input((8, ISZ, ISZ))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)
up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)
up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)
up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)
up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)
conv10 = Convolution2D(N_Cls, 1, 1, activation='sigmoid')(conv9)
model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=[jaccard_coef, jaccard_coef_int, 'accuracy'])
return model
I know it is a big question, but I'm getting pretty desperate. Any help is greatly appreciated!

i found that Conv2DTranspose works better than UpSampling2D and here is a quick implementation using the same
def conv_block(tensor, nfilters, size=3, padding='same', initializer="he_normal"):
x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(tensor)
x = BatchNormalization()(x)
x = Activation("relu")(x)
x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
return x
def deconv_block(tensor, residual, nfilters, size=3, padding='same', strides=(2, 2)):
y = Conv2DTranspose(nfilters, kernel_size=(size, size), strides=strides, padding=padding)(tensor)
y = concatenate([y, residual], axis=3)
y = conv_block(y, nfilters)
return y
def Unet(img_height, img_width, nclasses=3, filters=64):
# down
input_layer = Input(shape=(img_height, img_width, 3), name='image_input')
conv1 = conv_block(input_layer, nfilters=filters)
conv1_out = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = conv_block(conv1_out, nfilters=filters*2)
conv2_out = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = conv_block(conv2_out, nfilters=filters*4)
conv3_out = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = conv_block(conv3_out, nfilters=filters*8)
conv4_out = MaxPooling2D(pool_size=(2, 2))(conv4)
conv4_out = Dropout(0.5)(conv4_out)
conv5 = conv_block(conv4_out, nfilters=filters*16)
conv5 = Dropout(0.5)(conv5)
# up
deconv6 = deconv_block(conv5, residual=conv4, nfilters=filters*8)
deconv6 = Dropout(0.5)(deconv6)
deconv7 = deconv_block(deconv6, residual=conv3, nfilters=filters*4)
deconv7 = Dropout(0.5)(deconv7)
deconv8 = deconv_block(deconv7, residual=conv2, nfilters=filters*2)
deconv9 = deconv_block(deconv8, residual=conv1, nfilters=filters)
# output
output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
output_layer = BatchNormalization()(output_layer)
output_layer = Activation('softmax')(output_layer)
model = Model(inputs=input_layer, outputs=output_layer, name='Unet')
return model
Now for the data generators, you can use the builtin ImageDataGenerator class
here is the code from Keras docs
# we create two instances with the same arguments
data_gen_args = dict(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1
image_datagen.fit(images, augment=True, seed=seed)
mask_datagen.fit(masks, augment=True, seed=seed)
image_generator = image_datagen.flow_from_directory(
'data/images',
class_mode=None,
seed=seed)
mask_generator = mask_datagen.flow_from_directory(
'data/masks',
class_mode=None,
seed=seed)
# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50)
Another way to go is implement your own generator by extending the Sequence class from Keras
class seg_gen(Sequence):
def __init__(self, x_set, y_set, batch_size, image_dir, mask_dir):
self.x, self.y = x_set, y_set
self.batch_size = batch_size
self.samples = len(self.x)
self.image_dir = image_dir
self.mask_dir = mask_dir
def __len__(self):
return int(np.ceil(len(self.x) / float(self.batch_size)))
def __getitem__(self, idx):
idx = np.random.randint(0, self.samples, batch_size)
batch_x, batch_y = [], []
drawn = 0
for i in idx:
_image = image.img_to_array(image.load_img(f'{self.image_dir}/{self.x[i]}', target_size=(img_height, img_width)))/255.
mask = image.img_to_array(image.load_img(f'{self.mask_dir}/{self.y[i]}', grayscale=True, target_size=(img_height, img_width)))
# mask = np.resize(mask,(img_height*img_width, classes))
batch_y.append(mask)
batch_x.append(_image)
return np.array(batch_x), np.array(batch_y)
Here is a sample code to train the model
unet = Unet(256, 256, nclasses=66, filters=64)
print(unet.output_shape)
p_unet = multi_gpu_model(unet, 4)
p_unet.load_weights('models-dr/top_weights.h5')
p_unet.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
tb = TensorBoard(log_dir='logs', write_graph=True)
mc = ModelCheckpoint(mode='max', filepath='models-dr/top_weights.h5', monitor='acc', save_best_only='True', save_weights_only='True', verbose=1)
es = EarlyStopping(mode='max', monitor='acc', patience=6, verbose=1)
callbacks = [tb, mc, es]
train_gen = seg_gen(image_list, mask_list, batch_size)
p_unet.fit_generator(train_gen, steps_per_epoch=steps, epochs=13, callbacks=callbacks, workers=8)
I have tried using the dice loss when i had only two classes, here is the code for it
def dice_coeff(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
return score
def dice_loss(y_true, y_pred):
loss = 1 - dice_coeff(y_true, y_pred)
return loss

Related

Implementing DCGAN in keras but it is not properly trained

I am trying to implement DCGAN presented in this article. Here is my Generator and Discriminator:
ki = keras.initializers.RandomNormal(mean=0.0, stddev=0.02)
def discriminator_model():
discriminator = Sequential([
Conv2D(64, (3,3), strides=(2, 2), padding='same', kernel_initializer=ki, input_shape=[64,64, 3]), # No BatchNormilization in this layer
LeakyReLU(alpha=0.2),
Dropout(0.4),
Conv2D(64, (3,3), strides=(2, 2), padding='same', kernel_initializer=ki),
BatchNormalization(),
LeakyReLU(alpha=0.2),
Dropout(0.4),
Flatten(),
Dense(1, activation='sigmoid', kernel_initializer=ki)
])
return discriminator
===========================================
noise_shape = 100
def generator_model():
generator = Sequential([
Dense(4*4*512, input_shape=[noise_shape]),
Reshape([4,4,512]),
Conv2DTranspose(256, kernel_size=4, strides=2, padding="same", kernel_initializer= ki),
BatchNormalization(),
ReLU(),
Conv2DTranspose(128, kernel_size=4, strides=2, padding="same", kernel_initializer=ki),
BatchNormalization(),
ReLU(),
Conv2DTranspose(64, kernel_size=4, strides=2, padding="same", kernel_initializer=ki),
BatchNormalization(),
ReLU(),
Conv2DTranspose(3, kernel_size=4, strides=2, padding="same", kernel_initializer=ki, activation='tanh') # 3 filters, also no BatchNormilization in this layer
])
return generator
Here I have combined these to to build DCGAN:
DCGAN = Sequential([generator,discriminator])
opt = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5)
discriminator.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])
discriminator.trainable = False
DCGAN.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])
Then I prepared my batches and tried to train my model. Here is the code:
epochs = 500
batch_size = 128
loss_from_discriminator_model=[]
loss_from_generator_model=[]
acc_dis = []
acc_gen = []
with tf.device('/gpu:0'):
for epoch in range(epochs):
for i in range(images.shape[0]//batch_size):
# Training Discriminator
noise = np.random.uniform(-1,1,size=[batch_size, noise_shape])
gen_image = generator.predict_on_batch(noise) # Generating fake images
train_dataset = images[i*batch_size:(i+1)*batch_size]
train_labels_real = np.ones(shape=(batch_size,1)) # Real image labels
discriminator.trainable = True
d_loss_real, d_acc_real = discriminator.train_on_batch(train_dataset,train_labels_real) # Training on real images
train_labels_fake = np.zeros(shape=(batch_size,1))
d_loss_fake, d_acc_fake = discriminator.train_on_batch(gen_image,train_labels_fake) # Training on fake images
# Training Generator
noise = np.random.uniform(-1, 1, size=[batch_size,noise_shape])
train_label_fake_for_gen_training = np.ones(shape=(batch_size,1))
discriminator.trainable = False
g_loss, g_acc = DCGAN.train_on_batch(noise, train_label_fake_for_gen_training)
loss_from_discriminator_model.append(d_loss_real+d_loss_fake)
loss_from_generator_model.append(g_loss)
acc_dis.append((d_acc_real + d_acc_fake) / 2)
acc_gen.append(g_acc)
The problem is my modell doesn't seem to learn anything. values of accuracy and loss don't seem rational. Here is a plot of values of generator and discriminator loss during training.
Thanks in advance.

Tensorflow data pipeline stops working during training

I made a Tensorflow pipeline for loading numpy arrays (video data shape (40,160,160,3)). However, it stops working after loading the first x batches.
The problem is solved when removing num_parallel_calls=AUTOTUNE. However, if I do this, the training becomes significantly slower (ETA/epoch ~30 min -> ETA/epoch ~ 4 hours) . Is there a way to load the numpy arrays in parallel (or apply num_parallel_calls=AUTOTUNE) without any problems?
def get_label(file_path):
import os
parts = tf.strings.split(file_path, os.path.sep)
return parts[-2]
def process_video(file_path):
label = get_label(file_path)
video = np.load(file_path, allow_pickle=True)
return np.float32(video/255), np.float32(label)
def set_shape(video, label):
video.set_shape((40,160,160, 3))
label.set_shape([])
return video, label
## Data pipeline
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_ds = tf.data.Dataset.list_files("path/train/*/*",shuffle=True)
train_ds = train_ds.map(lambda item: tf.numpy_function(
process_video, [item], (tf.float32, tf.float32)) ,num_parallel_calls=AUTOTUNE)
train_ds = train_ds.map(set_shape)
train_ds = train_ds.batch(8)
train_ds = train_ds.prefetch(AUTOTUNE)
## Model
def create_LRCN_model():
model = Sequential()
model.add(TimeDistributed(Conv2D(64, (3, 3), padding='same',activation = 'relu'),
input_shape = (40, 160, 160, 3)))
model.add(TimeDistributed(MaxPooling2D((4, 4))))
model.add(TimeDistributed(Dropout(0.25)))
model.add(TimeDistributed(Conv2D(64, (3, 3), padding='same',activation = 'relu')))
model.add(TimeDistributed(MaxPooling2D((4, 4))))
model.add(TimeDistributed(Dropout(0.25)))
model.add(TimeDistributed(Conv2D(64, (3, 3), padding='same',activation = 'relu')))
model.add(TimeDistributed(MaxPooling2D((2, 2))))
model.add(TimeDistributed(Dropout(0.25)))
model.add(TimeDistributed(Conv2D(32, (3, 3), padding='same',activation = 'relu')))
model.add(TimeDistributed(MaxPooling2D((2, 2))))
#model.add(TimeDistributed(Dropout(0.25)))
model.add(TimeDistributed(Flatten()))
model.add(LSTM(32))
model.add(Dense(1, activation = 'sigmoid'))
model.summary()
return model
LRCN_model = create_LRCN_model()
early_stopping_callback = EarlyStopping(monitor = 'val_loss', patience = 15, mode = 'min', restore_best_weights = True)
LRCN_model.compile(loss='binary_crossentropy', optimizer = 'Adam', metrics = ["accuracy"])
LRCN_model_training_history = LRCN_model.fit(train_ds, validation_data= val_ds, epochs = 70, callbacks = [early_stopping_callback]) #class_weight= class_weights,

FailedPreconditionError: 2 root error(s) found

I want to test what happens when VAE's posterior is GMM. I wrote the code, but there is an error:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
# Dependency imports
import numpy as np
import matplotlib.pyplot as plt
from absl import flags
import numpy as np
from six.moves import urllib
import tensorflow.compat.v1 as tf
import tensorflow_probability as tfp
from tensorflow.compat.v1.keras.datasets import mnist
tf.compat.v1.disable_eager_execution()
tf.reset_default_graph()
tf.test.is_gpu_available()
tfd = tfp.distributions
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1).astype('float32')
# BACK TO [0,1]
train_images /= 255.
test_images /= 255.
# Binarized
train_images[train_images >= .5] = 1. # shape = (60000,28,28,1)
train_images[train_images < .5] = 0.
base_depth = 32
latent_size = 2
mixture_components = 10
IMAGE_SHAPE = [28, 28, 1]
# encoder
x = tf.keras.layers.Input(shape=(28, 28, 1))
h1 = tf.keras.layers.Conv2D(filters=base_depth, kernel_size=5, strides=1,
padding='same', activation='relu')
h2 = tf.keras.layers.Conv2D(filters=base_depth, kernel_size=5, strides=2,
padding='same', activation='relu')
h3 = tf.keras.layers.Conv2D(filters=base_depth * 2, kernel_size=5, strides=1,
padding='same', activation='relu')
h4 = tf.keras.layers.Conv2D(filters=base_depth * 2, kernel_size=5, strides=2,
padding='same', activation='relu')
h5 = tf.keras.layers.Conv2D(filters=base_depth * 6, kernel_size=3, strides=1,
padding='same', activation='relu')
h6 = tf.keras.layers.Conv2D(filters=latent_size * 4, kernel_size=7, padding='valid'
, activation='relu')
flatten1 = tf.keras.layers.Flatten()
encoder_end = tf.keras.layers.Dense(2 * mixture_components * latent_size + mixture_components, activation=None)
e1 = h1(x)
e2 = h2(e1)
e3 = h3(e2)
e4 = h4(e3)
e5 = h5(e4)
e6 = h6(e5)
e7 = flatten1(e6)
encoder_out = encoder_end(e7) # parameters of GMM
# split {mean,variance,pi}
loc, raw_scale_diag, mixture_logits = tf.split(encoder_out,
[latent_size * mixture_components, latent_size * mixture_components,
mixture_components], axis=-1)
loc = tf.reshape(loc, [-1, mixture_components, latent_size])
raw_scale_diag = tf.reshape(raw_scale_diag, [-1, mixture_components, latent_size]) # [B,k,E]
# posterior
approx_posterior = tfd.MixtureSameFamily(components_distribution=tfd.MultivariateNormalDiag(
loc=loc,
scale_diag=tf.nn.softplus(raw_scale_diag)),
mixture_distribution=tfd.Categorical(logits=mixture_logits),
)
# sample from posterior (16 latent variable z)
approx_posterior_samples = approx_posterior._sample_n(16, seed=None)
# decoder
decoder = tf.keras.Sequential([
tf.keras.layers.Conv2DTranspose(2 * base_depth, kernel_size=7, padding='valid', activation='relu'),
tf.keras.layers.Conv2DTranspose(2 * base_depth, kernel_size=5, padding='same', activation='relu'),
tf.keras.layers.Conv2DTranspose(2 * base_depth, kernel_size=5, strides=2, padding='valid', activation='relu'),
tf.keras.layers.Conv2DTranspose(base_depth, kernel_size=5, padding='same', activation='relu'),
tf.keras.layers.Conv2DTranspose(base_depth, kernel_size=5, strides=2, padding='same', activation='relu'),
tf.keras.layers.Conv2DTranspose(base_depth, kernel_size=5, padding='same', activation='relu'),
tf.keras.layers.Conv2D(IMAGE_SHAPE[-1], kernel_size=5, padding='same', activation=None)
])
original_shape = tf.shape(input=approx_posterior_samples)
approx_posterior_samples = tf.reshape(approx_posterior_samples, (-1, 1, 1, latent_size))
logits = decoder(approx_posterior_samples)
logits = tf.reshape(
logits, shape=tf.concat([original_shape[:-1], IMAGE_SHAPE], axis=0))
logits = tf.reduce_mean(logits, axis=0)
logits = tf.reshape(logits, shape=tf.shape(x))
# bulid model
model = tf.keras.Model(x, logits)
# prior of z (also GMM)
def make_mixture_prior(latent_size, mixture_components):
loc = tf.compat.v1.get_variable(
name="loc", shape=[mixture_components, latent_size])
raw_scale_diag = tf.compat.v1.get_variable(
name="raw_scale_diag", shape=[mixture_components, latent_size])
mixture_logits = tf.compat.v1.get_variable(
name="mixture_logits", shape=[mixture_components])
return tfd.MixtureSameFamily(
components_distribution=tfd.MultivariateNormalDiag(
loc=loc,
scale_diag=tf.nn.softplus(raw_scale_diag)),
mixture_distribution=tfd.Categorical(logits=mixture_logits),
name="prior")
# latent_size=2,mixture_components=10
latent_prior = make_mixture_prior(2, 10)
# reconstruction error
distortion = tf.nn.sigmoid_cross_entropy_with_logits(labels=x, logits=logits)
avg_distortion = tf.reduce_mean(distortion)
# kl divergence
rate = (approx_posterior.log_prob(approx_posterior_samples) - latent_prior.log_prob(approx_posterior_samples))
avg_rate = tf.reduce_mean(rate)
loss = avg_distortion + avg_rate
# custom loss
model.add_loss(loss)
Here is the error:
FailedPreconditionError: 2 root error(s) found.
(0) Failed precondition: Error while reading resource variable mixture_logits from Container: localhost. This could mean that the variable was uninitialized. Not found: Resource localhost/mixture_logits/class tensorflow::Var does not exist.
[[{{node prior_1/log_prob/Categorical_2/logits_parameter/Identity/ReadVariableOp}}]]
[[prior_1/log_prob/LogSoftmax/_269]]
(1) Failed precondition: Error while reading resource variable mixture_logits from Container: localhost. This could mean that the variable was uninitialized. Not found: Resource localhost/mixture_logits/class tensorflow::Var does not exist.
[[{{node prior_1/log_prob/Categorical_2/logits_parameter/Identity/ReadVariableOp}}]]
0 successful operations.
0 derived errors ignored.
I Have two questions as follows:
1.Is the way I model this type of vae correct(use Model(input,output))?
Whether the way i define my loss is correct?
I think my errors may came from above questions.
Finally,i have tried before in several ways:
1.
sess = tf.Session()
sess.run([tf.global_variables_initializer(),
tf.local_variables_initializer()])
2.
consider the "tensorflow.compat.v1.keras and tensorflow.keras " error
they really doesn't work for me!

KERAS TUNER: object of type 'HyperParameters' has no len()

here its my code trying to use KERAS TUNER:
datagen = ImageDataGenerator(
rescale=1.0/255.0,
zoom_range=[-2, 2],
width_shift_range=[-25, 25],
height_shift_range=[-25, 25],
rotation_range=40,
shear_range=40,
horizontal_flip=True,
vertical_flip=True,
brightness_range=[0.98,1.05],
featurewise_center=True,
samplewise_center=True,
# channel_shift_range=1.5,
#featurewise_center=True,
#featurewise_std_normalization=True,
validation_split=0.10)
mean,std=auxfunctions.getMeanStdClassification()
datagen.mean=mean
datagen.std=std
numClasses = 5
width=240 #diabetic retinopaty 120 120, drRafael 40 40, 96 96
height=240
input_shape=(width,height,3)
train_generator = datagen.flow_from_dataframe(
dataframe=trainLabels,
directory='./resized_train_cropped',
x_col="image",
y_col="level",
target_size=(240,240),
batch_size=16,
class_mode='categorical',
color_mode='rgb', #quitar o no quitar
subset='training')
validation_generator =datagen.flow_from_dataframe(
dataframe=trainLabels,
directory='./resized_train_cropped',
x_col="image",
y_col="level",
target_size=(240,240),
batch_size=16,
class_mode='categorical',
color_mode='rgb',
subset='validation')
#----------------------------------------------------------------------------------------
def createBaseNetwork(input_shape):
weight_decay = 1e-4
L2_norm = regularizers.l2(weight_decay)
input = Input(shape=input_shape)
print(input)
x = Conv2D(96, (9, 9), activation='relu', name='conv1', kernel_regularizer=L2_norm)(input)
x = MaxPooling2D((3, 3), name='pool1')(x)
x = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(x)
x = Conv2D(384, (5, 5), activation='relu', name='conv2', kernel_regularizer=L2_norm)(x)
x = MaxPooling2D((3, 3), name='pool2')(x)
x = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(x)
x = Conv2D(384, (3, 3), activation='relu', name='conv3')(x)
x = Conv2D(384, (3, 3), activation='relu', name='conv4')(x)
x = Conv2D(256, (3, 3), activation='relu', name='conv5')(x)
x = MaxPooling2D((3, 3), name='pool3')(x)
x = Flatten()(x)
x = Dense(4096, activation='relu', name='fc1')(x)
return Model(input, x)
# ---------------------------------------------------------------------------------
hp=HyperParameters()
baseNetwork=createBaseNetwork(input_shape)
#baseNetwork.load_weights('./ModelWeights2.h5',by_name=True)
for l in baseNetwork.layers:
l.trainable=True
input_a = Input(shape=input_shape,name='input1')
outLayers = baseNetwork(input_a)
outLayers = Dense(2048, activation='relu', name='fc3')(outLayers)
outLayers= Dropout(0.2)(outLayers)
outLayers = Dense(1024, activation='relu', name='fc4')(outLayers)
outLayers= Dropout(0.2)(outLayers)
outLayers = Dense(hp.Int('input_units',min_value=32,max_value=512), activation='relu', name='fc5')(outLayers)
classifier = Dense(numClasses, activation='softmax', name='predictions')(outLayers)
model = Model(input_a, classifier)
model.summary()
tuner = RandomSearch(
model,
objective='val_accuracy',
max_trials=1,
executions_per_trial=1,
directory='./logtunner'
)
tuner.search(
train_generator,
validation_data=validation_generator,
epochs=1,
)
For now im just trying to use it on the last Dense layer, as you can see i just want to stimate a good number of neurons with this:
hp.Int('input_units',min_value=32,max_value=512)
But i get an error like this:
ValueError: TypeError: object of type 'HyperParameters' has no len()
I dont know how to solve it, i spent hours watching videos and tutorials but no idea of what is happening.
I also realize that there is another error mesage:
This function does not handle the case of the path where all inputs are not already EagerTensors
But i dont have any idea about that too
I was having more or less of the same error.
If you pay attention to to the keras-tuner in the tensorflow website https://www.tensorflow.org/tutorials/keras/keras_tuner or in the keras website, you see the following:
tuner = kt.Hyperband(model_builder,
objective = 'val_accuracy',
max_epochs = 10,
factor = 3,
directory = 'my_dir',
project_name = 'intro_to_kt')
the first input to the tuner is the function model_builder that is declared earlier as
def model_builder(hp):
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=(28, 28)))
# Tune the number of units in the first Dense layer
# Choose an optimal value between 32-512
hp_units = hp.Int('units', min_value = 32, max_value = 512, step = 32)
model.add(keras.layers.Dense(units = hp_units, activation = 'relu'))
model.add(keras.layers.Dense(10))
# Tune the learning rate for the optimizer
# Choose an optimal value from 0.01, 0.001, or 0.0001
hp_learning_rate = hp.Choice('learning_rate', values = [1e-2, 1e-3, 1e-4])
model.compile(optimizer = keras.optimizers.Adam(learning_rate = hp_learning_rate),
loss = keras.losses.SparseCategoricalCrossentropy(from_logits = True),
metrics = ['accuracy'])
return model
So, all you need is reorganize your code to follow the same structure. You need to encapsulate the keras model and keras-tuner hp inside a function.
Cheers.

Keras: Image segmentation using grayscale masks and ImageDataGenerator class

I am currently trying to implement a convolutional network using Keras 2.1.6 (with TensorFlow as backend) and its ImageDataGenerator to segment an image using a grayscale mask. I try to use an image as input, and a mask as label. Due to a low amount of training images, and memory constraints I utilize the ImageDataGenerator class provided in Keras.
However I get this error, after changing the values provided in the Keras example to the ones described later:
File "C:\Users\XXX\Anaconda3\lib\site-packages\keras\engine\training.py", line 2223, in fit_generator
batch_size = x.shape[0]
AttributeError: 'tuple' object has no attribute 'shape'
Which, as far as I know, happens because the generator does generate a tuple, and not an array. This first happened after I changed following parameters from the standard values provided in the Keras example to the following: color_mode='grayscale' for all mask generators, and class_mode='input' due to this being recommended for autoencoders.
The Keras example can be found in here.
The dataset I am using consists of 100 images (jpg) and 100 corresponding grayscale masks (png) and can be downloaded at this link
The architecture I wanted to implement is an autoencoder/U-Net based network and it is shown in the provided code:
from keras.preprocessing import image
from keras.models import Model
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D
from keras import initializers
image_path =
mask_path =
valid_image_path =
valid_mask_path =
img_size=160
batchsize=10
samplesize = 60
steps = samplesize / batchsize
train_datagen = image.ImageDataGenerator(shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
data_gen_args = dict(rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
seed = 1
image_generator = image_datagen.flow_from_directory(
image_path,
target_size=(img_size, img_size),
class_mode='input',
batch_size = batchsize,
seed=seed)
mask_generator = mask_datagen.flow_from_directory(
mask_path,
target_size=(img_size, img_size),
class_mode='input',
color_mode = 'grayscale',
batch_size = batchsize,
seed=seed)
vimage_generator = image_datagen.flow_from_directory(
valid_image_path,
target_size=(img_size, img_size),
class_mode='input',
batch_size = batchsize,
seed=seed)
vmask_generator = mask_datagen.flow_from_directory(
valid_mask_path,
target_size=(img_size, img_size),
class_mode='input',
color_mode = 'grayscale',
batch_size = batchsize,
seed=seed)
#Model
input_img = Input(shape=(img_size,img_size,3))
c11 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(input_img)
mp1 = MaxPooling2D((2, 2), padding='same')(c11)
c21 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(mp1)
mp2 = MaxPooling2D((2, 2), padding='same')(c21)
c31 = Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(mp2)
encoded = MaxPooling2D((5, 5), padding='same')(c31)
c12 = Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(encoded)
us12 = UpSampling2D((5,5))(c12)
c22 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(us12)
us22 = UpSampling2D((2, 2))(c22)
c32 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(us22)
us32 = UpSampling2D((2, 2))(c32)
decoded = Conv2D(1, (3, 3), activation='softmax', padding='same')(us32)
model = Model(input_img, decoded)
model.compile(loss="mean_squared_error", optimizer=optimizers.Adam(),metrics=["accuracy"])
#model.summary()
#Generators, tr: training, v: validation
trgen = zip(image_generator,mask_generator)
vgen = zip(vimage_generator,vmask_generator)
model.fit_generator(
trgen,
steps_per_epoch= steps,
epochs=5,
validation_data = vgen,
validation_steps=10)
Here is a better version of Unet, you can use this code
def conv_block(tensor, nfilters, size=3, padding='same', initializer="he_normal"):
x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(tensor)
x = BatchNormalization()(x)
x = Activation("relu")(x)
x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
return x
def deconv_block(tensor, residual, nfilters, size=3, padding='same', strides=(2, 2)):
y = Conv2DTranspose(nfilters, kernel_size=(size, size), strides=strides, padding=padding)(tensor)
y = concatenate([y, residual], axis=3)
y = conv_block(y, nfilters)
return y
def Unet(img_height, img_width, nclasses=3, filters=64):
# down
input_layer = Input(shape=(img_height, img_width, 3), name='image_input')
conv1 = conv_block(input_layer, nfilters=filters)
conv1_out = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = conv_block(conv1_out, nfilters=filters*2)
conv2_out = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = conv_block(conv2_out, nfilters=filters*4)
conv3_out = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = conv_block(conv3_out, nfilters=filters*8)
conv4_out = MaxPooling2D(pool_size=(2, 2))(conv4)
conv4_out = Dropout(0.5)(conv4_out)
conv5 = conv_block(conv4_out, nfilters=filters*16)
conv5 = Dropout(0.5)(conv5)
# up
deconv6 = deconv_block(conv5, residual=conv4, nfilters=filters*8)
deconv6 = Dropout(0.5)(deconv6)
deconv7 = deconv_block(deconv6, residual=conv3, nfilters=filters*4)
deconv7 = Dropout(0.5)(deconv7)
deconv8 = deconv_block(deconv7, residual=conv2, nfilters=filters*2)
deconv9 = deconv_block(deconv8, residual=conv1, nfilters=filters)
# output
output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
output_layer = BatchNormalization()(output_layer)
output_layer = Activation('softmax')(output_layer)
model = Model(inputs=input_layer, outputs=output_layer, name='Unet')
return model
Note if you have only two classes ie nclasses=2, you need to change
output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
output_layer = BatchNormalization()(output_layer)
output_layer = Activation('softmax')(output_layer)
to
output_layer = Conv2D(filters=2, kernel_size=(1, 1))(deconv9)
output_layer = BatchNormalization()(output_layer)
output_layer = Activation('sigmoid')(output_layer)
Now for the data generators, you can use the builtin ImageDataGenerator class
here is the code from Keras docs
# we create two instances with the same arguments
data_gen_args = dict(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1
image_datagen.fit(images, augment=True, seed=seed)
mask_datagen.fit(masks, augment=True, seed=seed)
image_generator = image_datagen.flow_from_directory(
'data/images',
class_mode=None,
seed=seed)
mask_generator = mask_datagen.flow_from_directory(
'data/masks',
class_mode=None,
seed=seed)
# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50)
Another way to go is implement your own generator by extending the Sequence class from Keras
class seg_gen(Sequence):
def __init__(self, x_set, y_set, batch_size, image_dir, mask_dir):
self.x, self.y = x_set, y_set
self.batch_size = batch_size
self.samples = len(self.x)
self.image_dir = image_dir
self.mask_dir = mask_dir
def __len__(self):
return int(np.ceil(len(self.x) / float(self.batch_size)))
def __getitem__(self, idx):
idx = np.random.randint(0, self.samples, batch_size)
batch_x, batch_y = [], []
drawn = 0
for i in idx:
_image = image.img_to_array(image.load_img(f'{self.image_dir}/{self.x[i]}', target_size=(img_height, img_width)))/255.
mask = image.img_to_array(image.load_img(f'{self.mask_dir}/{self.y[i]}', grayscale=True, target_size=(img_height, img_width)))
# mask = np.resize(mask,(img_height*img_width, classes))
batch_y.append(mask)
batch_x.append(_image)
return np.array(batch_x), np.array(batch_y)
Here is a sample code to train the model
unet = Unet(256, 256, nclasses=66, filters=64)
print(unet.output_shape)
p_unet = multi_gpu_model(unet, 4)
p_unet.load_weights('models-dr/top_weights.h5')
p_unet.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
tb = TensorBoard(log_dir='logs', write_graph=True)
mc = ModelCheckpoint(mode='max', filepath='models-dr/top_weights.h5', monitor='acc', save_best_only='True', save_weights_only='True', verbose=1)
es = EarlyStopping(mode='max', monitor='acc', patience=6, verbose=1)
callbacks = [tb, mc, es]
train_gen = seg_gen(image_list, mask_list, batch_size)
p_unet.fit_generator(train_gen, steps_per_epoch=steps, epochs=13, callbacks=callbacks, workers=8)
I got good results when i had only 2 classes by using dice loss, here is the code for it
def dice_coeff(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
return score
def dice_loss(y_true, y_pred):
loss = 1 - dice_coeff(y_true, y_pred)
return loss
What you are trying to build is an image segmentation model and not an autoencoder. Therefore, since you have separate generators for the images and the labels (i.e. masks), you need to set the class_mode argument to None to prevent generator from producing any labels arrays.
Further, you need to change the activation function of last layer from softmax to sigmoid, otherwise since the softmax normalizes the sum of its input elements to 1, the output would be all ones. You can also use binary_crossentropy for the loss function as well.

Categories