How to divide an image into ''n'' different polygons in Python - python

I am new to python and am trying to divide an image into 'n' different polygon using python. My target is to convert an image into n random polygon shaped images. I tried Voronoi algorithm but its kind of messy. I would really appreciate any help. Any other segmentation method etc.
My previous Code:
import random
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import Voronoi, voronoi_plot_2d
img = plt.imread("abc.jpg")
fig, ax = plt.subplots()
ax.imshow(img)
def points(radius,rangeX,rangeY,qty):
deltas = set()
for x in range(-radius, radius+1):
for y in range(-radius, radius+1):
if x*x + y*y <= radius*radius:
deltas.add((x,y))
randPoints = []
excluded = set()
i = 0
while i<qty:
x = random.randrange(*rangeX)
y = random.randrange(*rangeY)
if (x,y) in excluded: continue
randPoints.append((x,y))
i += 1
excluded.update((x+dx, y+dy) for (dx,dy) in deltas)
return randPoints
def plot1(randPoints,fig):
points = np.array(randPoints)
vor = Voronoi(points)
print vor.vertices
voronoi_plot_2d(vor,ax = fig.gca())
#plt.savefig('abc.png')
plt.show()
radius = 20
rangeX = (0, 960)
rangeY = (0, 480)
qty = 9
points = points(radius, rangeX, rangeY, qty)
plot1(points,fig)
My Input:
My output:
This is for n = 9 I would appreciate any help I can get.

Related

vectorizing custom python function with numpy array

Not sure if that is the correct terminology. Basically trying to take a black and white image and first transform it such that all the white pixels that border black-pixels remain white, else turn black. That part of the program works fine, and is done in find_edges. Next I need to calculate the distance from each element in the image to the closest white-pixel. Right now I am doing it by using a for-loop that is insanely slow. Is there a way to make the find_nearest_edge function written solely with numpy without the need for a for-loop to call it on each element? Thanks.
####
from PIL import Image
import numpy as np
from scipy.ndimage import binary_erosion
####
def find_nearest_edge(arr, point):
w, h = arr.shape
x, y = point
xcoords, ycoords = np.meshgrid(np.arange(w), np.arange(h))
target = np.sqrt((xcoords - x)**2 + (ycoords - y)**2)
target[arr == 0] = np.inf
shortest_distance = np.min(target[target > 0.0])
return shortest_distance
def find_edges(img):
img = img.convert('L')
img_np = np.array(img)
kernel = np.ones((3,3))
edges = img_np - binary_erosion(img_np, kernel)*255
return edges
a = Image.open('a.png')
x, y = a.size
edges = find_edges(a)
out = Image.fromarray(edges.astype('uint8'), 'L')
out.save('b.png')
dists =[]
for _x in range(x):
for _y in range(y):
dist = find_nearest_edge(edges,(_x,_y))
dists.append(dist)
print(dists)
Images:
You can use KDTree to compute distances fast.
import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import binary_erosion
from scipy.spatial import KDTree
def find_edges(img):
img_np = np.array(img)
kernel = np.ones((3,3))
edges = img_np - binary_erosion(img_np, kernel)*255
return edges
def find_closest_distance(img):
# NOTE: assuming input is binary image and white is any non-zero value!
white_pixel_points = np.array(np.where(img))
tree = KDTree(white_pixel_points.T)
img_meshgrid = np.array(np.meshgrid(np.arange(img.shape[0]), np.arange(img.shape[1]))).T
distances, _ = tree.query(img_meshgrid)
return distances
test_image = np.zeros((200, 200))
rectangle = np.ones((30, 80))
test_image[20:50, 60:140] = rectangle
test_image[150:180, 60:140] = rectangle
test_image[60:140, 20:50] = rectangle.T
test_image[60:140, 150:180] = rectangle.T
test_image = test_image * 255
edge_image = find_edges(test_image)
distance_image = find_closest_distance(edge_image)
fig, axes = plt.subplots(1, 3, figsize=(12, 5))
axes[0].imshow(test_image, cmap='Greys_r')
axes[1].imshow(edge_image, cmap='Greys_r')
axes[2].imshow(distance_image, cmap='Greys_r')
plt.show()
You can make your code 25X faster by just changing find_nearest_edge as follows. Many other optimizations are possible, but this is the biggest bottleneck in your code.
from numba import njit
#njit
def find_nearest_edge(arr, point):
x, y = point
shortest_distance = np.inf
for i in range(arr.shape[0]):
for j in range(arr.shape[1]):
if arr[i,j] == 0: continue
shortest_distance = min(shortest_distance, (i-x)**2 + (j-y)**2)
return np.sqrt(shortest_distance)

Fitting a 2D gaussian profile onto a focal spot

I've been trying to write code to fit a 2D Gaussian profile onto some data for a focal spot. However everytime I use my code, it outputs diagonal lines for the plot. Can anyone help?
import numpy as np
from matplotlib import image
import matplotlib.pyplot as plt
import scipy.optimize as opt
def pixel_values(filename):
data_raw = image.imread(filename)
data= data_raw.ravel()
return (data)
def power(filename):
pixel=pixel_values(filename)
intensity=np.ravel(pixel)**2
total_intensity=sum(intensity)
print(np.sqrt(total_intensity))
def get_highest_pixel(filename):
data= pixel_values(filename)
highest_pixel=np.amax(data)
pixel_index = np.where(data == data.min())
print(highest_pixel)
print(pixel_index)
return (pixel_index)
x = np.linspace(-0.5,0.5 , 601)
y = np.linspace(-0.5, 0.5, 601)
X,Y = np.meshgrid(x,y)
xdata = np.vstack((X.ravel(),Y.ravel()))
def twoD_Gaussian(xdata,amplitude, xo, yo, sigma_x, sigma_y, theta, offset):
(x, y) = xdata
xo = float(xo)
yo = float(yo)
a = (np.cos(theta)**2)/(2*sigma_x**2) + (np.sin(theta)**2)/(2*sigma_y**2)
b = -(np.sin(2*theta))/(4*sigma_x**2) + (np.sin(2*theta))/(4*sigma_y**2)
c = (np.sin(theta)**2)/(2*sigma_x**2) + (np.cos(theta)**2)/(2*sigma_y**2)
g = offset + amplitude*np.exp( - (a*((x-xo)**2) + 2*b*(x-xo)*(y-yo)
+ c*((y-yo)**2)))
return g.ravel()
def fit_twoD_Gaussian(filename,initial_guess):
data_raw=pixel_values(filename)
popt, pcov = opt.curve_fit(twoD_Gaussian,xdata,data_raw, p0=initial_guess)
data_fitted= twoD_Gaussian(xdata,*popt)
return(data_fitted)
def plot_fit(filename, initial_guess):
data_fitted=fit_twoD_Gaussian(filename, initial_guess)
data_raw=pixel_values(filename)
print('the numbers are amplitude, centre position, then sigmas')
print(data_fitted)
fig, ax = plt.subplots(1,1)
ax.imshow(data_raw.reshape(601,601),cmap=plt.cm.jet, origin='centre', extent=(x.min(),x.max(),y.min(),y.max()))
ax.contour(x,y, data_fitted.reshape(601,601),8,colors='w')
plt.show()
guess=np.array([175,300,300,0.1,0.1,0,0])
plot_fit('0_0.JPG',guess)
The data has in a 2D array consisting of 601x601 pixels. So that's why I create two arrays x and y. This is what the code outputs for a rough gaussian like laser beam. The black and white image is the JPG file

Calculating random sample points using polar coordinates on cartesian map

I'm trying to generate random sample points on a cartesian plane using polar coordinates. I have a cartesian map with polar sectors, I'd like to put a random sample point within each of the sectors.
Problem Visual Description
I've added a sample point in the first sector. The problem is I don't know how to set the min and max limits for each sector as it's a cartesian plane (using cartesian min and max of the sector corners will give you boxes instead of the entire polar sector).
Code is commented for clarity. Final output posted below.
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [10, 10]
import math
import pylab as pl
from matplotlib import collections as mc
import pprint
from IPython.utils import io
from random import randrange, uniform
#convertes cartesian x,y coordinates to polar r, theta coordinates
def cart2pol(x, y):
rho = np.sqrt(x**2 + y**2)
phi = np.arctan2(y, x)
return np.array([rho, phi])
#convertes polar r,theta coordinates to cartesian x,y coordinates
def pol2cart(r, theta): #r is distance
x = r * np.cos(theta)
y = r * np.sin(theta)
return np.array([x, y])
#cooks delicious pie
pi = np.pi
#no idea what this does
theta = np.linspace(0,2*pi,100)
#x theta
def x_size(r):
return r*np.cos(theta)
#y theta
def y_size(r):
return r*np.sin(theta)
#calculates distribution of sectors on a circle in radians
#eg. sub_liner(3) = array([0. , 2.0943951, 4.1887902])
def sub_liner(k):
sub_lines = []
for c,b in enumerate(range(0,k)):
sub_lines = np.append(sub_lines,((12*pi/6)/k)*c)
return sub_lines
#calculates all distribution sectors for every ring and puts them in a list
def mlp(i):
master_lines = []
k = 3
for a in range(0,i):
master_lines.append(sub_liner(k))
k += 3
return master_lines
#calculates all four corners of each sector for a ring
#(ring,ring points,number of rings)
def cg(r,rp,n):
return [[[pol2cart(r-1,mlp(n)[r-1][i])[0],pol2cart(r-1,mlp(n)[r-1][i])[1]]\
,[pol2cart(r,mlp(n)[r-1][i])[0],pol2cart(r,mlp(n)[r-1][i])[1]]] for i in range(0,rp)]
#generates all corners for the ring sectors
def rg(n):
cgl = []
k = 3
for r in range(1,11):
cgl.append(cg(r,k,n))
k += 3
output = cgl[0]
for q in range(1,10):
output = np.concatenate((output,cgl[q]))
return output
#print(cg(1,3,10)[0][0][0])
#print(cg(1,3,10))
# randrange gives you an integral value
irand = randrange(0, 10)
# uniform gives you a floating-point value
frand = uniform(0, 10)
#define ring sectors
ring_sectors = rg(10)
#define node points
nx = 0.5
ny = 0.5
#define ring distance
ymin = [0]
ymax = [1]
#generate rings
ring_r = np.sqrt(1.0)
master_array = np.array([[x_size(i),y_size(i)] for i in range(0,11)])
#plot rings
fig, ax = plt.subplots(1)
[ax.plot(master_array[i][0],master_array[i][1]) for i in range(0,11)]
ax.set_aspect(1)
size = 10
plt.xlim(-size,size)
plt.ylim(-size,size)
#generate nodes
ax.plot(nx, ny, 'o', color='black');
#ring lines
lc = mc.LineCollection(ring_sectors, color='black', linewidths=2)
ax.add_collection(lc)
plt.grid(linestyle='--')
plt.title('System Generator', fontsize=8)
plt.show()
Sample output can be viewed at.
Edit:
What I've tried:
Based on feedback, I implemented a system which gets random uniform values between the polar coordinates, and it works, but the points aren't neatly distributed within their sectors as they should be, and I'm not sure why. Maybe my math is off or I made a mistake in the generator functions. If anyone has any insight, I'm all ears.
Output with points
def ngx(n):
rmin = 0
rmax = 1
nxl = []
s1 = 0
s2 = 1
k = 0
for i in range(0,n):
for a in range(0,rmax*3):
nxl.append(pol2cart(np.random.uniform(rmin,rmax),\
np.random.uniform(sub_liner(rmax*3)[(s1+k)%(rmax*3)],sub_liner(rmax*3)[(s2+k)%(rmax*3)]))[0])
k += 1
rmin += 1
rmax += 1
return nxl
def ngy(n):
rmin = 0
rmax = 1
nyl = []
s1 = 0
s2 = 1
k = 0
for i in range(0,n):
for a in range(0,rmax*3):
nyl.append(pol2cart(np.random.uniform(rmin,rmax),\
np.random.uniform(sub_liner(rmax*3)[(s1+k)%(rmax*3)],sub_liner(rmax*3)[(s2+k)%(rmax*3)]))[1])
k += 1
rmin += 1
rmax += 1
return nyl
#define node points
nx = ngx(10)
ny = ngy(10)

Getting a map of differences for two surfaces

I'm trying to find a way to get an image that would show the distance (difference of values) between points of two surfaces (point clouds). I want an image that would have a color scale which would show real life distance values. I'm new to this, so it might seem stupid to someone. Thank you for help
Plt.ismhow does give me a result and while it does seem to show difference, its not representitive enough.
import numpy as np
import matplotlib.pyplot as plt
def readNXYZfile(filename):
A = np.zeros((3000,3000),np.float32)
crs = open(filename, "r")
for i,columns in enumerate( raw.strip().split() for raw in crs ):
for j in range(len(columns)):
A[j,i] = np.float32(columns[j])
A = A[0:j, 0:i]
A = np.transpose(A)
X = A[:,0:int(j/3)]
Y = A[:,int(j/3+1):int(2*j/3)]
Z = A[:,int(2*j/3+1):j]
return [X,Y,Z]
filename1 = "D:\\"
filename2 = "D:\\"
[X1,Y1,Z1] = readNXYZfile(filename1)
[X2,Y2,Z2] = readNXYZfile(filename2)
Z1[Z1 < -9000] = float('nan')
Z2[Z2 < -9000] = float('nan')
B = Z1 - Z2
plt.imshow(B)
plt.show()

Mapping surface curvature to face?

I am trying to map surface curvature (mean, gaussian and principle curvature) values to surface faces. I have computed the curvature values for an artificially generated 3D surface (eg. cylinder). The resulting 3D surface that I am trying to get is something like this mean curvature mapped to surface. Can somebody guide me in how to get this?
The code for the surface I am creating is:
import math
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
xindex = []
yindex = []
zindex = []
x = []
y = []
z = []
count = 1
surfaceSt = []
import numpy
numpy.set_printoptions(threshold=numpy.nan)
#surfaceStX = numpy.empty((10,36))
#surfaceStY = numpy.empty((10,36))
#surfaceStZ = numpy.empty((10,36))
surfaceStZ = []
surfaceStX = []
surfaceStY = []
for i in range(1,21):
if i < 11:
x = []
y = []
z = []
pt = []
ptX = []
ptY = []
ptZ = []
for t in range(0,360,10):
x = i*math.sin(math.radians(t))
y = i*math.cos(math.radians(t))
z = i-1
ptX.append(x)
ptY.append(y)
ptZ.append(z)
pt.append([x,y,z])
ptX.append(ptX[0])
ptY.append(ptY[0])
ptZ.append(ptZ[0])
surfaceStX.append(ptX)
surfaceStY.append(ptY)
surfaceStZ.append(ptZ)
# numpy.append(surfaceStX,ptX)
# numpy.append(surfaceStY,ptY)
# numpy.append(surfaceStZ,ptZ)
#ax.scatter(x,y,z)
elif i >= 11:
x = []
y = []
z = []
pt = []
ptX = []
ptY = []
ptZ = []
for t in range(0,360,10):
x = (i-count)*math.sin(math.radians(t))
y = (i-count)*math.cos(math.radians(t))
z = i-1
ptX.append(x)
ptY.append(y)
ptZ.append(z)
pt.append([x,y,z])
ptX.append(ptX[0])
ptY.append(ptY[0])
ptZ.append(ptZ[0])
surfaceStX.append(ptX)
surfaceStY.append(ptY)
surfaceStZ.append(ptZ)
count +=2
X = numpy.array(surfaceStX)
Y = numpy.array(surfaceStY)
Z = numpy.array(surfaceStZ)
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,shade = 'True' )
from surfaceCurvature import surface_curvature
Pcurvature,Gcurvature,Mcurvature = surface_curvature(X,Y,Z)
plt.show()
My surface curvature computation is given below (courtesy: https://github.com/sujithTSR/surface-curvature):
def surface_curvature(X,Y,Z):
(lr,lb)=X.shape
#print lr
#print "awfshss-------------"
#print lb
#First Derivatives
Xv,Xu=np.gradient(X)
Yv,Yu=np.gradient(Y)
Zv,Zu=np.gradient(Z)
#Second Derivatives
Xuv,Xuu=np.gradient(Xu)
Yuv,Yuu=np.gradient(Yu)
Zuv,Zuu=np.gradient(Zu)
Xvv,Xuv=np.gradient(Xv)
Yvv,Yuv=np.gradient(Yv)
Zvv,Zuv=np.gradient(Zv)
#2D to 1D conversion
#Reshape to 1D vectors
Xu=np.reshape(Xu,lr*lb)
Yu=np.reshape(Yu,lr*lb)
Zu=np.reshape(Zu,lr*lb)
Xv=np.reshape(Xv,lr*lb)
Yv=np.reshape(Yv,lr*lb)
Zv=np.reshape(Zv,lr*lb)
Xuu=np.reshape(Xuu,lr*lb)
Yuu=np.reshape(Yuu,lr*lb)
Zuu=np.reshape(Zuu,lr*lb)
Xuv=np.reshape(Xuv,lr*lb)
Yuv=np.reshape(Yuv,lr*lb)
Zuv=np.reshape(Zuv,lr*lb)
Xvv=np.reshape(Xvv,lr*lb)
Yvv=np.reshape(Yvv,lr*lb)
Zvv=np.reshape(Zvv,lr*lb)
Xu=np.c_[Xu, Yu, Zu]
Xv=np.c_[Xv, Yv, Zv]
Xuu=np.c_[Xuu, Yuu, Zuu]
Xuv=np.c_[Xuv, Yuv, Zuv]
Xvv=np.c_[Xvv, Yvv, Zvv]
# First fundamental Coeffecients of the surface (E,F,G)
E=np.einsum('ij,ij->i', Xu, Xu)
F=np.einsum('ij,ij->i', Xu, Xv)
G=np.einsum('ij,ij->i', Xv, Xv)
m=np.cross(Xu,Xv,axisa=1, axisb=1)
p=np.sqrt(np.einsum('ij,ij->i', m, m))
n=m/np.c_[p,p,p]
# Second fundamental Coeffecients of the surface (L,M,N), (e,f,g)
L= np.einsum('ij,ij->i', Xuu, n) #e
M= np.einsum('ij,ij->i', Xuv, n) #f
N= np.einsum('ij,ij->i', Xvv, n) #g
# Gaussian Curvature
K=(L*N-M**2)/(E*G-F**2)
K=np.reshape(K,lr*lb)
# Mean Curvature
H = (E*N + G*L - 2*F*M)/((E*G - F**2))
H = np.reshape(H,lr*lb)
# Principle Curvatures
Pmax = H + np.sqrt(H**2 - K)
Pmin = H - np.sqrt(H**2 - K)
#[Pmax, Pmin]
Principle = [Pmax,Pmin]
return Principle,K,H
EDIT 1:
I tried a few things based on the link provided by armatita. Following is my code:
'''
Creat half cylinder
'''
import numpy
import matplotlib.pyplot as plt
import math
ptX= []
ptY = []
ptZ = []
ptX1 = []
ptY1 = []
ptZ1 = []
for i in range(0,10):
x = []
y = []
z = []
for t in range(0,200,20):
x.append(10*math.cos(math.radians(t)))
y.append(10*math.sin(math.radians(t)))
z.append(i)
x1= 5*math.cos(math.radians(t))
y1 = 5*math.sin(math.radians(t))
z1 = i
ptX1.append(x1)
ptY1.append(y1)
ptZ1.append(z1)
ptX.append(x)
ptY.append(y)
ptZ.append(z)
X = numpy.array(ptX)
Y = numpy.array(ptY)
Z = numpy.array(ptZ)
fig = plt.figure()
ax = fig.add_subplot(111,projection = '3d')
from surfaceCurvature import surface_curvature
p,g,m= surface_curvature(X,Y,Z)
n = numpy.reshape(m,numpy.shape(X))
ax.plot_surface(X,Y,Z, rstride=1, cstride=1)
plt.show()
'''
Map mean curvature to color
'''
import numpy as np
X1 = X.ravel()
Y1 = Y.ravel()
Z1 = Z.ravel()
from scipy.interpolate import RectBivariateSpline
# Define the points at the centers of the faces:
y_coords, x_coords = np.unique(Y1), np.unique(X1)
y_centers, x_centers = [ arr[:-1] + np.diff(arr)/2 for arr in (y_coords, x_coords)]
# Convert back to a 2D grid, required for plot_surface:
#Y1 = Y.reshape(y_coords.size, -1)
#X1 = X.reshape(-1, x_coords.size)
#Z1 = Z.reshape(X.shape)
C = m.reshape(X.shape)
C -= C.min()
C /= C.max()
interp_func = RectBivariateSpline(x_coords, y_coords, C.T, kx=1, ky=1)
I get the following error:
raise TypeError('y dimension of z must have same number of y')
TypeError: y dimension of z must have same number of elements as y
All the dimensions are same. Can anybody tell what's going wrong with my implementation?
I think you need to figure out exactly what you need. Looking at your code I notice you are producing variables that have no use. Also you seem to have a function to calculate the surface curvature but than you try to make some calculations using the np.unique function for which I cannot see the purpose here (and that is why that error appears).
So let's assume this:
You have a function that returns the curvature value for each cell.
You have the X,Y and Z meshes to plot that surface.
Using your code, and assuming you m variable is the curvature (again this is in your code), if I do this:
import numpy
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import math
# Here would be the surface_curvature function
X = numpy.array(ptX)
Y = numpy.array(ptY)
Z = numpy.array(ptZ)
p,g,m= surface_curvature(X,Y,Z)
C = m.reshape(X.shape)
C -= C.min()
C /= C.max()
fig = plt.figure()
ax = fig.add_subplot(111,projection = '3d')
n = numpy.reshape(m,numpy.shape(X))
ax.plot_surface(X,Y,Z,facecolors = cm.jet(C), rstride=1, cstride=1)
plt.show()
, I obtain this:
Which is a value mapped to color in a matplotlib surface. If that C you've built is not the actual curvature you need to replace it by the one that is.

Categories