Python Resample - Pad does not fill NAN - python

I am trying to fill in the NaN's after I upsample my timeseries with resample's pad() function.
I used the resample('1min').asfreq to upsample from hourly data to minute-interval data, then used resample.('1min').pad() it does not fill in the NaN values with the previous value as it should in this Pandas.Dataframe.resample tutorial.
Run to create dataframe with datetime index
url = "https://www.ndbc.noaa.gov/view_text_file.php?filename=42887h2016.txt.gz&dir=data/historical/stdmet/"
data_csv = urlopen(url)
df = pd.read_csv(data_csv, delim_whitespace=True, index_col=0, parse_dates=True)
df.drop(['WDIR', 'WSPD', 'GST', 'WVHT', 'DPD', 'APD', 'MWD', 'PRES', 'VIS', 'TIDE', 'VIS', 'ATMP', 'WTMP'],
axis = 1, inplace = True)
#Data Preparation
df.reset_index(level=0, inplace=True)
df = df.iloc[1:]
df = df.rename(columns={'#YY': 'YY'})
#Create datetime variable
df['Date'] = df[df.columns[0:3]].apply(lambda x: '/'.join(x.dropna().astype(int).astype(str)),axis=1)
df['Time'] = df[df.columns[3:5]].apply(lambda x: ':'.join(x.dropna().astype(int).astype(str)),axis=1)
df['Date.Time'] = df['Date'] + ':' + df['Time']
df['Date'] = pd.to_datetime(df['Date'], format = '%Y/%m/%d')
df['Date.Time'] = pd.to_datetime(df['Date.Time'], format='%Y/%m/%d:%H:%M', utc=True)
#Remaining data prep for the dataframe and create index w/ time date
df = df.convert_objects(convert_numeric=True)
df = df[(df['MM'] == 2.0) | (df['MM'] == 3.0)]
df = df.replace(999, np.nan)
df = df.set_index('Date.Time')
df.drop(['hh', 'mm', 'Time', 'Date'], axis = 1, inplace = True)
The result is the dataframe we want:
YY MM DD DEWP
Date.Time
2016-12-01 00:00:00+00:00 2016 12 1 11.3
2016-12-01 01:00:00+00:00 2016 12 1 9.0
2016-12-01 02:00:00+00:00 2016 12 1 11.0
2016-12-01 03:00:00+00:00 2016 12 1 10.8
2016-12-01 04:00:00+00:00 2016 12 1 6.5
Now resample up to 1 min from an hour
df = df.resample('1min').asfreq()
df.head()
Results:
YY MM DD DEWP
Date.Time
2016-12-01 00:00:00+00:00 2016.0 12.0 1.0 11.3
2016-12-01 00:01:00+00:00 NaN NaN NaN NaN
2016-12-01 00:02:00+00:00 NaN NaN NaN NaN
2016-12-01 00:03:00+00:00 NaN NaN NaN NaN
2016-12-01 00:04:00+00:00 NaN NaN NaN NaN
Fill in NaN values with Pad command
df = df.resample('1min').pad()
df.head()
Results:
YY MM DD DEWP
Date.Time
2016-12-01 00:00:00+00:00 2016.0 12.0 1.0 11.3
2016-12-01 00:01:00+00:00 NaN NaN NaN NaN
2016-12-01 00:02:00+00:00 NaN NaN NaN NaN
2016-12-01 00:03:00+00:00 NaN NaN NaN NaN
2016-12-01 00:04:00+00:00 NaN NaN NaN NaN
Variable DEWP is supposed to look like this
YY MM DD DEWP
Date.Time
2016-12-01 00:00:00+00:00 2016.0 12.0 1.0 11.3
2016-12-01 00:01:00+00:00 2016.0 12.0 1.0 11.3
2016-12-01 00:02:00+00:00 2016.0 12.0 1.0 11.3
2016-12-01 00:03:00+00:00 2016.0 12.0 1.0 11.3
2016-12-01 00:04:00+00:00 2016.0 12.0 1.0 11.3
Any help would be appreciated!

The function df.resample('1min').fillna("pad") worked. Documentation can be found here.

Related

python datetime dataframe add some dates if there are lack of dates than I want

I have two data files and both have different periods of datetime.
As you can see below, the first 'Date' is from 2013-10-14 to 2015-11-25, and the second 'Date' is from 2014-01-01 to 2015-11-27.
If I want to make the date from 2013-10-14 to 2015-11-27 and fill the blank as np.nan, what do I have to do in the code?
If you know how to do it or any idea, please let me know.
dvv : Date
2013-10-14 -0.038875
2013-10-15 -0.038875
2013-10-16 -0.038875
2013-10-17 -0.038875
2013-10-18 -0.038875
2015-11-21 0.081939
2015-11-22 -0.097986
2015-11-23 -0.096201
2015-11-24 -0.033913
2015-11-25 -0.050553
Name: dvv, Length: 773, dtype: float64
Stations Sensor EL GL Pressure Temp EC Barometa
Date
2014-01-01 JRee3 S11 NaN NaN NaN NaN NaN NaN
2014-01-02 JRee3 S11 NaN NaN NaN NaN NaN NaN
2014-01-02 JRee3 S11 NaN NaN NaN NaN NaN NaN
2014-01-04 JRee3 S11 NaN NaN NaN NaN NaN NaN
2014-01-05 JRee3 S11 NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ...
2015-11-23 JRee3 S11 213.46 202.21 99.83 14.22 105.0 1008.13
2015-11-24 JRee3 S11 213.36 202.31 99.73 14.22 105.0 1008.36
2015-11-25 JRee3 S11 213.34 202.33 99.71 14.22 105.0 1004.40
2015-11-26 JRee3 S11 213.30 202.37 99.67 14.22 105.0 1003.13
2015-11-27 JRee3 S11 213.24 202.44 99.61 14.21 105.0 1011.00
[696 rows x 8 columns]
You can generate new dates this way (replace periods with sufficient number):
days = pd.date_range('14/10/2013', periods=365, freq='D')
You will get something like this which you can add to your dataframe:
DatetimeIndex(['2013-10-14', '2013-10-15', '2013-10-16', '2013-10-17',
'2013-10-18', '2013-10-19', '2013-10-20', '2013-10-21',
'2013-10-22', '2013-10-23',
...
'2014-10-04', '2014-10-05', '2014-10-06', '2014-10-07',
'2014-10-08', '2014-10-09', '2014-10-10', '2014-10-11',
'2014-10-12', '2014-10-13'],
dtype='datetime64[ns]', length=365, freq='D')
Assuming you have no missing values in the dates, then you can simply exploit pandas.date_range and an outer join.
Toy example below:
import pandas as pd
dates1 = pd.date_range('2013-10-14', '2015-11-25', freq='D')
dates2 = pd.date_range('2014-01-01', '2015-11-27', freq='D')
df1 = pd.DataFrame(data=[1]*len(dates1), index=dates1, columns=['var'])
df2 = pd.DataFrame(data=[2]*len(dates2), index=dates2, columns=['var'])
df1.merge(df2, left_index=True, right_index=True, how='outer')

Continuous dates for products in Pandas

I started to work with Pandas and I have some issues that I don't really know how to solve.
I have a dataframe with date, product, stock and sales. Some dates and products are missing. I would like to get a timeseries for each product in a range of dates.
For example:
product udsStock udsSales
date
2019-12-26 14 161 848
2019-12-27 14 1340 914
2019-12-30 14 856 0
2019-12-25 4 3132 439
2019-12-27 4 3177 616
2020-01-01 4 500 883
It has to be the same range for all products even if one product doesn't appear in one date in the range.
If I want the range 2019-12-25 to 2020-01-01, the final dataframe should be like this one:
product udsStock udsSales
date
2019-12-25 14 NaN NaN
2019-12-26 14 161 848
2019-12-27 14 1340 914
2019-12-28 14 NaN NaN
2019-12-29 14 NaN NaN
2019-12-30 14 856 0
2019-12-31 14 NaN NaN
2020-01-01 14 NaN NaN
2019-12-25 4 3132 439
2019-12-26 4 NaN NaN
2019-12-27 4 3177 616
2019-12-28 4 NaN NaN
2019-12-29 4 NaN NaN
2019-12-30 4 NaN NaN
2019-12-31 4 NaN NaN
2020-01-01 4 500 883
I have tried to reindex by the range but it doesn't work because there are identical indexes.
idx = pd.date_range('25-12-2019', '01-01-2020')
df = df.reindex(idx)
I also have tried to index by date and product and then reindex, but I don't know how to put the product that is missing.
Any more ideas?
Thanks in advance
We can use pd.date_range and groupby.reindex to achieve your result:
date_range = pd.date_range(start='2019-12-25', end='2020-01-01', freq='D')
df = df.groupby('product', sort=False).apply(lambda x: x.reindex(date_range))
df['product'] = df.groupby(level=0)['product'].ffill().bfill()
df = df.droplevel(0)
product udsStock udsSales
2019-12-25 14.0 NaN NaN
2019-12-26 14.0 161.0 848.0
2019-12-27 14.0 1340.0 914.0
2019-12-28 14.0 NaN NaN
2019-12-29 14.0 NaN NaN
2019-12-30 14.0 856.0 0.0
2019-12-31 14.0 NaN NaN
2020-01-01 14.0 NaN NaN
2019-12-25 4.0 3132.0 439.0
2019-12-26 4.0 NaN NaN
2019-12-27 4.0 3177.0 616.0
2019-12-28 4.0 NaN NaN
2019-12-29 4.0 NaN NaN
2019-12-30 4.0 NaN NaN
2019-12-31 4.0 NaN NaN
2020-01-01 4.0 500.0 883.0
Convert index to datetime object :
df2.index = pd.to_datetime(df2.index)
Create unique combinations of date and product :
import itertools
idx = pd.date_range("25-12-2019", "01-01-2020")
product = df2["product"].unique()
temp = itertools.product(idx, product)
temp = pd.MultiIndex.from_tuples(temp, names=["date", "product"])
temp
MultiIndex([('2019-12-25', 14),
('2019-12-25', 4),
('2019-12-26', 14),
('2019-12-26', 4),
('2019-12-27', 14),
('2019-12-27', 4),
('2019-12-28', 14),
('2019-12-28', 4),
('2019-12-29', 14),
('2019-12-29', 4),
('2019-12-30', 14),
('2019-12-30', 4),
('2019-12-31', 14),
('2019-12-31', 4),
('2020-01-01', 14),
('2020-01-01', 4)],
names=['date', 'product'])
Reindex dataframe :
df2.set_index("product", append=True).reindex(temp).sort_index(
level=1, ascending=False
).reset_index(level="product")
product udsStock udsSales
date
2020-01-01 14 NaN NaN
2019-12-31 14 NaN NaN
2019-12-30 14 856.0 0.0
2019-12-29 14 NaN NaN
2019-12-28 14 NaN NaN
2019-12-27 14 1340.0 914.0
2019-12-26 14 161.0 848.0
2019-12-25 14 NaN NaN
2020-01-01 4 500.0 883.0
2019-12-31 4 NaN NaN
2019-12-30 4 NaN NaN
2019-12-29 4 NaN NaN
2019-12-28 4 NaN NaN
2019-12-27 4 3177.0 616.0
2019-12-26 4 NaN NaN
2019-12-25 4 3132.0 439.0
In R, specifically tidyverse, it can be achieved with the complete method. In Python, the pyjanitor package has something similar, but a few kinks remain to be ironed out (A PR has been submitted already for this).

Reindexing timeseries data

I have an issue similar to "ValueError: cannot reindex from a duplicate axis".The solution isn't provided.
I have an excel file containing multiple rows and columns of weather data. Data has missing at certain intervals although not shown in the sample below. I want to reindex the time column at 5 minute intervals so that I can interpolate the missing values. Data Sample:
Date Time Temp Hum Dewpnt WindSpd
04/01/18 12:05 a 30.6 49 18.7 2.7
04/01/18 12:10 a NaN 51 19.3 1.3
04/01/18 12:20 a 30.7 NaN 19.1 2.2
04/01/18 12:30 a 30.7 51 19.4 2.2
04/01/18 12:40 a 30.9 51 19.6 0.9
Here's what I have tried.
import pandas as pd
ts = pd.read_excel('E:\DATA\AP.xlsx')
ts['Time'] = pd.to_datetime(ts['Time'])
ts.set_index('Time', inplace=True)
dt = pd.date_range("2018-04-01 00:00:00", "2018-05-01 00:00:00", freq='5min', name='T')
idx = pd.DatetimeIndex(dt)
ts.reindex(idx)
I just just want to have my index at 5 min frequency so that I can interpolate the NaN later. Expected output:
Date Time Temp Hum Dewpnt WindSpd
04/01/18 12:05 a 30.6 49 18.7 2.7
04/01/18 12:10 a NaN 51 19.3 1.3
04/01/18 12:15 a NaN NaN NaN NaN
04/01/18 12:20 a 30.7 NaN 19.1 2.2
04/01/18 12:25 a NaN NaN NaN NaN
04/01/18 12:30 a 30.7 51 19.4 2.2
One more approach.
df['Time'] = pd.to_datetime(df['Time'])
df = df.set_index(['Time']).resample('5min').last().reset_index()
df['Time'] = df['Time'].dt.time
df
output
Time Date Temp Hum Dewpnt WindSpd
0 00:05:00 4/1/2018 30.6 49.0 18.7 2.7
1 00:10:00 4/1/2018 NaN 51.0 19.3 1.3
2 00:15:00 NaN NaN NaN NaN NaN
3 00:20:00 4/1/2018 30.7 NaN 19.1 2.2
4 00:25:00 NaN NaN NaN NaN NaN
5 00:30:00 4/1/2018 30.7 51.0 19.4 2.2
6 00:35:00 NaN NaN NaN NaN NaN
7 00:40:00 4/1/2018 30.9 51.0 19.6 0.9
If times from multiple dates have to be re-sampled, you can use code below.
However, you will have to seperate 'Date' & 'Time' columns later.
df1['DateTime'] = df1['Date']+df1['Time']
df1['DateTime'] = pd.to_datetime(df1['DateTime'],format='%d/%m/%Y%I:%M %p')
df1 = df1.set_index(['DateTime']).resample('5min').last().reset_index()
df1
Output
DateTime Date Time Temp Hum Dewpnt WindSpd
0 2018-01-04 00:05:00 4/1/2018 12:05 AM 30.6 49.0 18.7 2.7
1 2018-01-04 00:10:00 4/1/2018 12:10 AM NaN 51.0 19.3 1.3
2 2018-01-04 00:15:00 NaN NaN NaN NaN NaN NaN
3 2018-01-04 00:20:00 4/1/2018 12:20 AM 30.7 NaN 19.1 2.2
4 2018-01-04 00:25:00 NaN NaN NaN NaN NaN NaN
5 2018-01-04 00:30:00 4/1/2018 12:30 AM 30.7 51.0 19.4 2.2
6 2018-01-04 00:35:00 NaN NaN NaN NaN NaN NaN
7 2018-01-04 00:40:00 4/1/2018 12:40 AM 30.9 51.0 19.6 0.9
You can try this for example:
import pandas as pd
ts = pd.read_excel('E:\DATA\AP.xlsx')
ts['Time'] = pd.to_datetime(ts['Time'])
ts.set_index('Time', inplace=True)
ts.resample('5T').mean()
More information here: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
Set the Time column as the index, making sure it is DateTime type, then try
ts.asfreq('5T')
use
ts.asfreq('5T', method='ffill')
to pull previous values forward.
I would take the approach of creating a blank table and fill it in with the data as it comes from your data source. For this example three observations are read in as NaN, plus the row for 1:15 and 1:20 is missing.
import pandas as pd
import numpy as np
rawpd = pd.read_excel('raw.xlsx')
print(rawpd)
Date Time Col1 Col2
0 2018-04-01 01:00:00 1.0 10.0
1 2018-04-01 01:05:00 2.0 NaN
2 2018-04-01 01:10:00 NaN 10.0
3 2018-04-01 01:20:00 NaN 10.0
4 2018-04-01 01:30:00 5.0 10.0
Now create a dataframe targpd with the ideal structure.
time5min = pd.date_range(start='2018/04/1 01:00',periods=7,freq='5min')
targpd = pd.DataFrame(np.nan,index = time5min,columns=['Col1','Col2'])
print(targpd)
Col1 Col2
2018-04-01 01:00:00 NaN NaN
2018-04-01 01:05:00 NaN NaN
2018-04-01 01:10:00 NaN NaN
2018-04-01 01:15:00 NaN NaN
2018-04-01 01:20:00 NaN NaN
2018-04-01 01:25:00 NaN NaN
2018-04-01 01:30:00 NaN NaN
Now the trick is to update targpd with the data sent to you in rawpd. For this to happen the Date and Time columns have to be combined in rawpd and made into an index.
print(rawpd.Date,rawpd.Time)
0 2018-04-01
1 2018-04-01
2 2018-04-01
3 2018-04-01
4 2018-04-01
Name: Date, dtype: datetime64[ns]
0 01:00:00
1 01:05:00
2 01:10:00
3 01:20:00
4 01:30:00
Name: Time, dtype: object
You can see above the trick in all this. Your date data was converted to datetime but your time data is just a string. Below a proper index is created by used of a lambda function.
rawidx=rawpd.apply(lambda r : pd.datetime.combine(r['Date'],r['Time']),1)
print(rawidx)
This can be applied to the rawpd database as an index.
rawpd2=pd.DataFrame(rawpd[['Col1','Col2']].values,index=rawidx,columns=['Col1','Col2'])
rawpd2=rawpd2.sort_index()
print(rawpd2)
Once this is in place the update command can get you what you want.
targpd.update(rawpd2,overwrite=True)
print(targpd)
Col1 Col2
2018-04-01 01:00:00 1.0 10.0
2018-04-01 01:00:00 1.0 10.0
2018-04-01 01:05:00 2.0 NaN
2018-04-01 01:10:00 NaN 10.0
2018-04-01 01:15:00 NaN NaN
2018-04-01 01:20:00 NaN 10.0
2018-04-01 01:25:00 NaN NaN
2018-04-01 01:30:00 5.0 10.0
2018-04-01 01:05:00 2.0 NaN
2018-04-01 01:10:00 NaN 10.0
2018-04-01 01:15:00 NaN NaN
2018-04-01 01:20:00 NaN 10.0
2018-04-01 01:25:00 NaN NaN
2018-04-01 01:30:00 5.0 10.0
You now have a file ready for interpolation
I have got it to work. thank you everyone for your time. I am providing the working code.
import pandas as pd
df = pd.read_excel('E:\DATA\AP.xlsx', sheet_name='Sheet1', parse_dates=[['Date', 'Time']])
df = df.set_index(['Date_Time']).resample('5min').last().reset_index()
print(df)

Pandas fillna with datetime of another column, but with modification

I have a DataFrame:
pd.DataFrame({"date": ["2018-12-21", "2018-12-22", "2018-05-04"], "price":[100,np.nan, 105]})
Out:
date price
2018-12-21 100.0
2018-12-22 NaN
2018-05-04 105.0
I'm trying to .fillna() by taking the value of Price, of the day before. So in this case, the NaN value will be filled with 100, because we took the date of the NaN value minus one day.
Use:
df = pd.DataFrame({"date": ["2018-12-21", "2018-12-22",
"2018-05-04","2018-05-05",
"2018-05-06","2018-05-09"],
"price":[100,np.nan, 105, np.nan, 108, np.nan]})
print (df)
date price
0 2018-12-21 100.0
1 2018-12-22 NaN
2 2018-05-04 105.0
3 2018-05-05 NaN
4 2018-05-06 108.0
5 2018-05-09 NaN
df['date'] = pd.to_datetime(df['date'])
df = df.set_index('date')
df['price'] = df['price'].combine_first(df['price'].shift(1, freq='d'))
#alternative
#df['price'] = df['price'].combine_first(df['price'].shift(1, freq='d'))
print (df)
price
date
2018-12-21 100.0
2018-12-22 100.0
2018-05-04 105.0
2018-05-05 105.0
2018-05-06 108.0
2018-05-09 NaN
If need repalce last non missing value (not day before):
df['price'] = df['price'].ffill()
print (df)
date price
0 2018-12-21 100.0
1 2018-12-22 100.0
2 2018-05-04 105.0
3 2018-05-05 105.0
4 2018-05-06 108.0
5 2018-05-09 108.0

How to read and write table with extra information as a dataframe and adding new columns from the informations

I have a file-like object generated from StringIO which is a table with lines of information ahead the table (see below starting from #TIMESTAMP).
I want to add extra columns to the exisiting table using the information "Date", "UTCoffset - Time (Substraction)" from #Timestamp and "ZenAngle" from #GLOBAL_SUMMARY.
I used pd.read_csv command to read it but it only worked when I skip the first 8 rows which includes the information I need. Also the Error "TypeError: data argument can't be an iterator" was reported as I tried to import the object below as dataframe.
#TIMESTAMP
UTCOffset,Date,Time
+00:30:32,2011-09-05,08:32:21
#GLOBAL_SUMMARY
Time,IntACGIH,IntCIE,ZenAngle,MuValue,AzimAngle,Flag,TempC,O3,Err_O3,SO2,Err_SO2,F324
08:32:21,7.3576,52.758,59.109,1.929,114.427,000000,24,291,1,,,91.9
#GLOBAL
Wavelength,S-Irradiance,Time
290.0,0.000e+00
290.5,0.000e+00
291.0,4.380e-06
291.5,2.234e-05
292.0,2.102e-05
292.5,2.204e-05
293.0,2.453e-05
293.5,2.256e-05
294.0,3.088e-05
294.5,4.676e-05
295.0,3.384e-05
295.5,3.582e-05
296.0,4.298e-05
296.5,3.774e-05
297.0,4.779e-05
297.5,7.399e-05
298.0,9.214e-05
298.5,1.080e-04
299.0,2.143e-04
299.5,3.180e-04
300.0,3.337e-04
300.5,4.990e-04
301.0,8.688e-04
301.5,1.210e-03
302.0,1.133e-03
I think you can first use read_csv to create 3 DataFrames:
import pandas as pd
import io
temp=u"""#TIMESTAMP
UTCOffset,Date,Time
+00:30:32,2011-09-05,08:32:21
#GLOBAL_SUMMARY
Time,IntACGIH,IntCIE,ZenAngle,MuValue,AzimAngle,Flag,TempC,O3,Err_O3,SO2,Err_SO2,F324
08:32:21,7.3576,52.758,59.109,1.929,114.427,000000,24,291,1,,,91.9
#GLOBAL
Wavelength,S-Irradiance,Time
290.0,0.000e+00
290.5,0.000e+00
291.0,4.380e-06
291.5,2.234e-05
292.0,2.102e-05
292.5,2.204e-05
293.0,2.453e-05
293.5,2.256e-05
294.0,3.088e-05
294.5,4.676e-05
295.0,3.384e-05
295.5,3.582e-05
296.0,4.298e-05
296.5,3.774e-05
297.0,4.779e-05
297.5,7.399e-05
298.0,9.214e-05
298.5,1.080e-04
299.0,2.143e-04
299.5,3.180e-04
300.0,3.337e-04
300.5,4.990e-04
301.0,8.688e-04
301.5,1.210e-03
302.0,1.133e-03
"""
df1 = pd.read_csv(io.StringIO(temp),
skiprows=9)
print (df1)
Wavelength S-Irradiance Time
0 290.0 0.000000 NaN
1 290.5 0.000000 NaN
2 291.0 0.000004 NaN
3 291.5 0.000022 NaN
4 292.0 0.000021 NaN
5 292.5 0.000022 NaN
6 293.0 0.000025 NaN
7 293.5 0.000023 NaN
8 294.0 0.000031 NaN
9 294.5 0.000047 NaN
10 295.0 0.000034 NaN
11 295.5 0.000036 NaN
12 296.0 0.000043 NaN
13 296.5 0.000038 NaN
14 297.0 0.000048 NaN
15 297.5 0.000074 NaN
16 298.0 0.000092 NaN
17 298.5 0.000108 NaN
18 299.0 0.000214 NaN
19 299.5 0.000318 NaN
20 300.0 0.000334 NaN
21 300.5 0.000499 NaN
22 301.0 0.000869 NaN
23 301.5 0.001210 NaN
24 302.0 0.001133 NaN
df2 = pd.read_csv(io.StringIO(temp),
skiprows=1,
nrows=1)
print (df2)
UTCOffset Date Time
0 +00:30:32 2011-09-05 08:32:21
df3 = pd.read_csv(io.StringIO(temp),
skiprows=5,
nrows=1)
print (df3)
Time IntACGIH IntCIE ZenAngle MuValue AzimAngle Flag TempC O3 \
0 08:32:21 7.3576 52.758 59.109 1.929 114.427 0 24 291
Err_O3 SO2 Err_SO2 F324
0 1 NaN NaN 91.9

Categories