I am following some examples online to learn how to program in parallel, i.e., how to use multiprocessing.
I am running on windows 10, with spyder 3.3.6, python 3.7.
import os
import time
from multiprocessing import Process, Queue
def square(numbers, queue):
print("started square")
for i in numbers:
queue.put(i*i)
print(i*i)
print(f"{os.getpid()}")
def cube(numbers, queue):
print("started cube")
for i in numbers:
queue.put(i*i*i)
print(i*i*i)
print(f"{os.getpid()}")
if __name__ == '__main__':
numbers = range(5)
queue = Queue()
square_process = Process(target=square, args=(numbers,queue))
cube_process = Process(target=cube, args=(numbers,queue))
square_process.start()
cube_process.start()
square_process.join()
cube_process.join()
print("Already joined")
while not queue.empty():
print(queue.get())
I expect the output of queue to be mixed or uncertain as it depends on how fast a process is started or how fast the first process finishes all the statements?
Theoretically, we can get something like 0, 1, 4, 8, 9, 27, 16, 64.
But the actual output is sequential like below
0
1
4
9
16
0
1
8
27
64
There are few things to understand here
Two processes are executing square and cube functions independently. Within the functions they will maintain the order as it is governed by for loop.
The only part that is going to be random at a point in time is - 'which process is executing and adding what to queue'. So it may be that square process is in its 5th iteration (i = 4) while cube process is in its 2nd iteration (i = 1).
You are using a single instance of Queue to add items from two processes that are executing square and cube functions separately. Queues are first in first out (FIFO) so when you get from Queue (& print in the main thread) it will maintain the order in which it has received the items.
Execute following updated version of your program, to better understand
import os
import time
from multiprocessing import Process, Queue
def square(numbers, queue):
print("started square process id is %s"%os.getpid())
for i in numbers:
queue.put("Square of %s is %s "%(i, i*i))
print("square: added %s in queue:"%i)
def cube(numbers, queue):
print("started cube process id is %s"%os.getpid())
for i in numbers:
queue.put("Cube of %s is %s "%(i, i*i*i))
print("cube: added %s in queue:"%i)
if __name__ == '__main__':
numbers = range(15)
queue = Queue()
square_process = Process(target=square, args=(numbers,queue))
cube_process = Process(target=cube, args=(numbers,queue))
square_process.start()
cube_process.start()
square_process.join()
cube_process.join()
print("Already joined")
while not queue.empty():
print(queue.get())
pretty sure this is just because spinning up a process takes some time, so they tend to run after each other
I rewrote it to make jobs have a better chance of running in parallel:
from multiprocessing import Process, Queue
from time import time, sleep
def fn(queue, offset, start_time):
sleep(start_time - time())
for i in range(10):
queue.put(offset + i)
if __name__ == '__main__':
queue = Queue()
start_time = time() + 0.1
procs = []
for i in range(2):
args = (queue, i * 10, start_time)
procs.append(Process(target=fn, args=args))
for p in procs: p.start()
for p in procs: p.join()
while not queue.empty():
print(queue.get())
I should note that I get nondeterministic ordering of output as you seemed to be expecting. I'm under Linux so you might get something different under Windows, but I think it's unlikely
Looks like MisterMiyagi is right. Start additional python process is much more expensive, than calculating squares from 0 to 4 :) I've created version of code with lock primitive and now we sure that processes started simultaneously.
import os
from multiprocessing import Process, Queue, Lock
def square(numbers, queue, lock):
print("started square")
# Block here, until lock release
lock.acquire()
for i in numbers:
queue.put(i*i)
print(f"{os.getpid()}")
def cube(numbers, queue, lock):
# Finally release lock
lock.release()
print("started cube")
for i in numbers:
queue.put(i*i*i)
print(f"{os.getpid()}")
if __name__ == '__main__':
numbers = range(5)
queue = Queue()
lock = Lock()
# Activate lock
lock.acquire()
square_process = Process(target=square, args=(numbers,queue,lock))
cube_process = Process(target=cube, args=(numbers,queue,lock))
square_process.start()
cube_process.start()
cube_process.join()
square_process.join()
print("Already joined")
while not queue.empty():
print(queue.get())
My output is:
0
0
1
4
1
9
8
16
27
64
The processes themselves are not doing anything CPU heavy or network bound so they take pretty negligible amount of time to execute. My guess would be that by the time the second process is started, the first one is already finished. Processes are parallel by nature, but since your tasks are so menial it gives the illusion that they are being run sequentially. You can introduce some randomness into your script to see the parallelism in action,
import os
from multiprocessing import Process, Queue
from random import randint
from time import sleep
def square(numbers, queue):
print("started square")
for i in numbers:
if randint(0,1000)%2==0:
sleep(3)
queue.put(i*i)
print(i*i)
print(f"square PID : {os.getpid()}")
def cube(numbers, queue):
print("started cube")
for i in numbers:
if randint(0,1000)%2==0:
sleep(3)
queue.put(i*i*i)
print(i*i*i)
print(f"cube PID : {os.getpid()}")
if __name__ == '__main__':
numbers = range(5)
queue = Queue()
square_process = Process(target=square, args=(numbers,queue))
cube_process = Process(target=cube, args=(numbers,queue))
square_process.start()
cube_process.start()
square_process.join()
cube_process.join()
print("Already joined")
while not queue.empty():
print(queue.get())
Here the two processes randomly pause their execution, so when one process is paused the other one gets a chance to add a number to the queue (multiprocessing.Queue is thread and process safe). If you run this script a couple of times you'll see that the order of items in the queue are not always the same
I am trying to understand threading in Python. I've looked at the documentation and examples, but quite frankly, many examples are overly sophisticated and I'm having trouble understanding them.
How do you clearly show tasks being divided for multi-threading?
Since this question was asked in 2010, there has been real simplification in how to do simple multithreading with Python with map and pool.
The code below comes from an article/blog post that you should definitely check out (no affiliation) - Parallelism in one line: A Better Model for Day to Day Threading Tasks. I'll summarize below - it ends up being just a few lines of code:
from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(4)
results = pool.map(my_function, my_array)
Which is the multithreaded version of:
results = []
for item in my_array:
results.append(my_function(item))
Description
Map is a cool little function, and the key to easily injecting parallelism into your Python code. For those unfamiliar, map is something lifted from functional languages like Lisp. It is a function which maps another function over a sequence.
Map handles the iteration over the sequence for us, applies the function, and stores all of the results in a handy list at the end.
Implementation
Parallel versions of the map function are provided by two libraries:multiprocessing, and also its little known, but equally fantastic step child:multiprocessing.dummy.
multiprocessing.dummy is exactly the same as multiprocessing module, but uses threads instead (an important distinction - use multiple processes for CPU-intensive tasks; threads for (and during) I/O):
multiprocessing.dummy replicates the API of multiprocessing, but is no more than a wrapper around the threading module.
import urllib2
from multiprocessing.dummy import Pool as ThreadPool
urls = [
'http://www.python.org',
'http://www.python.org/about/',
'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
'http://www.python.org/doc/',
'http://www.python.org/download/',
'http://www.python.org/getit/',
'http://www.python.org/community/',
'https://wiki.python.org/moin/',
]
# Make the Pool of workers
pool = ThreadPool(4)
# Open the URLs in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)
# Close the pool and wait for the work to finish
pool.close()
pool.join()
And the timing results:
Single thread: 14.4 seconds
4 Pool: 3.1 seconds
8 Pool: 1.4 seconds
13 Pool: 1.3 seconds
Passing multiple arguments (works like this only in Python 3.3 and later):
To pass multiple arrays:
results = pool.starmap(function, zip(list_a, list_b))
Or to pass a constant and an array:
results = pool.starmap(function, zip(itertools.repeat(constant), list_a))
If you are using an earlier version of Python, you can pass multiple arguments via this workaround).
(Thanks to user136036 for the helpful comment.)
Here's a simple example: you need to try a few alternative URLs and return the contents of the first one to respond.
import Queue
import threading
import urllib2
# Called by each thread
def get_url(q, url):
q.put(urllib2.urlopen(url).read())
theurls = ["http://google.com", "http://yahoo.com"]
q = Queue.Queue()
for u in theurls:
t = threading.Thread(target=get_url, args = (q,u))
t.daemon = True
t.start()
s = q.get()
print s
This is a case where threading is used as a simple optimization: each subthread is waiting for a URL to resolve and respond, to put its contents on the queue; each thread is a daemon (won't keep the process up if the main thread ends -- that's more common than not); the main thread starts all subthreads, does a get on the queue to wait until one of them has done a put, then emits the results and terminates (which takes down any subthreads that might still be running, since they're daemon threads).
Proper use of threads in Python is invariably connected to I/O operations (since CPython doesn't use multiple cores to run CPU-bound tasks anyway, the only reason for threading is not blocking the process while there's a wait for some I/O). Queues are almost invariably the best way to farm out work to threads and/or collect the work's results, by the way, and they're intrinsically threadsafe, so they save you from worrying about locks, conditions, events, semaphores, and other inter-thread coordination/communication concepts.
NOTE: For actual parallelization in Python, you should use the multiprocessing module to fork multiple processes that execute in parallel (due to the global interpreter lock, Python threads provide interleaving, but they are in fact executed serially, not in parallel, and are only useful when interleaving I/O operations).
However, if you are merely looking for interleaving (or are doing I/O operations that can be parallelized despite the global interpreter lock), then the threading module is the place to start. As a really simple example, let's consider the problem of summing a large range by summing subranges in parallel:
import threading
class SummingThread(threading.Thread):
def __init__(self,low,high):
super(SummingThread, self).__init__()
self.low=low
self.high=high
self.total=0
def run(self):
for i in range(self.low,self.high):
self.total+=i
thread1 = SummingThread(0,500000)
thread2 = SummingThread(500000,1000000)
thread1.start() # This actually causes the thread to run
thread2.start()
thread1.join() # This waits until the thread has completed
thread2.join()
# At this point, both threads have completed
result = thread1.total + thread2.total
print result
Note that the above is a very stupid example, as it does absolutely no I/O and will be executed serially albeit interleaved (with the added overhead of context switching) in CPython due to the global interpreter lock.
Like others mentioned, CPython can use threads only for I/O waits due to GIL.
If you want to benefit from multiple cores for CPU-bound tasks, use multiprocessing:
from multiprocessing import Process
def f(name):
print 'hello', name
if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()
Just a note: A queue is not required for threading.
This is the simplest example I could imagine that shows 10 processes running concurrently.
import threading
from random import randint
from time import sleep
def print_number(number):
# Sleeps a random 1 to 10 seconds
rand_int_var = randint(1, 10)
sleep(rand_int_var)
print "Thread " + str(number) + " slept for " + str(rand_int_var) + " seconds"
thread_list = []
for i in range(1, 10):
# Instantiates the thread
# (i) does not make a sequence, so (i,)
t = threading.Thread(target=print_number, args=(i,))
# Sticks the thread in a list so that it remains accessible
thread_list.append(t)
# Starts threads
for thread in thread_list:
thread.start()
# This blocks the calling thread until the thread whose join() method is called is terminated.
# From http://docs.python.org/2/library/threading.html#thread-objects
for thread in thread_list:
thread.join()
# Demonstrates that the main process waited for threads to complete
print "Done"
The answer from Alex Martelli helped me. However, here is a modified version that I thought was more useful (at least to me).
Updated: works in both Python 2 and Python 3
try:
# For Python 3
import queue
from urllib.request import urlopen
except:
# For Python 2
import Queue as queue
from urllib2 import urlopen
import threading
worker_data = ['http://google.com', 'http://yahoo.com', 'http://bing.com']
# Load up a queue with your data. This will handle locking
q = queue.Queue()
for url in worker_data:
q.put(url)
# Define a worker function
def worker(url_queue):
queue_full = True
while queue_full:
try:
# Get your data off the queue, and do some work
url = url_queue.get(False)
data = urlopen(url).read()
print(len(data))
except queue.Empty:
queue_full = False
# Create as many threads as you want
thread_count = 5
for i in range(thread_count):
t = threading.Thread(target=worker, args = (q,))
t.start()
Given a function, f, thread it like this:
import threading
threading.Thread(target=f).start()
To pass arguments to f
threading.Thread(target=f, args=(a,b,c)).start()
I found this very useful: create as many threads as cores and let them execute a (large) number of tasks (in this case, calling a shell program):
import Queue
import threading
import multiprocessing
import subprocess
q = Queue.Queue()
for i in range(30): # Put 30 tasks in the queue
q.put(i)
def worker():
while True:
item = q.get()
# Execute a task: call a shell program and wait until it completes
subprocess.call("echo " + str(item), shell=True)
q.task_done()
cpus = multiprocessing.cpu_count() # Detect number of cores
print("Creating %d threads" % cpus)
for i in range(cpus):
t = threading.Thread(target=worker)
t.daemon = True
t.start()
q.join() # Block until all tasks are done
Python 3 has the facility of launching parallel tasks. This makes our work easier.
It has thread pooling and process pooling.
The following gives an insight:
ThreadPoolExecutor Example (source)
import concurrent.futures
import urllib.request
URLS = ['http://www.foxnews.com/',
'http://www.cnn.com/',
'http://europe.wsj.com/',
'http://www.bbc.co.uk/',
'http://some-made-up-domain.com/']
# Retrieve a single page and report the URL and contents
def load_url(url, timeout):
with urllib.request.urlopen(url, timeout=timeout) as conn:
return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
# Start the load operations and mark each future with its URL
future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
data = future.result()
except Exception as exc:
print('%r generated an exception: %s' % (url, exc))
else:
print('%r page is %d bytes' % (url, len(data)))
ProcessPoolExecutor (source)
import concurrent.futures
import math
PRIMES = [
112272535095293,
112582705942171,
112272535095293,
115280095190773,
115797848077099,
1099726899285419]
def is_prime(n):
if n % 2 == 0:
return False
sqrt_n = int(math.floor(math.sqrt(n)))
for i in range(3, sqrt_n + 1, 2):
if n % i == 0:
return False
return True
def main():
with concurrent.futures.ProcessPoolExecutor() as executor:
for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
print('%d is prime: %s' % (number, prime))
if __name__ == '__main__':
main()
I saw a lot of examples here where no real work was being performed, and they were mostly CPU-bound. Here is an example of a CPU-bound task that computes all prime numbers between 10 million and 10.05 million. I have used all four methods here:
import math
import timeit
import threading
import multiprocessing
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
def time_stuff(fn):
"""
Measure time of execution of a function
"""
def wrapper(*args, **kwargs):
t0 = timeit.default_timer()
fn(*args, **kwargs)
t1 = timeit.default_timer()
print("{} seconds".format(t1 - t0))
return wrapper
def find_primes_in(nmin, nmax):
"""
Compute a list of prime numbers between the given minimum and maximum arguments
"""
primes = []
# Loop from minimum to maximum
for current in range(nmin, nmax + 1):
# Take the square root of the current number
sqrt_n = int(math.sqrt(current))
found = False
# Check if the any number from 2 to the square root + 1 divides the current numnber under consideration
for number in range(2, sqrt_n + 1):
# If divisible we have found a factor, hence this is not a prime number, lets move to the next one
if current % number == 0:
found = True
break
# If not divisible, add this number to the list of primes that we have found so far
if not found:
primes.append(current)
# I am merely printing the length of the array containing all the primes, but feel free to do what you want
print(len(primes))
#time_stuff
def sequential_prime_finder(nmin, nmax):
"""
Use the main process and main thread to compute everything in this case
"""
find_primes_in(nmin, nmax)
#time_stuff
def threading_prime_finder(nmin, nmax):
"""
If the minimum is 1000 and the maximum is 2000 and we have four workers,
1000 - 1250 to worker 1
1250 - 1500 to worker 2
1500 - 1750 to worker 3
1750 - 2000 to worker 4
so let’s split the minimum and maximum values according to the number of workers
"""
nrange = nmax - nmin
threads = []
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
# Start the thread with the minimum and maximum split up to compute
# Parallel computation will not work here due to the GIL since this is a CPU-bound task
t = threading.Thread(target = find_primes_in, args = (start, end))
threads.append(t)
t.start()
# Don’t forget to wait for the threads to finish
for t in threads:
t.join()
#time_stuff
def processing_prime_finder(nmin, nmax):
"""
Split the minimum, maximum interval similar to the threading method above, but use processes this time
"""
nrange = nmax - nmin
processes = []
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
p = multiprocessing.Process(target = find_primes_in, args = (start, end))
processes.append(p)
p.start()
for p in processes:
p.join()
#time_stuff
def thread_executor_prime_finder(nmin, nmax):
"""
Split the min max interval similar to the threading method, but use a thread pool executor this time.
This method is slightly faster than using pure threading as the pools manage threads more efficiently.
This method is still slow due to the GIL limitations since we are doing a CPU-bound task.
"""
nrange = nmax - nmin
with ThreadPoolExecutor(max_workers = 8) as e:
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
e.submit(find_primes_in, start, end)
#time_stuff
def process_executor_prime_finder(nmin, nmax):
"""
Split the min max interval similar to the threading method, but use the process pool executor.
This is the fastest method recorded so far as it manages process efficiently + overcomes GIL limitations.
RECOMMENDED METHOD FOR CPU-BOUND TASKS
"""
nrange = nmax - nmin
with ProcessPoolExecutor(max_workers = 8) as e:
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
e.submit(find_primes_in, start, end)
def main():
nmin = int(1e7)
nmax = int(1.05e7)
print("Sequential Prime Finder Starting")
sequential_prime_finder(nmin, nmax)
print("Threading Prime Finder Starting")
threading_prime_finder(nmin, nmax)
print("Processing Prime Finder Starting")
processing_prime_finder(nmin, nmax)
print("Thread Executor Prime Finder Starting")
thread_executor_prime_finder(nmin, nmax)
print("Process Executor Finder Starting")
process_executor_prime_finder(nmin, nmax)
if __name__ == "__main__":
main()
Here are the results on my Mac OS X four-core machine
Sequential Prime Finder Starting
9.708213827005238 seconds
Threading Prime Finder Starting
9.81836523200036 seconds
Processing Prime Finder Starting
3.2467174359990167 seconds
Thread Executor Prime Finder Starting
10.228896902000997 seconds
Process Executor Finder Starting
2.656402041000547 seconds
Using the blazing new concurrent.futures module
def sqr(val):
import time
time.sleep(0.1)
return val * val
def process_result(result):
print(result)
def process_these_asap(tasks):
import concurrent.futures
with concurrent.futures.ProcessPoolExecutor() as executor:
futures = []
for task in tasks:
futures.append(executor.submit(sqr, task))
for future in concurrent.futures.as_completed(futures):
process_result(future.result())
# Or instead of all this just do:
# results = executor.map(sqr, tasks)
# list(map(process_result, results))
def main():
tasks = list(range(10))
print('Processing {} tasks'.format(len(tasks)))
process_these_asap(tasks)
print('Done')
return 0
if __name__ == '__main__':
import sys
sys.exit(main())
The executor approach might seem familiar to all those who have gotten their hands dirty with Java before.
Also on a side note: To keep the universe sane, don't forget to close your pools/executors if you don't use with context (which is so awesome that it does it for you)
For me, the perfect example for threading is monitoring asynchronous events. Look at this code.
# thread_test.py
import threading
import time
class Monitor(threading.Thread):
def __init__(self, mon):
threading.Thread.__init__(self)
self.mon = mon
def run(self):
while True:
if self.mon[0] == 2:
print "Mon = 2"
self.mon[0] = 3;
You can play with this code by opening an IPython session and doing something like:
>>> from thread_test import Monitor
>>> a = [0]
>>> mon = Monitor(a)
>>> mon.start()
>>> a[0] = 2
Mon = 2
>>>a[0] = 2
Mon = 2
Wait a few minutes
>>> a[0] = 2
Mon = 2
Most documentation and tutorials use Python's Threading and Queue module, and they could seem overwhelming for beginners.
Perhaps consider the concurrent.futures.ThreadPoolExecutor module of Python 3.
Combined with with clause and list comprehension it could be a real charm.
from concurrent.futures import ThreadPoolExecutor, as_completed
def get_url(url):
# Your actual program here. Using threading.Lock() if necessary
return ""
# List of URLs to fetch
urls = ["url1", "url2"]
with ThreadPoolExecutor(max_workers = 5) as executor:
# Create threads
futures = {executor.submit(get_url, url) for url in urls}
# as_completed() gives you the threads once finished
for f in as_completed(futures):
# Get the results
rs = f.result()
With borrowing from this post we know about choosing between the multithreading, multiprocessing, and async/asyncio and their usage.
Python 3 has a new built-in library in order to make concurrency and parallelism — concurrent.futures
So I'll demonstrate through an experiment to run four tasks (i.e. .sleep() method) by Threading-Pool:
from concurrent.futures import ThreadPoolExecutor, as_completed
from time import sleep, time
def concurrent(max_worker):
futures = []
tic = time()
with ThreadPoolExecutor(max_workers=max_worker) as executor:
futures.append(executor.submit(sleep, 2)) # Two seconds sleep
futures.append(executor.submit(sleep, 1))
futures.append(executor.submit(sleep, 7))
futures.append(executor.submit(sleep, 3))
for future in as_completed(futures):
if future.result() is not None:
print(future.result())
print(f'Total elapsed time by {max_worker} workers:', time()-tic)
concurrent(5)
concurrent(4)
concurrent(3)
concurrent(2)
concurrent(1)
Output:
Total elapsed time by 5 workers: 7.007831811904907
Total elapsed time by 4 workers: 7.007944107055664
Total elapsed time by 3 workers: 7.003149509429932
Total elapsed time by 2 workers: 8.004627466201782
Total elapsed time by 1 workers: 13.013478994369507
[NOTE]:
As you can see in the above results, the best case was 3 workers for those four tasks.
If you have a process task instead of I/O bound or blocking (multiprocessing instead of threading) you can change the ThreadPoolExecutor to ProcessPoolExecutor.
I would like to contribute with a simple example and the explanations I've found useful when I had to tackle this problem myself.
In this answer you will find some information about Python's GIL (global interpreter lock) and a simple day-to-day example written using multiprocessing.dummy plus some simple benchmarks.
Global Interpreter Lock (GIL)
Python doesn't allow multi-threading in the truest sense of the word. It has a multi-threading package, but if you want to multi-thread to speed your code up, then it's usually not a good idea to use it.
Python has a construct called the global interpreter lock (GIL).
The GIL makes sure that only one of your 'threads' can execute at any one time. A thread acquires the GIL, does a little work, then passes the GIL onto the next thread.
This happens very quickly so to the human eye it may seem like your threads are executing in parallel, but they are really just taking turns using the same CPU core.
All this GIL passing adds overhead to execution. This means that if you want to make your code run faster then using the threading
package often isn't a good idea.
There are reasons to use Python's threading package. If you want to run some things simultaneously, and efficiency is not a concern,
then it's totally fine and convenient. Or if you are running code that needs to wait for something (like some I/O) then it could make a lot of sense. But the threading library won't let you use extra CPU cores.
Multi-threading can be outsourced to the operating system (by doing multi-processing), and some external application that calls your Python code (for example, Spark or Hadoop), or some code that your Python code calls (for example: you could have your Python code call a C function that does the expensive multi-threaded stuff).
Why This Matters
Because lots of people spend a lot of time trying to find bottlenecks in their fancy Python multi-threaded code before they learn what the GIL is.
Once this information is clear, here's my code:
#!/bin/python
from multiprocessing.dummy import Pool
from subprocess import PIPE,Popen
import time
import os
# In the variable pool_size we define the "parallelness".
# For CPU-bound tasks, it doesn't make sense to create more Pool processes
# than you have cores to run them on.
#
# On the other hand, if you are using I/O-bound tasks, it may make sense
# to create a quite a few more Pool processes than cores, since the processes
# will probably spend most their time blocked (waiting for I/O to complete).
pool_size = 8
def do_ping(ip):
if os.name == 'nt':
print ("Using Windows Ping to " + ip)
proc = Popen(['ping', ip], stdout=PIPE)
return proc.communicate()[0]
else:
print ("Using Linux / Unix Ping to " + ip)
proc = Popen(['ping', ip, '-c', '4'], stdout=PIPE)
return proc.communicate()[0]
os.system('cls' if os.name=='nt' else 'clear')
print ("Running using threads\n")
start_time = time.time()
pool = Pool(pool_size)
website_names = ["www.google.com","www.facebook.com","www.pinterest.com","www.microsoft.com"]
result = {}
for website_name in website_names:
result[website_name] = pool.apply_async(do_ping, args=(website_name,))
pool.close()
pool.join()
print ("\n--- Execution took {} seconds ---".format((time.time() - start_time)))
# Now we do the same without threading, just to compare time
print ("\nRunning NOT using threads\n")
start_time = time.time()
for website_name in website_names:
do_ping(website_name)
print ("\n--- Execution took {} seconds ---".format((time.time() - start_time)))
# Here's one way to print the final output from the threads
output = {}
for key, value in result.items():
output[key] = value.get()
print ("\nOutput aggregated in a Dictionary:")
print (output)
print ("\n")
print ("\nPretty printed output: ")
for key, value in output.items():
print (key + "\n")
print (value)
Here is the very simple example of CSV import using threading. (Library inclusion may differ for different purpose.)
Helper Functions:
from threading import Thread
from project import app
import csv
def import_handler(csv_file_name):
thr = Thread(target=dump_async_csv_data, args=[csv_file_name])
thr.start()
def dump_async_csv_data(csv_file_name):
with app.app_context():
with open(csv_file_name) as File:
reader = csv.DictReader(File)
for row in reader:
# DB operation/query
Driver Function:
import_handler(csv_file_name)
Here is multi threading with a simple example which will be helpful. You can run it and understand easily how multi threading is working in Python. I used a lock for preventing access to other threads until the previous threads finished their work. By the use of this line of code,
tLock = threading.BoundedSemaphore(value=4)
you can allow a number of processes at a time and keep hold to the rest of the threads which will run later or after finished previous processes.
import threading
import time
#tLock = threading.Lock()
tLock = threading.BoundedSemaphore(value=4)
def timer(name, delay, repeat):
print "\r\nTimer: ", name, " Started"
tLock.acquire()
print "\r\n", name, " has the acquired the lock"
while repeat > 0:
time.sleep(delay)
print "\r\n", name, ": ", str(time.ctime(time.time()))
repeat -= 1
print "\r\n", name, " is releaseing the lock"
tLock.release()
print "\r\nTimer: ", name, " Completed"
def Main():
t1 = threading.Thread(target=timer, args=("Timer1", 2, 5))
t2 = threading.Thread(target=timer, args=("Timer2", 3, 5))
t3 = threading.Thread(target=timer, args=("Timer3", 4, 5))
t4 = threading.Thread(target=timer, args=("Timer4", 5, 5))
t5 = threading.Thread(target=timer, args=("Timer5", 0.1, 5))
t1.start()
t2.start()
t3.start()
t4.start()
t5.start()
print "\r\nMain Complete"
if __name__ == "__main__":
Main()
None of the previous solutions actually used multiple cores on my GNU/Linux server (where I don't have administrator rights). They just ran on a single core.
I used the lower level os.fork interface to spawn multiple processes. This is the code that worked for me:
from os import fork
values = ['different', 'values', 'for', 'threads']
for i in range(len(values)):
p = fork()
if p == 0:
my_function(values[i])
break
As a python3 version of the second anwser:
import queue as Queue
import threading
import urllib.request
# Called by each thread
def get_url(q, url):
q.put(urllib.request.urlopen(url).read())
theurls = ["http://google.com", "http://yahoo.com", "http://www.python.org","https://wiki.python.org/moin/"]
q = Queue.Queue()
def thread_func():
for u in theurls:
t = threading.Thread(target=get_url, args = (q,u))
t.daemon = True
t.start()
s = q.get()
def non_thread_func():
for u in theurls:
get_url(q,u)
s = q.get()
And you can test it:
start = time.time()
thread_func()
end = time.time()
print(end - start)
start = time.time()
non_thread_func()
end = time.time()
print(end - start)
non_thread_func() should cost 4 times the time spent than thread_func()
import threading
import requests
def send():
r = requests.get('https://www.stackoverlow.com')
thread = []
t = threading.Thread(target=send())
thread.append(t)
t.start()
It's very easy to understand. Here are the two simple ways to do threading.
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
def a(a=1, b=2):
print(a)
time.sleep(5)
print(b)
return a+b
def b(**kwargs):
if "a" in kwargs:
print("am b")
else:
print("nothing")
to_do=[]
executor = ThreadPoolExecutor(max_workers=4)
ex1=executor.submit(a)
to_do.append(ex1)
ex2=executor.submit(b, **{"a":1})
to_do.append(ex2)
for future in as_completed(to_do):
print("Future {} and Future Return is {}\n".format(future, future.result()))
print("threading")
to_do=[]
to_do.append(threading.Thread(target=a))
to_do.append(threading.Thread(target=b, kwargs={"a":1}))
for threads in to_do:
threads.start()
for threads in to_do:
threads.join()
This code below can run 10 threads concurrently printing the numbers from 0 to 99:
from threading import Thread
def test():
for i in range(0, 100):
print(i)
thread_list = []
for _ in range(0, 10):
thread = Thread(target=test)
thread_list.append(thread)
for thread in thread_list:
thread.start()
for thread in thread_list:
thread.join()
And, this code below is the shorthand for loop version of the above code running 10 threads concurrently printing the numbers from 0 to 99:
from threading import Thread
def test():
[print(i) for i in range(0, 100)]
thread_list = [Thread(target=test) for _ in range(0, 10)]
[thread.start() for thread in thread_list]
[thread.join() for thread in thread_list]
This is the result below:
...
99
83
97
84
98
99
85
86
87
88
...
The easiest way of using threading/multiprocessing is to use more high level libraries like autothread.
import autothread
from time import sleep as heavyworkload
#autothread.multithreaded() # <-- This is all you need to add
def example(x: int, y: int):
heavyworkload(1)
return x*y
Now, you can feed your functions lists of ints. Autothread will handle everything for you and just give you the results computed in parallel.
result = example([1, 2, 3, 4, 5], 10)
I'm having much trouble trying to understand just how the multiprocessing queue works on python and how to implement it. Lets say I have two python modules that access data from a shared file, let's call these two modules a writer and a reader. My plan is to have both the reader and writer put requests into two separate multiprocessing queues, and then have a third process pop these requests in a loop and execute as such.
My main problem is that I really don't know how to implement multiprocessing.queue correctly, you cannot really instantiate the object for each process since they will be separate queues, how do you make sure that all processes relate to a shared queue (or in this case, queues)
My main problem is that I really don't know how to implement multiprocessing.queue correctly, you cannot really instantiate the object for each process since they will be separate queues, how do you make sure that all processes relate to a shared queue (or in this case, queues)
This is a simple example of a reader and writer sharing a single queue... The writer sends a bunch of integers to the reader; when the writer runs out of numbers, it sends 'DONE', which lets the reader know to break out of the read loop.
You can spawn as many reader processes as you like...
from multiprocessing import Process, Queue
import time
import sys
def reader_proc(queue):
"""Read from the queue; this spawns as a separate Process"""
while True:
msg = queue.get() # Read from the queue and do nothing
if msg == "DONE":
break
def writer(count, num_of_reader_procs, queue):
"""Write integers into the queue. A reader_proc() will read them from the queue"""
for ii in range(0, count):
queue.put(ii) # Put 'count' numbers into queue
### Tell all readers to stop...
for ii in range(0, num_of_reader_procs):
queue.put("DONE")
def start_reader_procs(qq, num_of_reader_procs):
"""Start the reader processes and return all in a list to the caller"""
all_reader_procs = list()
for ii in range(0, num_of_reader_procs):
### reader_p() reads from qq as a separate process...
### you can spawn as many reader_p() as you like
### however, there is usually a point of diminishing returns
reader_p = Process(target=reader_proc, args=((qq),))
reader_p.daemon = True
reader_p.start() # Launch reader_p() as another proc
all_reader_procs.append(reader_p)
return all_reader_procs
if __name__ == "__main__":
num_of_reader_procs = 2
qq = Queue() # writer() writes to qq from _this_ process
for count in [10**4, 10**5, 10**6]:
assert 0 < num_of_reader_procs < 4
all_reader_procs = start_reader_procs(qq, num_of_reader_procs)
writer(count, len(all_reader_procs), qq) # Queue stuff to all reader_p()
print("All reader processes are pulling numbers from the queue...")
_start = time.time()
for idx, a_reader_proc in enumerate(all_reader_procs):
print(" Waiting for reader_p.join() index %s" % idx)
a_reader_proc.join() # Wait for a_reader_proc() to finish
print(" reader_p() idx:%s is done" % idx)
print(
"Sending {0} integers through Queue() took {1} seconds".format(
count, (time.time() - _start)
)
)
print("")
Here's a dead simple usage of multiprocessing.Queue and multiprocessing.Process that allows callers to send an "event" plus arguments to a separate process that dispatches the event to a "do_" method on the process. (Python 3.4+)
import multiprocessing as mp
import collections
Msg = collections.namedtuple('Msg', ['event', 'args'])
class BaseProcess(mp.Process):
"""A process backed by an internal queue for simple one-way message passing.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.queue = mp.Queue()
def send(self, event, *args):
"""Puts the event and args as a `Msg` on the queue
"""
msg = Msg(event, args)
self.queue.put(msg)
def dispatch(self, msg):
event, args = msg
handler = getattr(self, "do_%s" % event, None)
if not handler:
raise NotImplementedError("Process has no handler for [%s]" % event)
handler(*args)
def run(self):
while True:
msg = self.queue.get()
self.dispatch(msg)
Usage:
class MyProcess(BaseProcess):
def do_helloworld(self, arg1, arg2):
print(arg1, arg2)
if __name__ == "__main__":
process = MyProcess()
process.start()
process.send('helloworld', 'hello', 'world')
The send happens in the parent process, the do_* happens in the child process.
I left out any exception handling that would obviously interrupt the run loop and exit the child process. You can also customize it by overriding run to control blocking or whatever else.
This is really only useful in situations where you have a single worker process, but I think it's a relevant answer to this question to demonstrate a common scenario with a little more object-orientation.
I had a look at multiple answers across stack overflow and the web while trying to set-up a way of doing multiprocessing using queues for passing around large pandas dataframes. It seemed to me that every answer was re-iterating the same kind of solutions without any consideration of the multitude of edge cases one will definitely come across when setting up calculations like these. The problem is that there is many things at play at the same time. The number of tasks, the number of workers, the duration of each task and possible exceptions during task execution. All of these make synchronization tricky and most answers do not address how you can go about it. So this is my take after fiddling around for a few hours, hopefully this will be generic enough for most people to find it useful.
Some thoughts before any coding examples. Since queue.Empty or queue.qsize() or any other similar method is unreliable for flow control, any code of the like
while True:
try:
task = pending_queue.get_nowait()
except queue.Empty:
break
is bogus. This will kill the worker even if milliseconds later another task turns up in the queue. The worker will not recover and after a while ALL the workers will disappear as they randomly find the queue momentarily empty. The end result will be that the main multiprocessing function (the one with the join() on the processes) will return without all the tasks having completed. Nice. Good luck debugging through that if you have thousands of tasks and a few are missing.
The other issue is the use of sentinel values. Many people have suggested adding a sentinel value in the queue to flag the end of the queue. But to flag it to whom exactly? If there is N workers, assuming N is the number of cores available give or take, then a single sentinel value will only flag the end of the queue to one worker. All the other workers will sit waiting for more work when there is none left. Typical examples I've seen are
while True:
task = pending_queue.get()
if task == SOME_SENTINEL_VALUE:
break
One worker will get the sentinel value while the rest will wait indefinitely. No post I came across mentioned that you need to submit the sentinel value to the queue AT LEAST as many times as you have workers so that ALL of them get it.
The other issue is the handling of exceptions during task execution. Again these should be caught and managed. Moreover, if you have a completed_tasks queue you should independently count in a deterministic way how many items are in the queue before you decide that the job is done. Again relying on queue sizes is bound to fail and returns unexpected results.
In the example below, the par_proc() function will receive a list of tasks including the functions with which these tasks should be executed alongside any named arguments and values.
import multiprocessing as mp
import dill as pickle
import queue
import time
import psutil
SENTINEL = None
def do_work(tasks_pending, tasks_completed):
# Get the current worker's name
worker_name = mp.current_process().name
while True:
try:
task = tasks_pending.get_nowait()
except queue.Empty:
print(worker_name + ' found an empty queue. Sleeping for a while before checking again...')
time.sleep(0.01)
else:
try:
if task == SENTINEL:
print(worker_name + ' no more work left to be done. Exiting...')
break
print(worker_name + ' received some work... ')
time_start = time.perf_counter()
work_func = pickle.loads(task['func'])
result = work_func(**task['task'])
tasks_completed.put({work_func.__name__: result})
time_end = time.perf_counter() - time_start
print(worker_name + ' done in {} seconds'.format(round(time_end, 5)))
except Exception as e:
print(worker_name + ' task failed. ' + str(e))
tasks_completed.put({work_func.__name__: None})
def par_proc(job_list, num_cpus=None):
# Get the number of cores
if not num_cpus:
num_cpus = psutil.cpu_count(logical=False)
print('* Parallel processing')
print('* Running on {} cores'.format(num_cpus))
# Set-up the queues for sending and receiving data to/from the workers
tasks_pending = mp.Queue()
tasks_completed = mp.Queue()
# Gather processes and results here
processes = []
results = []
# Count tasks
num_tasks = 0
# Add the tasks to the queue
for job in job_list:
for task in job['tasks']:
expanded_job = {}
num_tasks = num_tasks + 1
expanded_job.update({'func': pickle.dumps(job['func'])})
expanded_job.update({'task': task})
tasks_pending.put(expanded_job)
# Use as many workers as there are cores (usually chokes the system so better use less)
num_workers = num_cpus
# We need as many sentinels as there are worker processes so that ALL processes exit when there is no more
# work left to be done.
for c in range(num_workers):
tasks_pending.put(SENTINEL)
print('* Number of tasks: {}'.format(num_tasks))
# Set-up and start the workers
for c in range(num_workers):
p = mp.Process(target=do_work, args=(tasks_pending, tasks_completed))
p.name = 'worker' + str(c)
processes.append(p)
p.start()
# Gather the results
completed_tasks_counter = 0
while completed_tasks_counter < num_tasks:
results.append(tasks_completed.get())
completed_tasks_counter = completed_tasks_counter + 1
for p in processes:
p.join()
return results
And here is a test to run the above code against
def test_parallel_processing():
def heavy_duty1(arg1, arg2, arg3):
return arg1 + arg2 + arg3
def heavy_duty2(arg1, arg2, arg3):
return arg1 * arg2 * arg3
task_list = [
{'func': heavy_duty1, 'tasks': [{'arg1': 1, 'arg2': 2, 'arg3': 3}, {'arg1': 1, 'arg2': 3, 'arg3': 5}]},
{'func': heavy_duty2, 'tasks': [{'arg1': 1, 'arg2': 2, 'arg3': 3}, {'arg1': 1, 'arg2': 3, 'arg3': 5}]},
]
results = par_proc(task_list)
job1 = sum([y for x in results if 'heavy_duty1' in x.keys() for y in list(x.values())])
job2 = sum([y for x in results if 'heavy_duty2' in x.keys() for y in list(x.values())])
assert job1 == 15
assert job2 == 21
plus another one with some exceptions
def test_parallel_processing_exceptions():
def heavy_duty1_raises(arg1, arg2, arg3):
raise ValueError('Exception raised')
return arg1 + arg2 + arg3
def heavy_duty2(arg1, arg2, arg3):
return arg1 * arg2 * arg3
task_list = [
{'func': heavy_duty1_raises, 'tasks': [{'arg1': 1, 'arg2': 2, 'arg3': 3}, {'arg1': 1, 'arg2': 3, 'arg3': 5}]},
{'func': heavy_duty2, 'tasks': [{'arg1': 1, 'arg2': 2, 'arg3': 3}, {'arg1': 1, 'arg2': 3, 'arg3': 5}]},
]
results = par_proc(task_list)
job1 = sum([y for x in results if 'heavy_duty1' in x.keys() for y in list(x.values())])
job2 = sum([y for x in results if 'heavy_duty2' in x.keys() for y in list(x.values())])
assert not job1
assert job2 == 21
Hope that is helpful.
in "from queue import Queue" there is no module called queue, instead multiprocessing should be used. Therefore, it should look like "from multiprocessing import Queue"
Just made a simple and general example for demonstrating passing a message over a Queue between 2 standalone programs. It doesn't directly answer the OP's question but should be clear enough indicating the concept.
Server:
multiprocessing-queue-manager-server.py
import asyncio
import concurrent.futures
import multiprocessing
import multiprocessing.managers
import queue
import sys
import threading
from typing import Any, AnyStr, Dict, Union
class QueueManager(multiprocessing.managers.BaseManager):
def get_queue(self, ident: Union[AnyStr, int, type(None)] = None) -> multiprocessing.Queue:
pass
def get_queue(ident: Union[AnyStr, int, type(None)] = None) -> multiprocessing.Queue:
global q
if not ident in q:
q[ident] = multiprocessing.Queue()
return q[ident]
q: Dict[Union[AnyStr, int, type(None)], multiprocessing.Queue] = dict()
delattr(QueueManager, 'get_queue')
def init_queue_manager_server():
if not hasattr(QueueManager, 'get_queue'):
QueueManager.register('get_queue', get_queue)
def serve(no: int, term_ev: threading.Event):
manager: QueueManager
with QueueManager(authkey=QueueManager.__name__.encode()) as manager:
print(f"Server address {no}: {manager.address}")
while not term_ev.is_set():
try:
item: Any = manager.get_queue().get(timeout=0.1)
print(f"Client {no}: {item} from {manager.address}")
except queue.Empty:
continue
async def main(n: int):
init_queue_manager_server()
term_ev: threading.Event = threading.Event()
executor: concurrent.futures.ThreadPoolExecutor = concurrent.futures.ThreadPoolExecutor()
i: int
for i in range(n):
asyncio.ensure_future(asyncio.get_running_loop().run_in_executor(executor, serve, i, term_ev))
# Gracefully shut down
try:
await asyncio.get_running_loop().create_future()
except asyncio.CancelledError:
term_ev.set()
executor.shutdown()
raise
if __name__ == '__main__':
asyncio.run(main(int(sys.argv[1])))
Client:
multiprocessing-queue-manager-client.py
import multiprocessing
import multiprocessing.managers
import os
import sys
from typing import AnyStr, Union
class QueueManager(multiprocessing.managers.BaseManager):
def get_queue(self, ident: Union[AnyStr, int, type(None)] = None) -> multiprocessing.Queue:
pass
delattr(QueueManager, 'get_queue')
def init_queue_manager_client():
if not hasattr(QueueManager, 'get_queue'):
QueueManager.register('get_queue')
def main():
init_queue_manager_client()
manager: QueueManager = QueueManager(sys.argv[1], authkey=QueueManager.__name__.encode())
manager.connect()
message = f"A message from {os.getpid()}"
print(f"Message to send: {message}")
manager.get_queue().put(message)
if __name__ == '__main__':
main()
Usage
Server:
$ python3 multiprocessing-queue-manager-server.py N
N is a integer indicating how many servers should be created. Copy one of the <server-address-N> output by the server and make it the first argument of each multiprocessing-queue-manager-client.py.
Client:
python3 multiprocessing-queue-manager-client.py <server-address-1>
Result
Server:
Client 1: <item> from <server-address-1>
Gist: https://gist.github.com/89062d639e40110c61c2f88018a8b0e5
UPD: Created a package here.
Server:
import ipcq
with ipcq.QueueManagerServer(address=ipcq.Address.AUTO, authkey=ipcq.AuthKey.AUTO) as server:
server.get_queue().get()
Client:
import ipcq
client = ipcq.QueueManagerClient(address=ipcq.Address.AUTO, authkey=ipcq.AuthKey.AUTO)
client.get_queue().put('a message')
We implemented two versions of this, one a simple multi thread pool that can execute many types of callables, making our lives much easier and the second version that uses processes, which is less flexible in terms of callables and requires and extra call to dill.
Setting frozen_pool to true will freeze execution until finish_pool_queue is called in either class.
Thread Version:
'''
Created on Nov 4, 2019
#author: Kevin
'''
from threading import Lock, Thread
from Queue import Queue
import traceback
from helium.loaders.loader_retailers import print_info
from time import sleep
import signal
import os
class ThreadPool(object):
def __init__(self, queue_threads, *args, **kwargs):
self.frozen_pool = kwargs.get('frozen_pool', False)
self.print_queue = kwargs.get('print_queue', True)
self.pool_results = []
self.lock = Lock()
self.queue_threads = queue_threads
self.queue = Queue()
self.threads = []
for i in range(self.queue_threads):
t = Thread(target=self.make_pool_call)
t.daemon = True
t.start()
self.threads.append(t)
def make_pool_call(self):
while True:
if self.frozen_pool:
#print '--> Queue is frozen'
sleep(1)
continue
item = self.queue.get()
if item is None:
break
call = item.get('call', None)
args = item.get('args', [])
kwargs = item.get('kwargs', {})
keep_results = item.get('keep_results', False)
try:
result = call(*args, **kwargs)
if keep_results:
self.lock.acquire()
self.pool_results.append((item, result))
self.lock.release()
except Exception as e:
self.lock.acquire()
print e
traceback.print_exc()
self.lock.release()
os.kill(os.getpid(), signal.SIGUSR1)
self.queue.task_done()
def finish_pool_queue(self):
self.frozen_pool = False
while self.queue.unfinished_tasks > 0:
if self.print_queue:
print_info('--> Thread pool... %s' % self.queue.unfinished_tasks)
sleep(5)
self.queue.join()
for i in range(self.queue_threads):
self.queue.put(None)
for t in self.threads:
t.join()
del self.threads[:]
def get_pool_results(self):
return self.pool_results
def clear_pool_results(self):
del self.pool_results[:]
Process Version:
'''
Created on Nov 4, 2019
#author: Kevin
'''
import traceback
from helium.loaders.loader_retailers import print_info
from time import sleep
import signal
import os
from multiprocessing import Queue, Process, Value, Array, JoinableQueue, Lock,\
RawArray, Manager
from dill import dill
import ctypes
from helium.misc.utils import ignore_exception
from mem_top import mem_top
import gc
class ProcessPool(object):
def __init__(self, queue_processes, *args, **kwargs):
self.frozen_pool = Value(ctypes.c_bool, kwargs.get('frozen_pool', False))
self.print_queue = kwargs.get('print_queue', True)
self.manager = Manager()
self.pool_results = self.manager.list()
self.queue_processes = queue_processes
self.queue = JoinableQueue()
self.processes = []
for i in range(self.queue_processes):
p = Process(target=self.make_pool_call)
p.start()
self.processes.append(p)
print 'Processes', self.queue_processes
def make_pool_call(self):
while True:
if self.frozen_pool.value:
sleep(1)
continue
item_pickled = self.queue.get()
if item_pickled is None:
#print '--> Ending'
self.queue.task_done()
break
item = dill.loads(item_pickled)
call = item.get('call', None)
args = item.get('args', [])
kwargs = item.get('kwargs', {})
keep_results = item.get('keep_results', False)
try:
result = call(*args, **kwargs)
if keep_results:
self.pool_results.append(dill.dumps((item, result)))
else:
del call, args, kwargs, keep_results, item, result
except Exception as e:
print e
traceback.print_exc()
os.kill(os.getpid(), signal.SIGUSR1)
self.queue.task_done()
def finish_pool_queue(self, callable=None):
self.frozen_pool.value = False
while self.queue._unfinished_tasks.get_value() > 0:
if self.print_queue:
print_info('--> Process pool... %s' % (self.queue._unfinished_tasks.get_value()))
if callable:
callable()
sleep(5)
for i in range(self.queue_processes):
self.queue.put(None)
self.queue.join()
self.queue.close()
for p in self.processes:
with ignore_exception: p.join(10)
with ignore_exception: p.terminate()
with ignore_exception: del self.processes[:]
def get_pool_results(self):
return self.pool_results
def clear_pool_results(self):
del self.pool_results[:]
def test(eg):
print 'EG', eg
Call with either:
tp = ThreadPool(queue_threads=2)
tp.queue.put({'call': test, 'args': [random.randint(0, 100)]})
tp.finish_pool_queue()
or
pp = ProcessPool(queue_processes=2)
pp.queue.put(dill.dumps({'call': test, 'args': [random.randint(0, 100)]}))
pp.queue.put(dill.dumps({'call': test, 'args': [random.randint(0, 100)]}))
pp.finish_pool_queue()
A multi-producers and multi-consumers example, verified. It should be easy to modify it to cover other cases, single/multi producers, single/multi consumers.
from multiprocessing import Process, JoinableQueue
import time
import os
q = JoinableQueue()
def producer():
for item in range(30):
time.sleep(2)
q.put(item)
pid = os.getpid()
print(f'producer {pid} done')
def worker():
while True:
item = q.get()
pid = os.getpid()
print(f'pid {pid} Working on {item}')
print(f'pid {pid} Finished {item}')
q.task_done()
for i in range(5):
p = Process(target=worker, daemon=True).start()
# send thirty task requests to the worker
producers = []
for i in range(2):
p = Process(target=producer)
producers.append(p)
p.start()
# make sure producers done
for p in producers:
p.join()
# block until all workers are done
q.join()
print('All work completed')
Explanation:
Two producers and five consumers in this example.
JoinableQueue is used to make sure all elements stored in queue will be processed. 'task_done' is for worker to notify an element is done. 'q.join()' will wait for all elements marked as done.
With #2, there is no need to join wait for every worker.
But it is important to join wait for every producer to store element into queue. Otherwise, program exit immediately.