I am attempting to multiple specific columns a value in their respective row.
For example:
X Y Z
A 10 1 0 1
B 50 0 0 0
C 80 1 1 1
Would become:
X Y Z
A 10 10 0 10
B 50 0 0 0
C 80 80 80 80
The problem I am having is that it is timing out when I use mul(). My real dataset is very large. I tried to iterate it with loop in my real code as follows:
for i in range(1,df_final_small.shape[0]):
df_final_small.iloc[i].values[3:248] = df_final_small.iloc[i].values[3:248] * df_final_small.iloc[i].values[2]
Which when applied to the example dataframe would look like this:
for i in range(1,df_final_small.shape[0]):
df_final_small.iloc[i].values[1:4] = df_final_small.iloc[i].values[1:4] * df_final_small.iloc[i].values[0]
There must be a better way to do this, I am having problems figuring out how to only cast the multiplication to certain columns in the row rather than the entire row.
EDIT:
To detail further here is my df.head(5).
id gross 150413 Welcome Email 150413 Welcome Email Repeat Cust 151001 Welcome Email 151001 Welcome Email Repeat Cust 161116 eKomi 1702 Hot Leads Email 1702 Welcome Email - All Purchases 1804 Hot Leads ... SILVER GOLD PLATINUM Acquisition Direct Mail Conversion Direct Mail Retention Direct Mail Retention eMail cluster x y
0 0033333 46.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 1.0 0.0 10 -0.230876 0.461990
1 0033331 2359.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 1.0 0.0 9 0.231935 -0.648713
2 0033332 117.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 1.0 0.0 5 -0.812921 -0.139403
3 0033334 89.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 1.0 0.0 5 -0.812921 -0.139403
4 0033335 1908.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 1.0 0.0 0.0 7 -0.974142 0.145032
Just specify the columns you want to multiply. Example
df=pd.DataFrame({'A':10,'X':1,'Y':1,'Z':1},index=[1])
df.loc[:,['X', 'Y', 'Z']]=df.loc[:,['X', 'Y', 'Z']].values*df.iloc[:,0:1].values
If want to provide an arbitrary range of columns use iloc
range_of_columns= range(10,5001)+range(5030,10001)
df.iloc[:,range_of_columns].values*df.iloc[:,0:1].values #multiplying the range of columns with the first column
Using mul with axis = 0 also get the index value by get_level_values
df.mul(df.index.get_level_values(1),axis=0)
Out[167]:
X Y Z
A 10 10 0 10
B 50 0 0 0
C 80 80 80 80
Also when the dataframe is way to big , you can split it and do it by chunk .
dfs = np.split(df, [2], axis=0)
pd.concat([x.mul(x.index.get_level_values(1), axis=0) for x in dfs])
Out[174]:
X Y Z
A 10 10 0 10
B 50 0 0 0
C 80 80 80 80
Also I will recommend numpy broadcast
df.values*df.index.get_level_values(1)[:,None]
Out[177]: Int64Index([[10, 0, 10], [0, 0, 0], [80, 80, 80]], dtype='int64')
pd.DataFrame(df.values*df.index.get_level_values(1)[:,None],index=df.index,columns=df.columns)
Out[181]:
X Y Z
A 10 10 0 10
B 50 0 0 0
C 80 80 80 80
Related
Hi Friend I'm new here 😊,
Make a matrix from most repeated words in specific column A and add to my data frame with names of selected column as label.
What I have:
raw_data={"A":["This is yellow","That is green","These are orange","This is a pen","This is an Orange"]}
df=pr.DataFrame(raw_data)
What is my goal:
I want to do:
1- Separate the string & count the words in specific column
2- Make a Zero-Matrix
3- The new matrix should be labelled with founded words in step 1 (my-problem)
4- Search every row, if the word has been founded then 1 else 0
The new data frame what I have as result:
A word_count char_count 0 1 2 3 4 5 6 7 8 9 10 11
0 This is yellow 3 14 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 That is green 3 13 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
2 These are orange 3 16 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0
3 This is a pen 4 13 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
4 This is an Orange 4 17 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
What I did:
import pandas as pd
import numpy as np
# 1- Data frame
raw_data={"A":["This is yellow","That is green","These are orange","This is a pen","This is an Orange"]}
df=pd.DataFrame(raw_data)
df
## 2- Count the words and characters in evrey row in columns "A"
df['word_count'] = df['A'].agg(lambda x: len(x.split(" ")))
df['char_count'] = df['A'].agg(lambda x:len(x))
df
# 3- Countung the seprated words and the frequency of repetation
df_word_count=pd.DataFrame(df.A.str.split(' ').explode().value_counts()).reset_index().rename({'index':"A","A":"Count"},axis=1)
display(df_word_count)
df_word_count=list(df_word_count["A"])
len(df_word_count)
A Count
0 is 4
1 This 3
2 orange 1
3 That 1
4 yellow 1
5 Orange 1
6 are 1
7 a 1
8 an 1
9 These 1
10 green 1
11 pen 1
# 4- Make a ZERO-Matrix
allfeatures=np.zeros((df.shape[0],len(df_word_count)))
allfeatures.shape
# 5- Make a For-Loop
for i in range(len(df_word_count)):
allfeatures[:,i]=df['A'].agg(lambda x:x.split().count(df_word_count[i]))
# 5- Concat the data
Complete_data=pd.concat([df,pd.DataFrame(allfeatures)],axis=1)
display(Complete_data)
What I wanted:
The Words in "A" in step 3 should be label of new matrix instead 0 1 2 ...
A word_count char_count is This orange etc.
0 This is yellow 3 14 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 That is green 3 13 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
2 These are orange 3 16 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0
3 This is a pen 4 13 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
4 This is an Orange 4 17 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
So I changed your code a little, your step 3 looks like this:
# 3- Countung the seprated words and the frequency of repetation
df_word_count=pd.DataFrame(df.A.str.split(' ').explode().value_counts()).reset_index().rename({'index':"A","A":"Count"},axis=1)
display(df_word_count)
list_word_count=list(df_word_count["A"])
len(list_word_count)
The big change is the name of a variable in list_word_count=list(df_word_count["A"])
the rest of the code looks like this with the new variable:
# 4- Make a ZERO-Matrix
allfeatures=np.zeros((df.shape[0],len(list_word_count)))
allfeatures.shape
# 5- Make a For-Loop
for i in range(len(list_word_count)):
allfeatures[:,i]=df['A'].agg(lambda x:x.split().count(list_word_count[i]))
# 6- Concat the data
Complete_data=pd.concat([df,pd.DataFrame(allfeatures)],axis=1)
display(Complete_data)
The only change is the different name of variable. What I do is a seventh step
# 7- change columns name from list
#This creates a list of the words you wanted
l = list(df_word_count["A"])
# if you see this, it shows only the words you have in the column A
# but the result dataset that you showed you wanted, you also had some columns #that had values such as word count, etc. So we need to add that. We do this by #inserting those values you want in the list, at the beginning
l.insert(0,"char_count")
l.insert(0,"word_count")
l.insert(0,"A")
# Finally, I rename all the columns with the names that I have in the list l
Complete_data.columns = l
I get this:
I am not sure if it's a good idea. I am using transfer learning to train some new data. The model shape has 180 columns(features) and the new data input has 500 columns. It 's not good to cut columns from the new data. So I am thinking to add more columns to the dataset used in the original model. So if I want to add e.g. columns from 181 to 499 and assign 0 to those cells, how can I do it? Please ignore label column now. Thanks for your help
Original df:
0 1 2 3 4 5 ... 179 (to column 179) label
0 0.28001 0.32042 0.93222. 0.87534. 0.44252 0.2321
1
2
Expected output
0 1 2 3 4 5 ... 179 180 181 182 ....499 label
0 0.28001 0.32042 0.93222. 0.87534. 0.44252 0.2321 0 0 0 0 0
1 0.38001 0.42042 0.13222. 0.67534. 0.64252 0.4321 0 0 0 0 0
2
Since you don't care about columns label, use pd.concat on new construct dataframe from np.zeros
Sample df
In [336]: df
Out[336]:
0 1 2 3 4 5
0 0.28001 0.32042 0.93222. 0.87534. 0.44252 0.2321
1 0.38001 0.42042 0.13222. 0.67534. 0.64252 0.4321
m = 20 #use 20 to show demo. You need change it to 500 for your real data
x, y = df.shape
df_final = pd.concat([df, pd.DataFrame(np.zeros((x, m - y))).add_prefix('n_')], axis=1)
In [340]: df_final
Out[340]:
0 1 2 3 4 5 n_0 n_1 n_2 n_3 \
0 0.28001 0.32042 0.93222. 0.87534. 0.44252 0.2321 0.0 0.0 0.0 0.0
1 0.38001 0.42042 0.13222. 0.67534. 0.64252 0.4321 0.0 0.0 0.0 0.0
n_4 n_5 n_6 n_7 n_8 n_9 n_10 n_11 n_12 n_13
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
If you need columns in sequential numbers
m = 20
x, y = df.shape
df_final = pd.concat([df, pd.DataFrame(np.zeros((x, m - y)), columns=range(y, m))], axis=1)
Out[341]:
0 1 2 3 4 5 6 7 8 9 \
0 0.28001 0.32042 0.93222. 0.87534. 0.44252 0.2321 0.0 0.0 0.0 0.0
1 0.38001 0.42042 0.13222. 0.67534. 0.64252 0.4321 0.0 0.0 0.0 0.0
10 11 12 13 14 15 16 17 18 19
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I have two medium-sized datasets which looks like:
books_df.head()
ISBN Book-Title Book-Author
0 0195153448 Classical Mythology Mark P. O. Morford
1 0002005018 Clara Callan Richard Bruce Wright
2 0060973129 Decision in Normandy Carlo D'Este
3 0374157065 Flu: The Story of the Great Influenza Pandemic... Gina Bari Kolata
4 0393045218 The Mummies of Urumchi E. J. W. Barber
and
ratings_df.head()
User-ID ISBN Book-Rating
0 276725 034545104X 0
1 276726 0155061224 5
2 276727 0446520802 0
3 276729 052165615X 3
4 276729 0521795028 6
And I wanna get a pivot table like this:
ISBN 1 2 3 4 5 6 7 8 9 10 ... 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
User-ID
1 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I've tried:
R_df = ratings_df.pivot(index = 'User-ID', columns ='ISBN', values = 'Book-Rating').fillna(0) # Memory overflow
which failed for:
MemoryError:
and this:
R_df = q_data.groupby(['User-ID', 'ISBN'])['Book-Rating'].mean().unstack()
which failed for the same.
I want to use it for singular value decomposition and matrix factorization.
Any ideas?
The dataset I'm working with is: http://www2.informatik.uni-freiburg.de/~cziegler/BX/
One option is to use pandas Sparse functionality, since your data here is (very) sparse:
In [11]: df
Out[11]:
User-ID ISBN Book-Rating
0 276725 034545104X 0
1 276726 0155061224 5
2 276727 0446520802 0
3 276729 052165615X 3
4 276729 0521795028 6
In [12]: res = df.groupby(['User-ID', 'ISBN'])['Book-Rating'].mean().astype('Sparse[int]')
In [13]: res.unstack(fill_value=0)
Out[13]:
ISBN 0155061224 034545104X 0446520802 052165615X 0521795028
User-ID
276725 0 0 0 0 0
276726 5 0 0 0 0
276727 0 0 0 0 0
276729 0 0 0 3 6
In [14]: _.dtypes
Out[14]:
ISBN
0155061224 Sparse[int64, 0]
034545104X Sparse[int64, 0]
0446520802 Sparse[int64, 0]
052165615X Sparse[int64, 0]
0521795028 Sparse[int64, 0]
dtype: object
My understanding is that you can then use this with scipy e.g. for SVD:
In [15]: res.unstack(fill_value=0).sparse.to_coo()
Out[15]:
<4x5 sparse matrix of type '<class 'numpy.int64'>'
with 3 stored elements in COOrdinate format>
Let's be given a data-frame like the following one:
import pandas as pd
import numpy as np
a = ['a', 'b']
b = ['i', 'ii']
mi = pd.MultiIndex.from_product([a,b], names=['first', 'second'])
A = pd.DataFrame(np.zeros([3,4]), columns=mi)
first a b
second i ii i ii
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
I would like to create new columns iii for all first-level columns and assign the value of a new array (of matching size). I tried the following, to no avail.
A.loc[:,pd.IndexSlice[:,'iii']] = np.arange(6).reshape(3,-1)
The result should look like this:
a b
i ii iii i ii iii
0 0.0 0.0 0.0 0.0 0.0 1.0
1 0.0 0.0 2.0 0.0 0.0 3.0
2 0.0 0.0 4.0 0.0 0.0 5.0
Since you have multiple index in columns , I recommend create the additional append df , then concat it back
appenddf=pd.DataFrame(np.arange(6).reshape(3,-1),
index=A.index,
columns=pd.MultiIndex.from_product([A.columns.levels[0],['iii']]))
appenddf
a b
iii iii
0 0 1
1 2 3
2 4 5
A=pd.concat([A,appenddf],axis=1).sort_index(level=0,axis=1)
A
first a b
second i ii iii i ii iii
0 0.0 0.0 0 0.0 0.0 1
1 0.0 0.0 2 0.0 0.0 3
2 0.0 0.0 4 0.0 0.0 5
Another workable solution
for i,x in enumerate(A.columns.levels[0]):
A[x,'iii']=np.arange(6).reshape(3,-1)[:,i]
A
first a b a b
second i ii i ii iii iii
0 0.0 0.0 0.0 0.0 0 1
1 0.0 0.0 0.0 0.0 2 3
2 0.0 0.0 0.0 0.0 4 5
# here I did not add `sort_index`
I have two dataframes:
dayData
power_comparison final_average_delta_power calculated_power
1 0.0 0.0 0
2 0.0 0.0 0
3 0.0 0.0 0
4 0.0 0.0 0
5 0.0 0.0 0
7 0.0 0.0 0
and
historicPower
power
0 0.0
1 0.0
2 0.0
3 -1.0
4 0.0
5 1.0
7 0.0
I'm trying to reindex the historicPower dataframe to have the same shape as the dayData dataframe (so in this example it would looks like):
power
1 0.0
2 0.0
3 -1.0
4 0.0
5 1.0
7 0.0
The dataframes in reality will be alot larger with different shapes.
I think you can use reindex if index has no duplicates:
historicPower = historicPower.reindex(dayData.index)
print (historicPower)
power
1 0.0
2 0.0
3 -1.0
4 0.0
5 1.0
7 0.0