How often does a problem occur per day and location? - python

I have dataframe like this:
Date Location_ID Problem_ID
---------------------+------------+----------
2013-01-02 10:00:00 | 1 | 43
2012-08-09 23:03:01 | 5 | 2
...
How can I count how often a Problem occurs per day and per Location?

Use groupby with converting Date column to dates or Grouper with aggregate size:
print (df)
Date Location_ID Problem_ID
0 2013-01-02 10:00:00 1 43
1 2012-08-09 23:03:01 5 2
#if necessary convert column to datetimes
df['Date'] = pd.to_datetime(df['Date'])
df1 = df.groupby([df['Date'].dt.date, 'Location_ID']).size().reset_index(name='count')
print (df1)
Date Location_ID count
0 2012-08-09 5 1
1 2013-01-02 1 1
Or:
df1 = (df.groupby([pd.Grouper(key='Date', freq='D'), 'Location_ID'])
.size()
.reset_index(name='count'))
If first column is index:
print (df)
Location_ID Problem_ID
Date
2013-01-02 10:00:00 1 43
2012-08-09 23:03:01 5 2
df.index = pd.to_datetime(df.index)
df1 = (df.groupby([df.index.date, 'Location_ID'])
.size()
.reset_index(name='count')
.rename(columns={'level_0':'Date'}))
print (df1)
Date Location_ID count
0 2012-08-09 5 1
1 2013-01-02 1 1
df1 = (df.groupby([pd.Grouper(level='Date', freq='D'), 'Location_ID'])
.size()
.reset_index(name='count'))

Related

Date interval average Python pandas

This is my dataframe:
ID number
Date purchase
1
2022-05-01
1
2021-03-03
1
2020-01-03
2
2019-01-03
2
2018-01-03
I want to get a horizontal dataframe with alle the dates in seperate columns per ID number.
So like this:
ID number
Date 1
Date 2
Date 3
1
2022-05-01
2021-03-03
2020-01-03
2
2019-01-03
2018-01-03
After I did this I want to calculate the difference between these dates.
First step is GroupBy.cumcount with DataFrame.pivot:
df['Date purchase'] = pd.to_datetime(df['Date purchase'])
df1 = (df.sort_values(by=['ID number', 'Date purchase'], ascending=[True, False])
.assign(g=lambda x: x.groupby('ID number').cumcount())
.pivot('ID number','g','Date purchase')
.rename(columns = lambda x: f'Date {x + 1}'))
print (df1)
g Date 1 Date 2 Date 3
ID number
1 2022-05-01 2021-03-03 2020-01-03
2 2019-01-03 2018-01-03 NaT
Then for differencies between columns use DataFrame.diff:
df2 = df1.diff(-1, axis=1)
print (df2)
g Date 1 Date 2 Date 3
ID number
1 424 days 425 days NaT
2 365 days NaT NaT
If need averages:
df3 = df1.apply(pd.Series.mean, axis=1).reset_index(name='Avg Dates').rename_axis(None, axis=1)
print (df3)
ID number Avg Dates
0 1 2021-03-02 16:00:00
1 2 2018-07-04 12:00:00
Could you do something like this?
def format_dataframe(df):
"""
Function formats the dataframe to the following:
| ID number| Date 1 | Date 2 | Date 3 |
| -------- | -------------- | -------------- | -------------- |
| 1 | 2022-05-01 | 2021-03-03 | 2020-01-03 |
| 2 | 2019-01-03 | 2018-01-03 | |
"""
df = df.sort_values(by=['ID number', 'Date purchase'])
df = df.drop_duplicates(subset=['ID number'], keep='first')
df = df.drop(columns=['Date purchase'])
df = df.rename(columns={'ID number': 'ID number', 'Date 1': 'Date 1', 'Date 2': 'Date 2', 'Date 3': 'Date 3'})
return df
initial situation:
d = {'IdNumber': [1,1,1,2,2], 'Date': ['2022-05-01', '2021-03-03','2020-01-03','2019-01-03','2018-01-03']}
df = pd.DataFrame(data=d)
date conversion:
df['Date'] = pd.to_datetime(df['Date'])
creating new column:
df1=df.assign(Col=lambda x: x.groupby('IdNumber').cumcount())
pivoting:
df1=df1.pivot(index=["IdNumber"],columns=["Col"],values="Date")
reset index:
df1 = df1.reset_index(level=0)
rename column:
for i in range(1,len(df1.columns)):
df1.columns.values[i]='Date{0}'.format(i)
final result:
Col IdNumber Date1 Date2 Date3
0 1 2022-05-01 2021-03-03 2020-01-03
1 2 2019-01-03 2018-01-03 NaT

consecutive rows of unsorted dates based on one day before after or on the same day into one [duplicate]

I would like to combine rows of same id with consecutive dates and same features values.
I have the following dataframe:
Id Start End Feature1 Feature2
0 A 2020-01-01 2020-01-15 1 1
1 A 2020-01-16 2020-01-30 1 1
2 A 2020-01-31 2020-02-15 0 1
3 A 2020-07-01 2020-07-15 0 1
4 B 2020-01-31 2020-02-15 0 0
5 B 2020-02-16 NaT 0 0
An the expected result is:
Id Start End Feature1 Feature2
0 A 2020-01-01 2020-01-30 1 1
1 A 2020-01-31 2020-02-15 0 1
2 A 2020-07-01 2020-07-15 0 1
3 B 2020-01-31 NaT 0 0
I have been trying other posts answers but they don't really match with my use case.
Thanks in advance!
You can approach by:
Get the day diff of each consecutive entries within same group by substracting current Start with last End with the group using GroupBy.shift().
Set group number group_no such that new group number is issued when day diff with previous entry within the group is greater than 1.
Then, group by Id and group_no and aggregate for each group the Start and End dates using .gropuby() and .agg()
As there is NaT data within the grouping, we need to specify dropna=False during grouping. Furthermore, to get the last entry of End within the group, we use x.iloc[-1] instead of last.
# convert to datetime format if not already in datetime
df['Start'] = pd.to_datetime(df['Start'])
df['End'] = pd.to_datetime(df['End'])
# sort by columns `Id` and `Start` if not already in this sequence
df = df.sort_values(['Id', 'Start'])
day_diff = (df['Start'] - df['End'].groupby([df['Id'], df['Feature1'], df['Feature2']]).shift()).dt.days
group_no = (day_diff.isna() | day_diff.gt(1)).cumsum()
df_out = (df.groupby(['Id', group_no], dropna=False, as_index=False)
.agg({'Id': 'first',
'Start': 'first',
'End': lambda x: x.iloc[-1],
'Feature1': 'first',
'Feature2': 'first',
}))
Result:
print(df_out)
Id Start End Feature1 Feature2
0 A 2020-01-01 2020-01-30 1 1
1 A 2020-01-31 2020-02-15 0 1
2 A 2020-07-01 2020-07-15 0 1
3 B 2020-01-31 NaT 0 0
Extract months from both date column
df['sMonth'] = df['Start'].apply(pd.to_datetime).dt.month
df['eMonth'] = df['End'].apply(pd.to_datetime).dt.month
Now groupby data frame with ['Id','Feature1','Feature2','sMonth','eMonth'] and we get result
df.groupby(['Id','Feature1','Feature2','sMonth','eMonth']).agg({'Start':'min','End':'max'}).reset_index().drop(['sMonth','eMonth'],axis=1)
Result
Id Feature1 Feature2 Start End
0 A 0 1 2020-01-31 2020-02-15
1 A 0 1 2020-07-01 2020-07-15
2 A 1 1 2020-01-01 2020-01-30
3 B 0 0 2020-01-31 2020-02-15

python pandas - group by date and count

I have the below dataframe. Date in DD/MM/YY
Date id
1/5/2017 2:00 PM 100
1/5/2017 3:00 PM 101
2/5/2017 10:00 AM 102
3/5/2017 09:00 AM 103
3/5/2017 10:00 AM 104
4/5/2017 09:00 AM 105
Need output such a way that , able to group by date and also count number of Ids per day , also ignore time. o/p new data frame should be as below
DATE Count
1/5/2017 2 -> count 100,101
2/5/2017 1
3/5/2017 2
4/5/2017 1
Need efficient way to achieve above.
Use:
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
df1 = df['Date'].dt.date.value_counts().sort_index().reset_index()
df1.columns = ['DATE','Count']
Alternative solution:
df1 = df.groupby(df['Date'].dt.date).size().reset_index(name='Count')
print (df1)
DATE Count
0 2017-05-01 2
1 2017-05-02 1
2 2017-05-03 2
3 2017-05-04 1
If need same format:
df1 = df['Date'].str.split().str[0].value_counts().sort_index().reset_index()
df1.columns = ['DATE','Count']
new = df['Date'].str.split().str[0]
df1 = df.groupby(new).size().reset_index(name='Count')
print (df1)
Date Count
0 1/5/2017 2
1 2/5/2017 1
2 3/5/2017 2
3 4/5/2017 1

Append dataframe in for loop

If I have a pd dataframe with three columns: id, start_time, end_time, and I would like to transform it into a pd.df with two columns: id, time
e.g. from [001, 1, 3][002, 3, 4] to [001, 1][001, 2][001, 3][002, 3][002, 4]
Currently, I am using a for loop and append the dataframe in each iteration, but it's very slow. Is there any other method I can use to save time?
If start_time and end_time is timedelta use:
df = pd.DataFrame([['001', 1, 3],['002', 3, 4]],
columns=['id','start_time','end_time'])
print (df)
id start_time end_time
0 001 1 3
1 002 3 4
#stack columns
df1 = pd.melt(df, id_vars='id', value_name='time').drop('variable', axis=1)
#convert int to timedelta
df1['time'] = pd.to_timedelta(df1.time, unit='s')
df1.set_index('time', inplace=True)
print (df1)
id
time
00:00:01 001
00:00:03 002
00:00:03 001
00:00:04 002
#groupby by id and resample by one second
print (df1.groupby('id')
.resample('1S')
.ffill()
.reset_index(drop=True, level=0)
.reset_index())
time id
0 00:00:01 001
1 00:00:02 001
2 00:00:03 001
3 00:00:03 002
4 00:00:04 002
If start_time and end_time is datetime use:
df = pd.DataFrame([['001', '2016-01-01', '2016-01-03'],
['002', '2016-01-03', '2016-01-04']],
columns=['id','start_time','end_time'])
print (df)
id start_time end_time
0 001 2016-01-01 2016-01-03
1 002 2016-01-03 2016-01-04
df1 = pd.melt(df, id_vars='id', value_name='time').drop('variable', axis=1)
#convert to datetime
df1['time'] = pd.to_datetime(df1.time)
df1.set_index('time', inplace=True)
print (df1)
id
time
2016-01-01 001
2016-01-03 002
2016-01-03 001
2016-01-04 002
#groupby by id and resample by one day
print (df1.groupby('id')
.resample('1D')
.ffill()
.reset_index(drop=True, level=0)
.reset_index())
time id
0 2016-01-01 001
1 2016-01-02 001
2 2016-01-03 001
3 2016-01-03 002
4 2016-01-04 002
Here is my take on your question:
df.set_index('id', inplace=True)
reshaped = df.apply(lambda x: pd.Series(range(x['start time'], x['end time']+1)), axis=1).\
stack().reset_index().drop('level_1', axis=1)
reshaped.columns = ['id', 'time']
reshaped
Test
Input:
import pandas as pd
from io import StringIO
data = StringIO("""id,start time,end time
001, 1, 3
002, 3, 4""")
df = pd.read_csv(data, dtype={'id':'object'})
df.set_index('id', inplace=True)
print("In\n", df)
reshaped = df.apply(lambda x: pd.Series(range(x['start time'], x['end time']+1)), axis=1).\
stack().reset_index().drop('level_1', axis=1)
reshaped.columns = ['id', 'time']
print("Out\n", reshaped)
Output:
In
start time end time
id
001 1 3
002 3 4
Out
id time
0 001 1
1 001 2
2 001 3
3 002 3
4 002 4

Which is the fastest way to extract day, month and year from a given date?

I read a csv file containing 150,000 lines into a pandas dataframe. This dataframe has a field, Date, with the dates in yyyy-mm-dd format. I want to extract the month, day and year from it and copy into the dataframes' columns, Month, Day and Year respectively. For a few hundred records the below two methods work ok, but for 150,000 records both take a ridiculously long time to execute. Is there a faster way to do this for 100,000+ records?
First method:
df = pandas.read_csv(filename)
for i in xrange(len(df)):
df.loc[i,'Day'] = int(df.loc[i,'Date'].split('-')[2])
Second method:
df = pandas.read_csv(filename)
for i in xrange(len(df)):
df.loc[i,'Day'] = datetime.strptime(df.loc[i,'Date'], '%Y-%m-%d').day
Thank you.
In 0.15.0 you will be able to use the new .dt accessor to do this nice syntactically.
In [36]: df = DataFrame(date_range('20000101',periods=150000,freq='H'),columns=['Date'])
In [37]: df.head(5)
Out[37]:
Date
0 2000-01-01 00:00:00
1 2000-01-01 01:00:00
2 2000-01-01 02:00:00
3 2000-01-01 03:00:00
4 2000-01-01 04:00:00
[5 rows x 1 columns]
In [38]: %timeit f(df)
10 loops, best of 3: 22 ms per loop
In [39]: def f(df):
df = df.copy()
df['Year'] = DatetimeIndex(df['Date']).year
df['Month'] = DatetimeIndex(df['Date']).month
df['Day'] = DatetimeIndex(df['Date']).day
return df
....:
In [40]: f(df).head()
Out[40]:
Date Year Month Day
0 2000-01-01 00:00:00 2000 1 1
1 2000-01-01 01:00:00 2000 1 1
2 2000-01-01 02:00:00 2000 1 1
3 2000-01-01 03:00:00 2000 1 1
4 2000-01-01 04:00:00 2000 1 1
[5 rows x 4 columns]
From 0.15.0 on (release in end of Sept 2014), the following is now possible with the new .dt accessor:
df['Year'] = df['Date'].dt.year
df['Month'] = df['Date'].dt.month
df['Day'] = df['Date'].dt.day
I use below code which works very well for me
df['Year']=[d.split('-')[0] for d in df.Date]
df['Month']=[d.split('-')[1] for d in df.Date]
df['Day']=[d.split('-')[2] for d in df.Date]
df.head(5)
This is the cleanest answer I've found.
df = df.assign(**{t:getattr(df.data.dt,t) for t in nomtimes})
In [30]: df = pd.DataFrame({'data':pd.date_range(start, end)})
In [31]: df.head()
Out[31]:
data
0 2011-01-01
1 2011-01-02
2 2011-01-03
3 2011-01-04
4 2011-01-05
nomtimes = ["year", "hour", "month", "dayofweek"]
df = df.assign(**{t:getattr(df.data.dt,t) for t in nomtimes})
In [33]: df.head()
Out[33]:
data dayofweek hour month year
0 2011-01-01 5 0 1 2011
1 2011-01-02 6 0 1 2011
2 2011-01-03 0 0 1 2011
3 2011-01-04 1 0 1 2011
4 2011-01-05 2 0 1 2011

Categories