I'm running a python game with approximately 2k rectangles being drawn on screen each frame.
The problem I have is that it runs on 12 fps and I have no idea how to fix that. When I remove all the rectangles it shifts to 100 fps. I'm not rendering all of them at once, but only the ones camera can see currently. How to fix this lag spike issue, is it because I'm using pygame rectangles or because I'm using them wrong?
here's the code
import pygame
black = (0,0,0)
pygame.init()
gameDisplay = pygame.display.set_mode((0,0),pygame.FULLSCREEN)
gameDisplay.fill(black)
gameDisplay.convert()
clock = pygame.time.Clock()
display_width = 1920
display_height = 1080
from opensimplex import OpenSimplex
tmp = OpenSimplex()
dimensions = [100,100]
size = 40
def mapping(x):
y = (x + 1) * 10 + 40
return y
class GroundCell:
def __init__(self,x,y,dim):
self.x = x
self.y = y
self.dim = dim
tempcells = []
allCells = []
for a in range(0,dimensions[0]):
tempcells = []
for b in range(0,dimensions[1]):
tempcells.append(GroundCell(a*size,b*size,mapping(tmp.noise2d(a*0.11,b*0.11))))
allCells.append(tempcells)
font = pygame.font.Font("freesansbold.ttf", 20)
while True:
for event in pygame.event.get():
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_ESCAPE:
pygame.quit()
quit()
for a in allCells:
for b in a:
if b.x in range(0,display_width) \
and b.y in range(0,display_height) or\
b.x+size in range(0,display_width) \
and b.y+size in range(0,display_height) :
pygame.draw.rect(gameDisplay,(b.dim,b.dim,b.dim),(b.x,b.y,size,size))
fps = font.render('FPS: ' + str(int(clock.get_fps())), 1, (0, 0, 0))
gameDisplay.blit(fps, (20, 20))
pygame.display.update()
clock.tick(120)
gameDisplay.fill(black)
Instead of drawing all those rects to the screen every tick, create a Surface with the noise once, and reuse it.
Some more notes:
Text rendering is expensive. If you use a lot of text rendering, better cache the surfaces created by Font.render. Note there's also the new freetype module in pygame, which is better than the font module in every way.
Your check if a rect is inside the screen is very strange. You could just use something like if 0 < b.x < display_width ... or even use pygame's Rect class, which offers nice methods like contains().
A good and fast way to create a Surface from arbitary data is to use numpy and pygame's surfarray module. Don't get intimidated, it isn't that hard to use.
Here's a running example based on your code:
import pygame
import numpy as np
black = (0,0,0)
pygame.init()
display_width = 1000
display_height = 1000
gameDisplay = pygame.display.set_mode((display_width, display_height))
gameDisplay.fill(black)
clock = pygame.time.Clock()
from opensimplex import OpenSimplex
tmp = OpenSimplex()
dimensions = [100,100]
size = 16
def mapping(x):
y = (x + 1) * 10 + 40
return y
# create an 2d array from the noise
def get_array():
rgbarray = np.zeros((dimensions[0], dimensions[1]))
for x in range(dimensions[0]):
for y in range(dimensions[1]):
c = int(mapping(tmp.noise2d(x*0.11, y*0.11)))
# simple way to convert the color value to all three (r,g,b) channels
rgbarray[x, y] = c | c << 8 | c << 16
return rgbarray
# create the array and copy it into a Surface
data = get_array()
surface = pygame.Surface((dimensions[0], dimensions[1]))
pygame.surfarray.blit_array(surface, data)
# scale the Surface to the desired size
scaled = pygame.transform.scale(surface, (dimensions[0]*size, dimensions[1]*size))
# simple way to cache font rendering
font = pygame.font.Font("freesansbold.ttf", 20)
cache = {}
def render(text):
if not text in cache:
cache[text] = font.render(text, 1, (0, 0, 0))
return cache[text]
x = 0
running = True
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_ESCAPE:
running = False
x-=1
if x < -1000:
x = 0
gameDisplay.blit(scaled, (x, 0))
fps = render('FPS: ' + str(int(clock.get_fps())))
gameDisplay.blit(fps, (20, 20))
pygame.display.update()
clock.tick(120)
As #sloth explained, there are better ways to do the same, but if you want to know what the actual problems are:
You're not drawing 2000 rectangles, you're drawing 10.000 of them, because your dimension is 100x100
You're doing a check if the rectangle is visible in the worst possible way in terms of performance. Just check what happens if you leave the check and don't draw the rectangles. You'll see that the performance is improved but it's still far from 120fps. That's because for every rectangle you generate a list of numbers from 0 to the width of the screen and another list from zero to the height of the screen. You also do that twice. That means, on a 1920x1080 screen: (1920 * 10000) + (1920 * 10000) + (1080 * 10000) + (1080*10000) = 60000000. So, 60 million checks. If you have 120fps, that means 60 million * 120 = 7.2 billion checks per second.
Just changing the check to something similar to if b.x+size < display_width and b.y+size < display_height and b.x > 0 and b.y > 0: will already improve the performance.
That said, it's still 10000 rectangles, and it's still 120fps, which means 1200000 rectangles per second, done with basically no HW acceleration and with a high level language. Don't expect top performance.
Related
I have a pygame game and I want to make the background color shift with screen.fill
but when I do that two times in a row with different colors, the colors will change instantly but I want them to shift to the other color slowly, how is that done?
Pygame provides the pygame.Color object. It offers the handy method lerp, that can interpolate 2 colors:
Returns a Color which is a linear interpolation between self and the given Color in RGBA space
Use this method to mix 2 colors depending on a weight w. w is 0 at the beginning and increases with time:
bg_color = color1.lerp(color2, max(0, min(1, w)))
if w < 1:
w += 0.01
Minimal example:
import pygame
pygame.init()
window = pygame.display.set_mode((400, 400))
clock = pygame.time.Clock()
color1 = pygame.Color(64, 64, 64)
color2 = pygame.Color(0, 0, 255)
w = 0
run = True
while run:
clock.tick(100)
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
bg_color = color1.lerp(color2, max(0, min(1, w)))
if w < 1:
w += 0.01
window.fill(bg_color)
pygame.display.flip()
pygame.quit()
exit()
I have code to move a rectangle in pygame from left to right, up and down.
But I want to move my rectangle around the screen that I created..
can someone help me please?
import pygame
from pygame.locals import *
pygame.init()
FPS = 70
fpsclock = pygame.time.Clock()
SIZE = (1000, 700)
form1 = pygame.display.set_mode(SIZE)
WHITE=(255, 255, 255)
x = 0
y = 0
w = 50
h = 60
direction = 'right'
while True:
for event in pygame.event.get():
if event.type == QUIT:
exit()
form1.fill(WHITE)
pygame.draw.rect(form1, (255, 0, 0), (x, y, w, h), 1)
pygame.display.update()
fpsclock.tick(FPS)
if x,y==0,0:
direction='right'
if x,y==1200-50,0:
direction='down'
if x,y==1200-50,700-60:
direction='left'
if x,y==0,1200-50:
direction='right'
So the first thing you have to look at is the spacing. Even though your code works (after proper indentation) the square goes out of bounds.
The same thing applies to y as well if the square should go up and down.
If you want the square to go around you just need to go left, right, up, or down at the correct time. So if you want to start at the left upper corner and go around you just need to check if the square is in a corner and then change the direction accordingly.
Keep in mind that going down actually increases and going up decreases y.
EDIT:
Here you can see the result of my proposed concept
EDIT 2:
I've copied your code and refactored and completed it. I tried to explain why I did what I did.
import pygame
# Only import the things you need it makes debugging and documenting
# alot easier if you know where everything is coming from
from pygame.locals import QUIT
FPS = 70
# Use variables to define width and height in case you want to
# change it later
width = 200
height = 200
# I would group variables by usage, for example, I would group width,
# height of the screen and w, h of the box so I can easily manipulate
# the numbers if want to.
w = 50
h = 60
# Using an offset variable reduces the hardcoded numbers even more
# if its 0 it will just move along the border but if it >0 it will move
# the square to the centre
offset = 20
# You can declare it as a variable if you need the SIZE tuple somewhere
# else, if you don't need it you can just set it as
# pygame.display.set_mode((width, height))
SIZE = (width, height)
WHITE = (255, 255, 255)
RED = (255, 0, 0)
x = offset
y = offset
direction = 'right'
# This is just my preference but I like to have the variables that are
# changeable at the top for easy access. I think this way the code is
# cleaner.
pygame.init()
fpsclock = pygame.time.Clock()
form1 = pygame.display.set_mode(SIZE)
while True:
for event in pygame.event.get():
if event.type == QUIT:
exit()
form1.fill(WHITE)
# Try to avoid hardcoded numbers as much as possible, hardcoded
# numbers are hard to change later on when the code gets to certain
# size and complexity.
pygame.draw.rect(form1, RED, (x, y, w, h), 1)
pygame.display.update()
fpsclock.tick(FPS)
# Don't harcode conditions, use variables so you can easily change
# them later
if x == offset and y == offset:
direction='right'
if x == width - w - offset and y == offset:
direction='down'
if x == width - w - offset and y == height - h - offset:
direction='left'
if x == offset and y == height - h - offset:
direction='up'
if direction == 'right':
x += 5
elif direction == 'down':
#Keep in mind going down actually means to increment y
y += 5
elif direction == 'left':
x -= 5
elif direction == 'up':
y -= 5
I'm trying to create a game in python where one can drag a textbox around the screen, but whenever it touches the borders of a circle around it, I want the loop to start over, but with a different text (by storing all text-strings in a list, but I'm not that far, yet). This is how far I have come:
import pygame
import ptext
pygame.init()
gameDisplay = pygame.display.set_mode((500, 500))
gameDisplay.fill((255,255,255))
x = 190
y = 230
a = 250
b = 250
text = "ExampleText 1."
def textbox(x,y):
ptext.draw(text, (x,y), color = (0,0,0))
def circle(a,b):
pygame.draw.circle(gameDisplay, (0,0,0), (250, 250), 210, 5)
done = False
while not done:
for event in pygame.event.get():
if event.type == pygame.QUIT:
done = True
elif event.type == pygame.MOUSEMOTION:
if event.buttons[0]:
x += event.rel[0]
y += event.rel[1]
textbox(x,y)
circle(a,b)
pygame.display.flip()
pygame.quit()
quit()
Now I understand I will need to detect collision of the borders of my objects, but here I'm pretty lost. I tried to store the variables of my objects in rectangles and then produce another if statement that recognizes whether or not my objects collide (I used a print command because I haven't gotten to the actual command I want, yet), but that won't print anything and I'm sure I'm on the wrong path, but it is my best effort...
For that I have defined:
text_rect = pygame.Rect(x, y, 10, 30)
circle_rect = pygame.Rect(a,b, 300, 300)
and then in my loop:
if circle_rect.colliderect(text_rect):
print("COLLIDE")
Does anybody have any tip on a better way to define the objects and to create the function I want?
(Edit: Btw.: I'm not too concerned about the fact that when I drag my textbox, it leaves a print of the text, since that doesn't happen in my original script, but would be thankful if anyone knows why it does that in my current example.)
A rectangle has 4 corner points. If the rectangle is "smaller" then the circle (the diameter of the circle is greater than the diagonal of the rectangle), then the rectangle collides with the contour of a circle, if at least one point is out of the circle and at least one point is in the circle.
Define the rectangle and setup a list of the corner points. Further you've to know the radius of the circle:
w, h = 10, 30
rect = pygame.Rect(x, y, 10, 30)
corners = [rect.bottomleft, rect.bottomright, rect.topleft, rect.topright]
radius = 210
Calculate the Euclidean distance of each corner point to the center of the circle (a, b):
import math
dist = [math.sqrt((p[0]-a)**2 + (p[1]-b)**2) for p in corners]
Create to lists, one with the points in the circle (p_in) and one with the points out of the circle (p_out):
p_out = [i for i, d in enumerate(dist) if d > radius]
p_in = [i for i, d in enumerate(dist) if d < radius]
If both list contain any element, then the rectangle intersects the circle contour:
if any(p_in) and any(p_out):
print("COLLIDE")
If len(p_in) is 4, then the rectangle is completely in the circle. If len(p_out) is 4 then the rectangle is completely out of the circle.
if any(p_in) and any(p_out):
print("COLLIDE")
elif len(p_in) == 4:
print("IN")
elif len(p_out) == 4:
print("OUT")
See the simple example, which is based on your code snippet and demonstrates the collision test. The rectangle is attached to the mouse:
import pygame
import math
pygame.init()
gameDisplay = pygame.display.set_mode((500, 500))
done = False
while not done:
for event in pygame.event.get():
if event.type == pygame.QUIT:
done = True
x, y = pygame.mouse.get_pos()
w, h = 10, 30
rect = pygame.Rect(x, y, 10, 30)
a, b = 250, 250
radius = 210
corners = [rect.bottomleft, rect.bottomright, rect.topleft, rect.topright]
dist = [math.sqrt((p[0]-a)**2 + (p[1]-b)**2) for p in corners]
p_out = [i for i, d in enumerate(dist) if d > radius]
p_in = [i for i, d in enumerate(dist) if d < radius]
if any(p_in) and any(p_out):
print("COLLIDE")
elif len(p_in) == 4:
print("IN")
elif len(p_out) == 4:
print("OUT")
gameDisplay.fill((255,255,255))
pygame.draw.rect(gameDisplay, (255, 0, 0), rect)
pygame.draw.circle(gameDisplay, (0,0,0), (a, b), radius, 5)
pygame.display.flip()
pygame.quit()
quit()
How can I get rid of white spots when drawing multiple circles close to each other in pygame?
Here is my code:
import pygame
from pygame import gfxdraw
from math import pow, atan2
def getColor(r, col1, col2, fun="lin"):
if fun =="pol2":
r = pow(r,2)
col1_r = tuple([r*x for x in col1])
col2_r = tuple([(1-r)*x for x in col2])
final_col = tuple(sum(i) for i in zip(col1_r, col2_r))
return final_col
def draw(sizeX, sizeY):
# Initialize the game engine
pygame.init()
screen = pygame.display.set_mode([sizeX, sizeY])
#Loop until the user clicks the close button.
done = False
clock = pygame.time.Clock()
while not done:
# This limits the while loop to a max of 10 times per second.
# Leave this out and we will use all CPU we can.
clock.tick(10)
for event in pygame.event.get(): # User did something
if event.type == pygame.QUIT: # If user clicked close
done=True # Flag that we are done so we exit this loop
screen.fill(WHITE)
for y in range(200,500):
for x in range(0,10):
gfxdraw.arc(screen, 400, 400, y, x*15, (x+1)*15, getColor(x/10,(0,0,(y-200)/2),(255,255,(y-200)/2), fun="lin"))
pygame.display.flip()
pygame.quit()
This phenomenon is called aliasing and happens when you take a continuous signal and samples it. In your case, gfx.draw() uses continuous functions (the trigonometric functions) to calculate which pixel to draw the color onto. Since theses calculations are in floats and have to be rounded to integers, it may happen that some pixels are missed.
To fix this you need an anti-aliasing filter. There are many different types such as low pass (blurring), oversampling etc.
Since these holes almost always are one pixel I'd create a function that identifies these holes and fills them with the average of it's neighbours colors. The problem is that Pygame is not very good at manually manipulating pixels, so it can be slow depending on the size of the image. Although, Pygame has a module called surfarray that's built on numpy which allows you to access pixels easier and faster, so that will speed it up some. Of course, it'll require you to install numpy.
I couldn't get your program to work, so next time make sure you really have a Minimal, Complete, and Verifiable example. The following code is just based on the image you provided.
import numpy as np
import pygame
pygame.init()
RADIUS = 1080 // 2
FPS = 30
screen = pygame.display.set_mode((RADIUS * 2, RADIUS * 2))
clock = pygame.time.Clock()
circle_size = (RADIUS * 2, RADIUS * 2)
circle = pygame.Surface(circle_size)
background_color = (255, 255, 255)
circle_color = (255, 0, 0)
pygame.draw.circle(circle, circle_color, (RADIUS, RADIUS), RADIUS, RADIUS // 2)
def remove_holes(surface, background=(0, 0, 0)):
"""
Removes holes caused by aliasing.
The function locates pixels of color 'background' that are surrounded by pixels of different colors and set them to
the average of their neighbours. Won't fix pixels with 2 or less adjacent pixels.
Args:
surface (pygame.Surface): the pygame.Surface to anti-aliasing.
background (3 element list or tuple): the color of the holes.
Returns:
anti-aliased pygame.Surface.
"""
width, height = surface.get_size()
array = pygame.surfarray.array3d(surface)
contains_background = (array == background).all(axis=2)
neighbours = (0, 1), (0, -1), (1, 0), (-1, 0)
for row in range(1, height-1):
for col in range(1, width-1):
if contains_background[row, col]:
average = np.zeros(shape=(1, 3), dtype=np.uint16)
elements = 0
for y, x in neighbours:
if not contains_background[row+y, col+x]:
elements += 1
average += array[row+y, col+x]
if elements > 2: # Only apply average if more than 2 neighbours is not of background color.
array[row, col] = average // elements
return pygame.surfarray.make_surface(array)
def main():
running = True
image = pygame.image.load('test.png').convert()
# image = circle
pos = image.get_rect(center=(RADIUS, RADIUS))
while running:
clock.tick(FPS)
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_ESCAPE:
running = False
elif event.key == pygame.K_1:
print('Reset circle.')
image = circle
elif event.key == pygame.K_2:
print('Starting removing holes.')
time = pygame.time.get_ticks()
image = remove_holes(image, background=(255, 255, 255))
time = pygame.time.get_ticks() - time
print('Finished removing holes in {:.4E} s.'.format(time / 1000))
screen.fill(background_color)
screen.blit(image, pos)
pygame.display.update()
if __name__ == '__main__':
main()
Result
Before
After
Time
As I said before, it's not a very fast operation. Here are some benchmarks based on the circle in the example:
Surface size: (100, 100) | Time: 1.1521E-02 s
Surface size: (200, 200) | Time: 4.3365E-02 s
Surface size: (300, 300) | Time: 9.7489E-02 s
Surface size: (400, 400) | Time: 1.7257E-01 s
Surface size: (500, 500) | Time: 2.6911E-01 s
Surface size: (600, 600) | Time: 3.8759E-01 s
Surface size: (700, 700) | Time: 5.2999E-01 s
Surface size: (800, 800) | Time: 6.9134E-01 s
Surface size: (900, 900) | Time: 9.1454E-01 s
And with your image:
Time: 1.6557E-01 s
I am making a utility for myself to easily translate degrees to x and y cordinates in my games and I got stuck on a problem; trying to move the player in degrees across the screen. I found multiple formulas that didn't work and I need some help. Here is my code that I found:
def move(degrees, offset):
x = math.cos(degrees * 57.2957795) * offset # 57.2957795 Was supposed to be the
y = math.sin(degrees * 57.2957795) * offset # magic number but it won't work.
return [x, y]
I then ran this:
move(0, 300)
Output:
[300.0, 0.0]
and it worked just fine, but when I did this:
move(90, 300)
it outputted this:
[-89.8549554331319, -286.22733444608303]
Your approach is almost correct. You should use radians for sin/cos functions. Here is a method I commonly use in C++ (ported to python) for 2D movement.
import math
def move(degrees, offset)
rads = math.radians(degrees)
x = math.cos(rads) * offset
y = math.sin(rads) * offset
return x, y
The number is correct, but the operation is wrong. In order to convert degrees to radians you need to divide by 180 degrees per half-circle and then multiply by pi radians per half-circle. This is equivalent to dividing by the constant you have.
You can use the from_polar method of the pygame.math.Vector2 class to set the polar coordinates of a vector. Then you can use this vector to adjust the position of a sprite or rect.
import pygame as pg
from pygame.math import Vector2
def move(offset, degrees):
vec = Vector2() # Create a zero vector.
vec.from_polar((offset, degrees)) # Set its polar coordinates.
return vec
pg.init()
screen = pg.display.set_mode((640, 480))
clock = pg.time.Clock()
BG_COLOR = pg.Color('gray12')
BLUE = pg.Color('dodgerblue1')
rect = pg.Rect(300, 200, 30, 20)
done = False
while not done:
for event in pg.event.get():
if event.type == pg.QUIT:
done = True
elif event.type == pg.KEYDOWN:
if event.key == pg.K_SPACE:
# Use the vector that `move` returns to move the rect.
rect.move_ip(move(50, 90))
screen.fill(BG_COLOR)
pg.draw.rect(screen, BLUE, rect)
pg.display.flip()
clock.tick(30)
pg.quit()