In the case of multiple inheritance in python, is there a way to identify which super class a class-level variable is obtained from?
All attempts I tried to google are overwhelmingly about How to get the attribute not find out where it came from:
https://www.google.com/search?q=pythin+which+super+class+defines+attr
https://www.google.com/search?q=python+which+super+class+has+attribute&oq=python+which+super+class+has+attr
https://www.google.com/search?q=python+which+super+class+attribute+obtained+from
I suppose I can manually step through the MRO using inspect.getmro(cls). But I couldn't find any more elegant solutions. Just wondering if anyone knows of one.
EDIT
For a concrete example:
class Super1(object):
__class_attribute__ = "Foo"
class Super2(object):
pass
class Derived(Super1, Super2):
pass
d = Derived()
parent_cls = some_function_to_get_defining_class(d.__class_attribute__) # <-- should return `Super1`
The __qualname__ attribute gives an indication from which class a method was inherited. However, this only returns a string, not the superclass itself. If you need to the superclass for metaprogramming, I think you are going to have to dig into the MRO.
class A:
def a(self):
return 1
def b(self):
return 2
class B:
def b(self):
return 2.5
def c(self):
return 3
class C(A,B):
pass
Using:
C.b.__qualname__
# returns:
'A.b'
However, this does not apply when using abstract methods to define an interface, since the method has to be overwritten.
from abc import abstractmethod
class A:
def a(self):
return 1
#abstractmethod
def b(self):
pass
class C(A):
def b(self):
return 100
C.b.__qualname__
# returns:
'C.b'
I wonder if there is a way in Python to access the class which the object which the method belongs to is being called from. For example:
class A:
def __init__(self):
self.b = B()
def foo(self):
print('A')
class B:
def bar(self):
<something here>.foo()
a = A()
a.b.bar()
Basically I would like B's method bar to invoke A's method foo. And if b was an attribute of some other class C, to invoke C's version of foo instead.
You could add a reference to the class which instantiates B:
class A:
def __init__(self):
# pass self while instantiating B
self.b = B(self)
def foo(self):
print('A')
class B:
def __init__(self, rel_obj):
self.rel_obj = rel_obj
def bar(self):
self.rel_obj.foo() # access foo() using self.rel_obj
Similarly, you could pass an object of class C to invoke C's version of foo method.
I want to do something like:
class A(Resource):
#dec(from_file=A.docpath)
def get(self):
pass
class B(A):
docpath = './docs/doc_for_get_b.json'
class C(A):
docpath = './docs/doc_for_get_c.json'
def dec(*args, **kwargs):
def inner(f):
docpath = kwargs.get('from_file')
f.__kwargs__ = open(path, 'r').read()
return f
return inner
The functions that will be called are B.get and C.get, never A.get.
How can I access the custom attribute docpath defined in class B or class C and pass it to the decorator of the get function in class A ?
Current solution: Put the decorator on each derived class ...
class A(Resource):
def _get(self):
pass
class B(A):
#dec(from_file='./docs/doc_for_get_b.json')
def get(self):
return self._get()
class C(A)
#dec(from_file='./docs/doc_for_get_c.json')
def get(self):
return self._get()
This works but it's pretty ugly compared to the one-line declaration of the classes in the previous code.
To access a class's attributes inside the decorator is easy:
def decorator(function):
def inner(self):
self_type = type(self)
# self_type is now the class of the instance of the method that this
# decorator is wrapping
print('The class attribute docpath is %r' % self_type.docpath)
# need to pass self through because at the point function is
# decorated it has not been bound to an instance, and so it is just a
# normal function which takes self as the first argument.
function(self)
return inner
class A:
docpath = "A's docpath"
#decorator
def a_method(self):
print('a_method')
class B(A):
docpath = "B's docpath"
a = A()
a.a_method()
b = B()
b.a_method()
In general I've found using multiple levels of decorators, i.e. decorator factory functions that create decorators such as you've used and such as:
def decorator_factory(**kwargs):
def decorator_function(function):
def wrapper(self):
print('Wrapping function %s with kwargs %s' % (function.__name__, kwargs))
function(self)
return wrapper
return decorator_function
class A:
#decorator_factory(a=2, b=3)
def do_something(self):
print('do_something')
a = A()
a.do_something()
a difficult thing to get right and not easy to comprehend when reading code, so I would err towards using class attributes and generic superclass methods in favour of lots of decorators.
So in your case, don't pass the file path in as an argument to your decorator factory, but set it as a class attribute on your derived classes, and then write a generic method in your superclass that reads the class attribute from the instance's class.
I have been searching an answer to my question but could not hit the related answer.
Basically i am trying to call a variable from a Class A thats actually GUI to another Class B my code goes like this:
class CLASSA(wx.Frame):
def Method(self):
self.Var = anyvalue
import CLASSA
class CLASSB():
def __init__(self):
self.Var = CLASSA().Method.Var
i have tried as above but its not working out. Isn't it possible to carry out as mentioned ?
At the very least, you need to actually call CLASSA.Method first:
class CLASSB():
def __init__(self):
self.Var = CLASSA().Method().Var
in order for the Var attribute of the CLASSA object to be initialized.
You do not give enough detail to know if Method is necessary. You could, for instance, simply initialize Var in CLASSA.__init__.
# With recommended capitalization
class A(wx.Frame):
def __init__(self):
self.var = any value
class B(object):
def __init__(self):
sef.var = A().var
It's also possible that B should be a subclass of A, in which case B simply inherits var from A:
>>> class B(A):
... pass
>>> print B().var
anyvalue
I have a class that is a super-class to many other classes. I would like to know (in the __init__() of my super-class) if the subclass has overridden a specific method.
I tried to accomplish this with a class method, but the results were wrong:
class Super:
def __init__(self):
if self.method == Super.method:
print 'same'
else:
print 'different'
#classmethod
def method(cls):
pass
class Sub1(Super):
def method(self):
print 'hi'
class Sub2(Super):
pass
Super() # should be same
Sub1() # should be different
Sub2() # should be same
>>> same
>>> different
>>> different
Is there any way for a super-class to know if a sub-class has overridden a method?
It seems simplest and sufficient to do this by comparing the common subset of the dictionaries of an instance and the base class itself, e.g.:
def detect_overridden(cls, obj):
common = cls.__dict__.keys() & obj.__class__.__dict__.keys()
diff = [m for m in common if cls.__dict__[m] != obj.__class__.__dict__[m]]
print(diff)
def f1(self):
pass
class Foo:
def __init__(self):
detect_overridden(Foo, self)
def method1(self):
print("Hello foo")
method2=f1
class Bar(Foo):
def method1(self):
print("Hello bar")
method2=f1 # This is pointless but not an override
# def method2(self):
# pass
b=Bar()
f=Foo()
Runs and gives:
['method1']
[]
If you want to check for an overridden instance method in Python 3, you can do this using the type of self:
class Base:
def __init__(self):
if type(self).method == Base.method:
print('same')
else:
print('different')
def method(self):
print('Hello from Base')
class Sub1(Base):
def method(self):
print('Hello from Sub1')
class Sub2(Base):
pass
Now Base() and Sub2() should both print "same" while Sub1() prints "different". The classmethod decorator causes the first parameter to be bound to the type of self, and since the type of a subclass is by definition different to its base class, the two class methods will compare as not equal. By making the method an instance method and using the type of self, you're comparing a plain function against another plain function, and assuming functions (or unbound methods in this case if you're using Python 2) compare equal to themselves (which they do in the C Python implementation), the desired behavior will be produced.
You can use your own decorator. But this is a trick and will only work on classes where you control the implementation.
def override(method):
method.is_overridden = True
return method
class Super:
def __init__(self):
if hasattr(self.method, 'is_overridden'):
print 'different'
else:
print 'same'
#classmethod
def method(cls):
pass
class Sub1(Super):
#override
def method(self):
print 'hi'
class Sub2(Super):
pass
Super() # should be same
Sub1() # should be different
Sub2() # should be same
>>> same
>>> different
>>> same
In reply to answer https://stackoverflow.com/a/9437273/1258307, since I don't have enough credits yet to comment on it, it will not work under python 3 unless you replace im_func with __func__ and will also not work in python 3.4(and most likely onward) since functions no longer have the __func__ attribute, only bound methods.
EDIT: Here's the solution to the original question(which worked on 2.7 and 3.4, and I assume all other version in between):
class Super:
def __init__(self):
if self.method.__code__ is Super.method.__code__:
print('same')
else:
print('different')
#classmethod
def method(cls):
pass
class Sub1(Super):
def method(self):
print('hi')
class Sub2(Super):
pass
Super() # should be same
Sub1() # should be different
Sub2() # should be same
And here's the output:
same
different
same
You can compare whatever is in the class's __dict__ with the function inside the method
you can retrieve from the object -
the "detect_overriden" functionbellow does that - the trick is to pass
the "parent class" for its name, just as one does in a call to "super" -
else it is not easy to retrieve attributes from the parentclass itself
instead of those of the subclass:
# -*- coding: utf-8 -*-
from types import FunctionType
def detect_overriden(cls, obj):
res = []
for key, value in cls.__dict__.items():
if isinstance(value, classmethod):
value = getattr(cls, key).im_func
if isinstance(value, (FunctionType, classmethod)):
meth = getattr(obj, key)
if not meth.im_func is value:
res.append(key)
return res
# Test and example
class A(object):
def __init__(self):
print detect_overriden(A, self)
def a(self): pass
#classmethod
def b(self): pass
def c(self): pass
class B(A):
def a(self): pass
##classmethod
def b(self): pass
edit changed code to work fine with classmethods as well:
if it detects a classmethod on the parent class, extracts the underlying function before proceeding.
--
Another way of doing this, without having to hard code the class name, would be to follow the instance's class ( self.__class__) method resolution order (given by the __mro__ attribute) and search for duplicates of the methods and attributes defined in each class along the inheritance chain.
I'm using the following method to determine if a given bound method is overridden or originates from the parent class
class A():
def bla(self):
print("Original")
class B(A):
def bla(self):
print("Overridden")
class C(A):
pass
def isOverriddenFunc(func):
obj = func.__self__
prntM = getattr(super(type(obj), obj), func.__name__)
return func.__func__ != prntM.__func__
b = B()
c = C()
b.bla()
c.bla()
print(isOverriddenFunc(b.bla))
print(isOverriddenFunc(c.bla))
Result:
Overridden
Original
True
False
Of course, for this to work, the method must be defined in the base class.
You can also check if something is overridden from its parents, without knowing any of the classes involved using super:
class A:
def fuzz(self):
pass
class B(A):
def fuzz(self):
super().fuzz()
class C(A):
pass
>>> b = B(); c = C()
>>> b.__class__.fuzz is super(b.__class__, b).fuzz.__func__
False
>>> c.__class__.fuzz is super(c.__class__, c).fuzz.__func__
True
See this question for some more nuggets of information.
A general function:
def overrides(instance, function_name):
return getattr(instance.__class__, function_name) is not getattr(super(instance.__class__, instance), function_name).__func__
>>> overrides(b, "fuzz")
True
>>> overrides(c, "fuzz")
False
You can check to see if the function has been overridden by seeing if the function handle points to the Super class function or not. The function handler in the subclass object points either to the Super class function or to an overridden function in the Subclass. For example:
class Test:
def myfunc1(self):
pass
def myfunc2(self):
pass
class TestSub(Test):
def myfunc1(self):
print('Hello World')
>>> test = TestSub()
>>> test.myfunc1.__func__ is Test.myfunc1
False
>>> test.myfunc2.__func__ is Test.myfunc2
True
If the function handle does not point to the function in the Super class, then it has been overridden.
Not sure if this is what you're looking for but it helped me when I was looking for a similar solution.
class A:
def fuzz(self):
pass
class B(A):
def fuzz(self):
super().fuzz()
assert 'super' in B.__dict__['fuzz'].__code__.co_names
The top-trending answer and several others use some form of Sub.method == Base.method. However, this comparison can return a false negative if Sub and Base do not share the same import syntax. For example, see discussion here explaining a scenario where issubclass(Sub, Base) -> False.
This subtlety is not apparent when running many of the minimal examples here, but can show up in a more complex code base. The more reliable approach is to compare the method defined in the Sub.__bases__ entry corresponding to Base because __bases__ is guaranteed to use the same import path as Sub
import inspect
def method_overridden(cls, base, method):
"""Determine if class overriddes the implementation of specific base class method
:param type cls: Subclass inheriting (and potentially overriding) the method
:param type base: Base class where the method is inherited from
:param str method: Name of the inherited method
:return bool: Whether ``cls.method != base.method`` regardless of import
syntax used to create the two classes
:raises NameError: If ``base`` is not in the MRO of ``cls``
:raises AttributeError: If ``base.method`` is undefined
"""
# Figure out which base class from the MRO to compare against
base_cls = None
for parent in inspect.getmro(cls):
if parent.__name__ == base.__name__:
base_cls = parent
break
if base_cls is None:
raise NameError(f'{base.__name__} is not in the MRO for {cls}')
# Compare the method implementations
return getattr(cls, method) != getattr(base_cls, method)