Dates in X-axis using pandas and matplotlib - python

I am trying to plot some data from pandas. First I group by weeks and count for each grouped week, them I want to plot for each date, however when I try to plot I get just some dates, not all of them.
I am using the following code:
my_data = res1.groupby(pd.Grouper(key='d', freq='W-MON')).agg('count').u
p1, = plt.plot(my_data, '.-')
a = plt.xticks(rotation=45)
My result is the following:
I wanted a value in the x-axis for each date in the grouped dataframe.
EDIT: I tried to use plt.xticks(list(my_data.index.astype(str)), rotation=45)
The plot I get is the following:

Please find a working chunk of code below:
from datetime import date, timedelta
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
a = pd.Series(np.random.randint(10, 99, 10))
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m/%d/%Y'))
plt.gca().xaxis.set_major_locator(mdates.DayLocator())
plt.plot(pd.date_range(date(2016,1,1), periods=10, freq='D'), a)
plt.gcf().autofmt_xdate()
Hope it helps :)

Related

matplotlib bar chart with overlapping dates

I am plotting a simple bar chart using pandas/matplotlib. The x-axis is a datetime index. There are so many datapoints that the labels overlap. Is there an easy solution for this problem, no matter if I have daily, weekly, monthly, or yearly data?
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
idx = pd.date_range("2015-01-01", "2021-09-30", freq="b")
data = np.random.randn(len(idx))
df = pd.DataFrame(data={"returns": data}, index=idx)
df.plot(kind="bar")
plt.show()
Use DateFormatter to custom the xaxis but let Matplotlib handle the figure rather than Pandas:
import matplotlib.dates as mdates
# ...
fig, ax = plt.subplots(figsize=(15, 7))
ax.bar(df.index, df['returns'])
ax.xaxis.set_major_locator(mdates.YearLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m"))

How to use time as x axis for a scatterplot with seaborn?

I have a simple dataframe with the time as index and dummy values as example.[]
I did a simple scatter plot as you see here:
Simple question: How to adjust the xaxis, so that all time values from 00:00 to 23:00 are visible in the xaxis? The rest of the plot is fine, it shows all the datapoints, it is just the labeling. Tried different things but didn't work out.
All my code so far is:
import pandas as pd
import seaborn as sns
import matplotlib.dates as mdates
from datetime import time
data = []
for i in range(0, 24):
temp_list = []
temp_list.append(time(i))
temp_list.append(i)
data.append(temp_list)
my_df = pd.DataFrame(data, columns=["time", "values"])
my_df.set_index(['time'],inplace=True)
my_df
fig = sns.scatterplot(my_df.index, my_df['values'])
fig.set(xlabel='time', ylabel='values')
I think you're gonna have to go down to the matplotlib level for this:
import pandas as pd
import seaborn as sns
import matplotlib.dates as mdates
from datetime import time
import matplotlib.pyplot as plt
data = []
for i in range(0, 24):
temp_list = []
temp_list.append(time(i))
temp_list.append(i)
data.append(temp_list)
df = pd.DataFrame(data, columns=["time", "values"])
df.time = pd.to_datetime(df.time, format='%H:%M:%S')
df.set_index(['time'],inplace=True)
ax = sns.scatterplot(df.index, df["values"])
ax.set(xlabel="time", ylabel="measured values")
ax.set_xlim(df.index[0], df.index[-1])
ax.xaxis.set_major_locator(mdates.HourLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter("%H:%M:%S"))
ax.tick_params(axis="x", rotation=45)
This produces
i think you have 2 options:
convert the time to hour only, for that just extract the hour to new column in your df
df['hour_'] = datetime.hour
than use it as your xaxis
if you need the time in the format you described, it may cause you a visibility problem in which timestamps will overlay each other. i'm using the
plt.xticks(rotation=45, horizontalalignment='right')
ax.xaxis.set_major_locator(plt.MaxNLocator(12))
so first i rotate the text then i'm limiting the ticks number.
here is a full script where i used it:
sns.set()
sns.set_style("whitegrid")
sns.axes_style("whitegrid")
for k, g in df_forPlots.groupby('your_column'):
fig = plt.figure(figsize=(10,5))
wide_df = g[['x', 'y', 'z']]
wide_df.set_index(['x'], inplace=True)
ax = sns.lineplot(data=wide_df)
plt.xticks(rotation=45,
horizontalalignment='right')
ax.yaxis.set_major_locator(plt.MaxNLocator(14))
ax.xaxis.set_major_locator(plt.MaxNLocator(35))
plt.title(f"your {k} in somthing{g.z.unique()}")
plt.tight_layout()
hope i halped

Python scatterplot vs plot

I want to use Python's plt.scatter or ax.scatter to show a car finishing times as scatterplot chart. So my x axis contains an array:
'car001','car002','car003', ...
The y axes should contain the finish time in datetime format like:
'2019-01-01 23:32:01','2019-01-01 23:32:01','2019-01-01 23:32:01', ...
Why it is so difficult to use datetime values as pandas dataframe with a scatterplot?
I don't want to use plt.plot() with linestyle 'o'.
Thank you very much!
Did you try something like this ?
import pandas as pd
import matplotlib.pyplot as plt
dates = ['2017-01-01 23:32:01','2018-01-01 23:32:01','2019-01-01 23:32:01']
PM_25 = ['car001','car002','car003']
dates = [pd.to_datetime(d) for d in dates]
plt.scatter(dates, PM_25)
plt.show()

datetime x-axis matplotlib labels causing uncontrolled overlap

I'm trying to plot a pandas series with a 'pandas.tseries.index.DatetimeIndex'. The x-axis label stubbornly overlap, and I cannot make them presentable, even with several suggested solutions.
I tried stackoverflow solution suggesting to use autofmt_xdate but it doesn't help.
I also tried the suggestion to plt.tight_layout(), which fails to make an effect.
ax = test_df[(test_df.index.year ==2017) ]['error'].plot(kind="bar")
ax.figure.autofmt_xdate()
#plt.tight_layout()
print(type(test_df[(test_df.index.year ==2017) ]['error'].index))
UPDATE: That I'm using a bar chart is an issue. A regular time-series plot shows nicely-managed labels.
A pandas bar plot is a categorical plot. It shows one bar for each index at integer positions on the scale. Hence the first bar is at position 0, the next at 1 etc. The labels correspond to the dataframes' index. If you have 100 bars, you'll end up with 100 labels. This makes sense because pandas cannot know if those should be treated as categories or ordinal/numeric data.
If instead you use a normal matplotlib bar plot, it will treat the dataframe index numerically. This means the bars have their position according to the actual dates and labels are placed according to the automatic ticker.
import pandas as pd
import numpy as np; np.random.seed(42)
import matplotlib.pyplot as plt
datelist = pd.date_range(pd.datetime(2017, 1, 1).strftime('%Y-%m-%d'), periods=42).tolist()
df = pd.DataFrame(np.cumsum(np.random.randn(42)),
columns=['error'], index=pd.to_datetime(datelist))
plt.bar(df.index, df["error"].values)
plt.gcf().autofmt_xdate()
plt.show()
The advantage is then in addition that matplotlib.dates locators and formatters can be used. E.g. to label each first and fifteenth of a month with a custom format,
import pandas as pd
import numpy as np; np.random.seed(42)
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
datelist = pd.date_range(pd.datetime(2017, 1, 1).strftime('%Y-%m-%d'), periods=93).tolist()
df = pd.DataFrame(np.cumsum(np.random.randn(93)),
columns=['error'], index=pd.to_datetime(datelist))
plt.bar(df.index, df["error"].values)
plt.gca().xaxis.set_major_locator(mdates.DayLocator((1,15)))
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%d %b %Y"))
plt.gcf().autofmt_xdate()
plt.show()
In your situation, the easiest would be to manually create labels and spacing, and apply that using ax.xaxis.set_major_formatter.
Here's a possible solution:
Since no sample data was provided, I tried to mimic the structure of your dataset in a dataframe with some random numbers.
The setup:
# imports
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.ticker as ticker
# A dataframe with random numbers ro run tests on
np.random.seed(123456)
rows = 100
df = pd.DataFrame(np.random.randint(-10,10,size=(rows, 1)), columns=['error'])
datelist = pd.date_range(pd.datetime(2017, 1, 1).strftime('%Y-%m-%d'), periods=rows).tolist()
df['dates'] = datelist
df = df.set_index(['dates'])
df.index = pd.to_datetime(df.index)
test_df = df.copy(deep = True)
# Plot of data that mimics the structure of your dataset
ax = test_df[(test_df.index.year ==2017) ]['error'].plot(kind="bar")
ax.figure.autofmt_xdate()
plt.figure(figsize=(15,8))
A possible solution:
test_df = df.copy(deep = True)
ax = test_df[(test_df.index.year ==2017) ]['error'].plot(kind="bar")
plt.figure(figsize=(15,8))
# Make a list of empty myLabels
myLabels = ['']*len(test_df.index)
# Set labels on every 20th element in myLabels
myLabels[::20] = [item.strftime('%Y - %m') for item in test_df.index[::20]]
ax.xaxis.set_major_formatter(ticker.FixedFormatter(myLabels))
plt.gcf().autofmt_xdate()
# Tilt the labels
plt.setp(ax.get_xticklabels(), rotation=30, fontsize=10)
plt.show()
You can easily change the formatting of labels by checking strftime.org

Time-series boxplot in pandas

How can I create a boxplot for a pandas time-series where I have a box for each day?
Sample dataset of hourly data where one box should consist of 24 values:
import pandas as pd
n = 480
ts = pd.Series(randn(n),
index=pd.date_range(start="2014-02-01",
periods=n,
freq="H"))
ts.plot()
I am aware that I could make an extra column for the day, but I would like to have proper x-axis labeling and x-limit functionality (like in ts.plot()), so being able to work with the datetime index would be great.
There is a similar question for R/ggplot2 here, if it helps to clarify what I want.
If its an option for you, i would recommend using Seaborn, which is a wrapper for Matplotlib. You could do it yourself by looping over the groups from your timeseries, but that's much more work.
import pandas as pd
import numpy as np
import seaborn
import matplotlib.pyplot as plt
n = 480
ts = pd.Series(np.random.randn(n), index=pd.date_range(start="2014-02-01", periods=n, freq="H"))
fig, ax = plt.subplots(figsize=(12,5))
seaborn.boxplot(ts.index.dayofyear, ts, ax=ax)
Which gives:
Note that i'm passing the day of year as the grouper to seaborn, if your data spans multiple years this wouldn't work. You could then consider something like:
ts.index.to_series().apply(lambda x: x.strftime('%Y%m%d'))
Edit, for 3-hourly you could use this as a grouper, but it only works if there are no minutes or lower defined. :
[(dt - datetime.timedelta(hours=int(dt.hour % 3))).strftime('%Y%m%d%H') for dt in ts.index]
(Not enough rep to comment on accepted solution, so adding an answer instead.)
The accepted code has two small errors: (1) need to add numpy import and (2) nned to swap the x and y parameters in the boxplot statement. The following produces the plot shown.
import numpy as np
import pandas as pd
import seaborn
import matplotlib.pyplot as plt
n = 480
ts = pd.Series(np.random.randn(n), index=pd.date_range(start="2014-02-01", periods=n, freq="H"))
fig, ax = plt.subplots(figsize=(12,5))
seaborn.boxplot(ts.index.dayofyear, ts, ax=ax)
I have a solution that may be helpful-- It only uses native pandas and allows for hierarchical date-time grouping (i.e spanning years). The key is that if you pass a function to groupby(), it will be called on each element of the dataframe's index. If your index is a DatetimeIndex (or similar), you can access all of the dt's convenience functions for resampling!
Try this:
n = 480
ts = pd.DataFrame(np.random.randn(n), index=pd.date_range(start="2014-02-01", periods=n, freq="H"))
ts.groupby(lambda x: x.strftime("%Y-%m-%d")).boxplot(subplots=False, figsize=(12,9), rot=90)

Categories