pandas - how to extract top three rows from the dataframe provided - python

My pandas Data frame df could produce result as below:
grouped = df[(df['X'] == 'venture') & (df['company_code'].isin(['TDS','XYZ','UVW']))].groupby(['company_code','sector'])['X_sector'].count()
The output of this is as follows:
company_code sector
TDS Meta 404
Electrical 333
Mechanical 533
Agri 453
XYZ Sports 331
Electrical 354
Movies 375
Manufacturing 355
UVW Sports 505
Robotics 345
Movies 56
Health 3263
Manufacturing 456
Others 524
Name: X_sector, dtype: int64
What I want to get is the top three sectors within the company codes.
What is the way to do it?

You will have to chain a groupby here. Consider this example:
import pandas as pd
import numpy as np
np.random.seed(111)
names = [
'Robert Baratheon',
'Jon Snow',
'Daenerys Targaryen',
'Theon Greyjoy',
'Tyrion Lannister'
]
df = pd.DataFrame({
'season': np.random.randint(1, 7, size=100),
'actor': np.random.choice(names, size=100),
'appearance': 1
})
s = df.groupby(['season','actor'])['appearance'].count()
print(s.sort_values(ascending=False).groupby('season').head(1)) # <-- head(3) for 3 values
Returns:
season actor
4 Daenerys Targaryen 7
6 Robert Baratheon 6
3 Robert Baratheon 6
5 Jon Snow 5
2 Theon Greyjoy 5
1 Jon Snow 4
Where s is (clipped at 4)
season actor
1 Daenerys Targaryen 2
Jon Snow 4
Robert Baratheon 2
Theon Greyjoy 3
Tyrion Lannister 4
2 Daenerys Targaryen 4
Jon Snow 3
Robert Baratheon 1
Theon Greyjoy 5
Tyrion Lannister 3
3 Daenerys Targaryen 2
Jon Snow 1
Robert Baratheon 6
Theon Greyjoy 3
Tyrion Lannister 3
4 ...

Why would you want things to be complicated, when there are simple codes possible:
Z = df.groupby('country_code')['sector'].value_counts().groupby(level=0).head(3).sort_values(ascending=False).to_frame('counts').reset_index()
Z

Related

How to drop rows from a pandas dataframe based on a pre-made list

I have a big dataset. It's about news reading. I'm trying to clean it. I created a checklist of cities that I want to keep (the set has all the cities). How can I drop the rows based on that checklist? For example, I have a checklist (as a list) that contains all the french cities. How can I drop other cities?
To picture the data frame (I have 1.5m rows btw):
City Age
0 Paris 25-34
1 Lyon 45-54
2 Kiev 35-44
3 Berlin 25-34
4 New York 25-34
5 Paris 65+
6 Toulouse 35-44
7 Nice 55-64
8 Hannover 45-54
9 Lille 35-44
10 Edinburgh 65+
11 Moscow 25-34
You can do this using pandas.Dataframe.isin. This will return boolean values checking whether each element is inside the list x. You can then use the boolean values and take out the subset of the df with rows that return True by doing df[df['City'].isin(x)]. Following is my solution:
import pandas as pd
x = ['Paris' , 'Marseille']
df = pd.DataFrame(data={'City':['Paris', 'London', 'New York', 'Marseille'],
'Age':[1, 2, 3, 4]})
print(df)
df = df[df['City'].isin(x)]
print(df)
Output:
>>> City Age
0 Paris 1
1 London 2
2 New York 3
3 Marseille 4
City Age
0 Paris 1
3 Marseille 4

Combine text using delimiter for duplicate column values

What im trying to achieve is to combine Name into one value using comma delimiter whenever Country column is duplicated, and sum the values in Salary column.
Current input :
pd.DataFrame({'Name': {0: 'John',1: 'Steven',2: 'Ibrahim',3: 'George',4: 'Nancy',5: 'Mo',6: 'Khalil'},
'Country': {0: 'USA',1: 'UK',2: 'UK',3: 'France',4: 'Ireland',5: 'Ireland',6: 'Ireland'},
'Salary': {0: 100, 1: 200, 2: 200, 3: 100, 4: 50, 5: 100, 6: 10}})
Name Country Salary
0 John USA 100
1 Steven UK 200
2 Ibrahim UK 200
3 George France 100
4 Nancy Ireland 50
5 Mo Ireland 100
6 Khalil Ireland 10
Expected output :
Row 1 & 2 (in inputs) got grupped into one since Country column is duplicated & Salary column is summed up.
Tha same goes for Row 4,5 & 6.
Name Country Salary
0 John USA 100
1 Steven, Ibrahim UK 400
2 George France 100
3 Nancy, Mo, Khalil Ireland 160
What i have tried, but im not sure how to combine text in Name column :
df.groupby(['Country'],as_index=False)['Salary'].sum()
[Out:]
Country Salary
0 France 100
1 Ireland 160
2 UK 400
3 USA 100
use groupby() and agg():
out=df.groupby('Country',as_index=False).agg({'Name':', '.join,'Salary':'sum'})
If needed unique values of 'Name' column then use :
out=(df.groupby('Country',as_index=False)
.agg({'Name':lambda x:', '.join(set(x)),'Salary':'sum'}))
Note: use pd.unique() in place of set() if order of unique values is important
output of out:
Country Name Salary
0 France George 100
1 Ireland Nancy, Mo, Khalil 160
2 UK Steven, Ibrahim 400
3 USA John 100
Use agg:
df.groupby(['Country'], as_index=False).agg({'Name': ', '.join, 'Salary':'sum'})
And to get the columns in order you can add [df.columns] to the pipe:
df.groupby(['Country'], as_index=False).agg({'Name': ', '.join, 'Salary':'sum'})[df.columns]
Name Country Salary
0 John USA 100
1 Steven, Ibrahim UK 400
2 George France 100
3 Nancy, Mo, Khalil Ireland 160

Amend row in a data-frame if it exists in another data-frame

I have two dataframes DfMaster and DfError
DfMaster which looks like:
Id Name Building
0 4653 Jane Smith A
1 3467 Steve Jones B
2 34 Kim Lee F
3 4567 John Evans A
4 3643 Kevin Franks S
5 244 Stella Howard D
and DfError looks like
Id Name Building
0 4567 John Evans A
1 244 Stella Howard D
In DfMaster I would like to change the Building value for a record to DD if it appears in the DfError data-frame. So my desired output would be:
Id Name Building
0 4653 Jane Smith A
1 3467 Steve Jones B
2 34 Kim Lee F
3 4567 John Evans DD
4 3643 Kevin Franks S
5 244 Stella Howard DD
I am trying to use the following:
DfMaster.loc[DfError['Id'], 'Building'] = 'DD'
however I get an error:
KeyError: "None of [Int64Index([4567,244], dtype='int64')] are in the [index]"
What have I done wrong?
try this using np.where
import numpy as np
errors = list(dfError['id'].unqiue())
dfMaster['Building_id'] = np.where(dfMaster['Building_id'].isin(errors),'DD',dfMaster['Building_id'])
DataFrame.loc expects that you input an index or a Boolean series, not a value from a column.
I believe this should do the trick:
DfMaster.loc[DfMaster['Id'].isin(DfError['Id']), 'Building'] = 'DD'
Basically, it's telling:
For all rows where Id value is present in DfError['Id'], set the value of 'Building' to 'DD'.

Merge two pandas dataframe two create a new dataframe with a specific operation

I have two dataframes as shown below.
Company Name BOD Position Ethnicity DOB Age Gender Degree ( Specialazation) Remark
0 Big Lots Inc. David J. Campisi Director, President and Chief Executive Offic... American 1956 61 Male Graduate NaN
1 Big Lots Inc. Philip E. Mallott Chairman of the Board American 1958 59 Male MBA, Finace NaN
2 Big Lots Inc. James R. Chambers Independent Director American 1958 59 Male MBA NaN
3 Momentive Performance Materials Inc Mahesh Balakrishnan director Asian 1983 34 Male BA Economics NaN
Company Name Net Sale Gross Profit Remark
0 Big Lots Inc. 5.2B 2.1B NaN
1 Momentive Performance Materials Inc 544M 146m NaN
2 Markel Corporation 5.61B 2.06B NaN
3 Noble Energy, Inc. 3.49B 2.41B NaN
4 Leidos Holding, Inc. 7.04B 852M NaN
I want to create a new dataframe with these two, so that in 2nd dataframe, I have new columns with count of ethinicities from each companies, such as American -2 Mexican -5 and so on, so that later on, i can calculate diversity score.
the variables in the output dataframe is like,
Company Name Net Sale Gross Profit Remark American Mexican German .....
Big Lots Inc. 5.2B 2.1B NaN 2 0 5 ....
First get counts per groups by groupby with size and unstack, last join to second DataFrame:
df1 = pd.DataFrame({'Company Name':list('aabcac'),
'Ethnicity':['American'] * 3 + ['Mexican'] * 3})
df1 = df1.groupby(['Company Name', 'Ethnicity']).size().unstack(fill_value=0)
#slowier alternative
#df1 = pd.crosstab(df1['Company Name'], df1['Ethnicity'])
print (df1)
Ethnicity American Mexican
Company Name
a 2 1
b 1 0
c 0 2
df2 = pd.DataFrame({'Company Name':list('abc')})
print (df2)
Company Name
0 a
1 b
2 c
df3 = df2.join(df1, on=['Company Name'])
print (df3)
Company Name American Mexican
0 a 2 1
1 b 1 0
2 c 0 2
EDIT: You need replace unit by 0 and convert to floats:
print (df)
Name sale
0 A 100M
1 B 200M
2 C 5M
3 D 40M
4 E 10B
5 F 2B
d = {'M': '0'*6, 'B': '0'*9}
df['a'] = df['sale'].replace(d, regex=True).astype(float).sort_values(ascending=False)
print (df)
Name sale a
0 A 100M 1.000000e+08
1 B 200M 2.000000e+08
2 C 5M 5.000000e+06
3 D 40M 4.000000e+07
4 E 10B 1.000000e+10
5 F 2B 2.000000e+09

Pandas: Concatenate two dataframes with different column names

I have two data frames
df1 =
actorID actorName
0 annie_potts Annie Potts
1 bill_farmer Bill Farmer
2 don_rickles Don Rickles
3 erik_von_detten Erik von Detten
4 greg-berg Greg Berg
df2 =
directorID directorName
0 john_lasseter John Lasseter
1 joe_johnston Joe Johnston
2 donald_petrie Donald Petrie
3 forest_whitaker Forest Whitaker
4 charles_shyer Charles Shyer
What I ideally want is a concatenation of these two dataframes, like pd.concat((df1, df2)):
actorID-directorID actorName-directorName
0 annie_potts Annie Potts
1 bill_farmer Bill Farmer
2 don_rickles Don Rickles
3 erik_von_detten Erik von Detten
4 greg-berg Greg Berg
5 john_lasseter John Lasseter
6 joe_johnston Joe Johnston
7 donald_petrie Donald Petrie
8 forest_whitaker Forest Whitaker
9 charles_shyer Charles Shyer
however I want there to be an easy way to specify that I want to join df1.actorName and df2.directorName together, and actorID / directorID. How can I do this?

Categories