Moving average on 3D array in Dask - python

I have a 3D array and I would like to use Dask to chunk up my 3D array into blocks of traces of a certain window size around each trace. A trace is just one vector of size (1, 1, z). I can do this using the numpy as_strided tricks as follows:
import numpy as np
from numpy.lib.stride_tricks import as_strided
input_volume = np.linspace(1, 1000, 1000, dtype=int).reshape((10, 10, 10))
window_size = 5
x, y, z = input_volume.shape
# Create a view on the volume of sub-cubes window_size traces wide overlapping by 1 trace in each direction
half_w = (window_size - 1) // 2
padded = np.pad(input_volume[...], [(half_w, half_w), (half_w, half_w), (0, 0)], 'edge')
x_str, y_str, z_str = padded.strides
blocks = as_strided(padded, (x, y, window_size, window_size, z), (x_str, y_str, x_str, y_str, z_str))
averaged_volume = np.mean(blocks, (2, 3))
First I pad my 3D cube in the x and y dimensions by the half window. I get the average trace from each block so in this case a block of (5, 5, z) gets reduced to a single trace. I then end up with a volume the same size as the original that has been averaged over the window size. This effectively gives me a "view" of my 3D array with as shape of (10, 10, 5, 5, 10).
This works but if the volume is large it will load the whole volume into memory.
I have been trying to achieve the same thing with a chunked array in dask but I'm having trouble getting the depth and boundaries correct to give me the same answer. How can I achieve the same thing in dask so it only loads each block of traces into memory at a time and writes back out to the average cube?
EDIT:
This is the dask code I have been trying so far but when this runs I get an IndexError: tuple index out of range when it's trying to do the average calculation:
def average(block):
return np.mean(block, axis=(0, 1))
import dask.array as da
dask_volume = da.from_array(da.pad(input_volume, [(half_w, half_w), (half_w, half_w), (0, 0)], 'edge'), chunks=(window_size ,window_size, -1))
dask_overlapping = da.overlap.overlap(dask_volume, depth={0: window_size - 1, 1: window_size -1}, boundary={0: 'none', 1: 'none'})
dask_average = dask_overlapping.map_blocks(average, chunks=(1, 1, z)).compute()
Thanks,
Mike

Related

caculating the sum of elements around an element in a numpy array [duplicate]

I am trying to perform a 2d convolution in python using numpy
I have a 2d array as follows with kernel H_r for the rows and H_c for the columns
data = np.zeros((nr, nc), dtype=np.float32)
#fill array with some data here then convolve
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
data = data.astype(np.uint8);
It does not produce the output that I was expecting, does this code look OK, I think the problem is with the casting from float32 to 8bit. Whats the best way to do this
Thanks
Maybe it is not the most optimized solution, but this is an implementation I used before with numpy library for Python:
def convolution2d(image, kernel, bias):
m, n = kernel.shape
if (m == n):
y, x = image.shape
y = y - m + 1
x = x - m + 1
new_image = np.zeros((y,x))
for i in range(y):
for j in range(x):
new_image[i][j] = np.sum(image[i:i+m, j:j+m]*kernel) + bias
return new_image
I hope this code helps other guys with the same doubt.
Regards.
Edit [Jan 2019]
#Tashus comment bellow is correct, and #dudemeister's answer is thus probably more on the mark. The function he suggested is also more efficient, by avoiding a direct 2D convolution and the number of operations that would entail.
Possible Problem
I believe you are doing two 1d convolutions, the first per columns and the second per rows, and replacing the results from the first with the results of the second.
Notice that numpy.convolve with the 'same' argument returns an array of equal shape to the largest one provided, so when you make the first convolution you already populated the entire data array.
One good way to visualize your arrays during these steps is to use Hinton diagrams, so you can check which elements already have a value.
Possible Solution
You can try to add the results of the two convolutions (use data[:,c] += .. instead of data[:,c] = on the second for loop), if your convolution matrix is the result of using the one dimensional H_r and H_c matrices like so:
Another way to do that would be to use scipy.signal.convolve2d with a 2d convolution array, which is probably what you wanted to do in the first place.
Since you already have your kernel separated you should simply use the sepfir2d function from scipy:
from scipy.signal import sepfir2d
convolved = sepfir2d(data, H_r, H_c)
On the other hand, the code you have there looks all right ...
I checked out many implementations and found none for my purpose, which should be really simple. So here is a dead-simple implementation with for loop
def convolution2d(image, kernel, stride, padding):
image = np.pad(image, [(padding, padding), (padding, padding)], mode='constant', constant_values=0)
kernel_height, kernel_width = kernel.shape
padded_height, padded_width = image.shape
output_height = (padded_height - kernel_height) // stride + 1
output_width = (padded_width - kernel_width) // stride + 1
new_image = np.zeros((output_height, output_width)).astype(np.float32)
for y in range(0, output_height):
for x in range(0, output_width):
new_image[y][x] = np.sum(image[y * stride:y * stride + kernel_height, x * stride:x * stride + kernel_width] * kernel).astype(np.float32)
return new_image
It might not be the most optimized solution either, but it is approximately ten times faster than the one proposed by #omotto and it only uses basic numpy function (as reshape, expand_dims, tile...) and no 'for' loops:
def gen_idx_conv1d(in_size, ker_size):
"""
Generates a list of indices. This indices correspond to the indices
of a 1D input tensor on which we would like to apply a 1D convolution.
For instance, with a 1D input array of size 5 and a kernel of size 3, the
1D convolution product will successively looks at elements of indices [0,1,2],
[1,2,3] and [2,3,4] in the input array. In this case, the function idx_conv1d(5,3)
outputs the following array: array([0,1,2,1,2,3,2,3,4]).
args:
in_size: (type: int) size of the input 1d array.
ker_size: (type: int) kernel size.
return:
idx_list: (type: np.array) list of the successive indices of the 1D input array
access to the 1D convolution algorithm.
example:
>>> gen_idx_conv1d(in_size=5, ker_size=3)
array([0, 1, 2, 1, 2, 3, 2, 3, 4])
"""
f = lambda dim1, dim2, axis: np.reshape(np.tile(np.expand_dims(np.arange(dim1),axis),dim2),-1)
out_size = in_size-ker_size+1
return f(ker_size, out_size, 0)+f(out_size, ker_size, 1)
def repeat_idx_2d(idx_list, nbof_rep, axis):
"""
Repeats an array of indices (idx_list) a number of time (nbof_rep) "along" an axis
(axis). This function helps to browse through a 2d array of size
(len(idx_list),nbof_rep).
args:
idx_list: (type: np.array or list) a 1D array of indices.
nbof_rep: (type: int) number of repetition.
axis: (type: int) axis "along" which the repetition will be applied.
return
idx_list: (type: np.array) a 1D array of indices of size len(idx_list)*nbof_rep.
example:
>>> a = np.array([0, 1, 2])
>>> repeat_idx_2d(a, 3, 0) # repeats array 'a' 3 times along 'axis' 0
array([0, 0, 0, 1, 1, 1, 2, 2, 2])
>>> repeat_idx_2d(a, 3, 1) # repeats array 'a' 3 times along 'axis' 1
array([0, 1, 2, 0, 1, 2, 0, 1, 2])
>>> b = np.reshape(np.arange(3*4), (3,4))
>>> b[repeat_idx_2d(np.arange(3), 4, 0), repeat_idx_2d(np.arange(4), 3, 1)]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
"""
assert axis in [0,1], "Axis should be equal to 0 or 1."
tile_axis = (nbof_rep,1) if axis else (1,nbof_rep)
return np.reshape(np.tile(np.expand_dims(idx_list, 1),tile_axis),-1)
def conv2d(im, ker):
"""
Performs a 'valid' 2D convolution on an image. The input image may be
a 2D or a 3D array.
The output image first two dimensions will be reduced depending on the
convolution size.
The kernel may be a 2D or 3D array. If 2D, it will be applied on every
channel of the input image. If 3D, its last dimension must match the
image one.
args:
im: (type: np.array) image (2D or 3D).
ker: (type: np.array) convolution kernel (2D or 3D).
returns:
im: (type: np.array) convolved image.
example:
>>> im = np.reshape(np.arange(10*10*3),(10,10,3))/(10*10*3) # 3D image
>>> ker = np.array([[0,1,0],[-1,0,1],[0,-1,0]]) # 2D kernel
>>> conv2d(im, ker) # 3D array of shape (8,8,3)
"""
if len(im.shape)==2: # if the image is a 2D array, it is reshaped by expanding the last dimension
im = np.expand_dims(im,-1)
im_x, im_y, im_w = im.shape
if len(ker.shape)==2: # if the kernel is a 2D array, it is reshaped so it will be applied to all of the image channels
ker = np.tile(np.expand_dims(ker,-1),[1,1,im_w]) # the same kernel will be applied to all of the channels
assert ker.shape[-1]==im.shape[-1], "Kernel and image last dimension must match."
ker_x = ker.shape[0]
ker_y = ker.shape[1]
# shape of the output image
out_x = im_x - ker_x + 1
out_y = im_y - ker_y + 1
# reshapes the image to (out_x, ker_x, out_y, ker_y, im_w)
idx_list_x = gen_idx_conv1d(im_x, ker_x) # computes the indices of a 1D conv (cf. idx_conv1d doc)
idx_list_y = gen_idx_conv1d(im_y, ker_y)
idx_reshaped_x = repeat_idx_2d(idx_list_x, len(idx_list_y), 0) # repeats the previous indices to be used in 2D (cf. repeat_idx_2d doc)
idx_reshaped_y = repeat_idx_2d(idx_list_y, len(idx_list_x), 1)
im_reshaped = np.reshape(im[idx_reshaped_x, idx_reshaped_y, :], [out_x, ker_x, out_y, ker_y, im_w]) # reshapes
# reshapes the 2D kernel
ker = np.reshape(ker,[1, ker_x, 1, ker_y, im_w])
# applies the kernel to the image and reduces the dimension back to the one of original input image
return np.squeeze(np.sum(im_reshaped*ker, axis=(1,3)))
I tried to add a lot of comments to explain the method but the global idea is to reshape the 3D input image to a 5D one of shape (output_image_height, kernel_height, output_image_width, kernel_width, output_image_channel) and then to apply the kernel directly using the basic array multiplication. Of course, this methods is then using more memory (during the execution the size of the image is thus multiply by kernel_height*kernel_width) but it is faster.
To do this reshape step, I 'over-used' the indexing methods of numpy arrays, especially, the possibility of giving a numpy array as indices into a numpy array.
This methods could also be used to re-code the 2D convolution product in Pytorch or Tensorflow using the base math functions but I have no doubt in saying that it will be slower than the existing nn.conv2d operator...
I really enjoyed coding this method by only using the numpy basic tools.
One of the most obvious is to hard code the kernel.
img = img.convert('L')
a = np.array(img)
out = np.zeros([a.shape[0]-2, a.shape[1]-2], dtype='float')
out += a[:-2, :-2]
out += a[1:-1, :-2]
out += a[2:, :-2]
out += a[:-2, 1:-1]
out += a[1:-1,1:-1]
out += a[2:, 1:-1]
out += a[:-2, 2:]
out += a[1:-1, 2:]
out += a[2:, 2:]
out /= 9.0
out = out.astype('uint8')
img = Image.fromarray(out)
This example does a box blur 3x3 completely unrolled. You can multiply the values where you have a different value and divide them by a different amount. But, if you honestly want the quickest and dirtiest method this is it. I think it beats Guillaume Mougeot's method by a factor of like 5. His method beating the others by a factor of 10.
It may lose a few steps if you're doing something like a gaussian blur. and need to multiply some stuff.
Try to first round and then cast to uint8:
data = data.round().astype(np.uint8);
I wrote this convolve_stride which uses numpy.lib.stride_tricks.as_strided. Moreover it supports both strides and dilation. It is also compatible to tensor with order > 2.
import numpy as np
from numpy.lib.stride_tricks import as_strided
from im2col import im2col
def conv_view(X, F_s, dr, std):
X_s = np.array(X.shape)
F_s = np.array(F_s)
dr = np.array(dr)
Fd_s = (F_s - 1) * dr + 1
if np.any(Fd_s > X_s):
raise ValueError('(Dilated) filter size must be smaller than X')
std = np.array(std)
X_ss = np.array(X.strides)
Xn_s = (X_s - Fd_s) // std + 1
Xv_s = np.append(Xn_s, F_s)
Xv_ss = np.tile(X_ss, 2) * np.append(std, dr)
return as_strided(X, Xv_s, Xv_ss, writeable=False)
def convolve_stride(X, F, dr=None, std=None):
if dr is None:
dr = np.ones(X.ndim, dtype=int)
if std is None:
std = np.ones(X.ndim, dtype=int)
if not (X.ndim == F.ndim == len(dr) == len(std)):
raise ValueError('X.ndim, F.ndim, len(dr), len(std) must be the same')
Xv = conv_view(X, F.shape, dr, std)
return np.tensordot(Xv, F, axes=X.ndim)
%timeit -n 100 -r 10 convolve_stride(A, F)
#31.2 ms ± 1.31 ms per loop (mean ± std. dev. of 10 runs, 100 loops each)
Super simple and fast convolution using only basic numpy:
import numpy as np
def conv2d(image, kernel):
# apply kernel to image, return image of the same shape
# assume both image and kernel are 2D arrays
# kernel = np.flipud(np.fliplr(kernel)) # optionally flip the kernel
k = kernel.shape[0]
width = k//2
# place the image inside a frame to compensate for the kernel overlap
a = framed(image, width)
b = np.zeros(image.shape) # fill the output array with zeros; do not use np.empty()
# shift the image around each pixel, multiply by the corresponding kernel value and accumulate the results
for p, dp, r, dr in [(i, i + image.shape[0], j, j + image.shape[1]) for i in range(k) for j in range(k)]:
b += a[p:dp, r:dr] * kernel[p, r]
# or just write two nested for loops if you prefer
# np.clip(b, 0, 255, out=b) # optionally clip values exceeding the limits
return b
def framed(image, width):
a = np.zeros((image.shape[0]+2*width, image.shape[1]+2*width))
a[width:-width, width:-width] = image
# alternatively fill the frame with ones or copy border pixels
return a
Run it:
Image.fromarray(conv2d(image, kernel).astype('uint8'))
Instead of sliding the kernel along the image and computing the transformation pixel by pixel, create a series of shifted versions of the image corresponding to each element in the kernel and apply the corresponding kernel value to each of the shifted image versions.
This is probably the fastest you can get using just basic numpy; the speed is already comparable to C implementation of scipy convolve2d and better than fftconvolve. The idea is similar to #Tatarize. This example works only for one color component; for RGB just repeat for each (or modify the algorithm accordingly).
Typically, Convolution 2D is a misnomer. Ideally, under the hood,
whats being done is a correlation of 2 matrices.
pad == same
returns the output as the same as input dimension
It can also take asymmetric images. In order to perform correlation(convolution in deep learning lingo) on a batch of 2d matrices, one can iterate over all the channels, calculate the correlation for each of the channel slices with the respective filter slice.
For example: If image is (28,28,3) and filter size is (5,5,3) then take each of the 3 slices from the image channel and perform the cross correlation using the custom function above and stack the resulting matrix in the respective dimension of the output.
def get_cross_corr_2d(W, X, pad = 'valid'):
if(pad == 'same'):
pr = int((W.shape[0] - 1)/2)
pc = int((W.shape[1] - 1)/2)
conv_2d = np.zeros((X.shape[0], X.shape[1]))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.inner(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
else:
pr = W.shape[0] - 1
pc = W.shape[1] - 1
conv_2d = np.zeros((X.shape[0] - W.shape[0] + 2*pr + 1,
X.shape[1] - W.shape[1] + 2*pc + 1))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.multiply(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
This code incorrect:
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
See Nussbaumer transformation from multidimentional convolution to one dimentional.

Overlapping chunks in Xarray dataset for Kernel operations

I try to run a 9x9 pixel kernel across a large satellite image with a custom filter. One satellite scene has ~ 40 GB and to fit it into my RAM, I'm using xarrays options to chunk my dataset with dask.
My filter includes a check if the kernel is complete (i.e. not missing data at the edge of the image). In that case a NaN is returned to prevent a potential bias (and I don't really care about the edges). I now realized, that this introduces not only NaNs at the edges of the image (expected behaviour), but also along the edges of each chunk, because the chunks don't overlap. dask provides options to create chunks with an overlap, but are there any comparable capabilities in xarray? I found this issue, but it doesn't seem like there has been any progress in this regard.
Some sample code (shortened version of my original code):
import numpy as np
import numba
import math
import xarray as xr
#numba.jit("f4[:,:](f4[:,:],i4)", nopython = True)
def water_anomaly_filter(input_arr, window_size = 9):
# check if window size is odd
if window_size%2 == 0:
raise ValueError("Window size must be odd!")
# prepare an output array with NaNs and the same dtype as the input
output_arr = np.zeros_like(input_arr)
output_arr[:] = np.nan
# calculate how many pixels in x and y direction around the center pixel
# are in the kernel
pix_dist = math.floor(window_size/2-0.5)
# create a dummy weight matrix
weights = np.ones((window_size, window_size))
# get the shape of the input array
xn,yn = input_arr.shape
# iterate over the x axis
for x in range(xn):
# determine limits of the kernel in x direction
xmin = max(0, x - pix_dist)
xmax = min(xn, x + pix_dist+1)
# iterate over the y axis
for y in range(yn):
# determine limits of the kernel in y direction
ymin = max(0, y - pix_dist)
ymax = min(yn, y + pix_dist+1)
# extract data values inside the kernel
kernel = input_arr[xmin:xmax, ymin:ymax]
# if the kernel is complete (i.e. not at image edge...) and it
# is not all NaN
if kernel.shape == weights.shape and not np.isnan(kernel).all():
# apply the filter. In this example simply keep the original
# value
output_arr[x,y] = input_arr[x,y]
return output_arr
def run_water_anomaly_filter_xr(xds, var_prefix = "band",
window_size = 9):
variables = [x for x in list(xds.variables) if x.startswith(var_prefix)]
for var in variables[:2]:
xds[var].values = water_anomaly_filter(xds[var].values,
window_size = window_size)
return xds
def create_test_nc():
data = np.random.randn(1000, 1000).astype(np.float32)
rows = np.arange(54, 55, 0.001)
cols = np.arange(10, 11, 0.001)
ds = xr.Dataset(
data_vars=dict(
band_1=(["x", "y"], data)
),
coords=dict(
lon=(["x"], rows),
lat=(["y"], cols),
),
attrs=dict(description="Testdata"),
)
ds.to_netcdf("test.nc")
if __name__ == "__main__":
# if required, create test data
create_test_nc()
# import data
with xr.open_dataset("test.nc",
chunks = {"x": 50,
"y": 50},
) as xds:
xds_2 = xr.map_blocks(run_water_anomaly_filter_xr,
xds,
template = xds).compute()
xds_2["band_1"][:200,:200].plot()
This yields:
enter image description here
You can clearly see the rows and columns of NaNs along the edges of each chunk.
I'm happy for any suggestions. I would love to get the overlapping chunks (or any other solution) within xarray, but I'm also open for other solutions.
You can use Dask's map_blocks as follows:
arr = dask.array.map_overlap(
water_anomaly_filter, xds.band_1.data, dtype='f4', depth=4, window_size=9
).compute()
da = xr.DataArray(arr, dims=xds.band_1.dims, coords=xds.band_1.coords)
Note that you will likely want to tune depth and window_size for your specific application.

torch.rfft - fft-based convolution creating different output than spatial convolution

I implemented FFT-based convolution in Pytorch and compared the result with spatial convolution via conv2d() function. The convolution filter used is an average filter. The conv2d() function produced smoothened output due to average filtering as expected but the fft-based convolution returned a more blurry output.
I have attached the code and outputs here -
spatial convolution -
from PIL import Image, ImageOps
import torch
from matplotlib import pyplot as plt
from torchvision.transforms import ToTensor
import torch.nn.functional as F
import numpy as np
im = Image.open("/kaggle/input/tiger.jpg")
im = im.resize((256,256))
gray_im = im.convert('L')
gray_im = ToTensor()(gray_im)
gray_im = gray_im.squeeze()
fil = torch.tensor([[1/9,1/9,1/9],[1/9,1/9,1/9],[1/9,1/9,1/9]])
conv_gray_im = gray_im.unsqueeze(0).unsqueeze(0)
conv_fil = fil.unsqueeze(0).unsqueeze(0)
conv_op = F.conv2d(conv_gray_im,conv_fil)
conv_op = conv_op.squeeze()
plt.figure()
plt.imshow(conv_op, cmap='gray')
FFT-based convolution -
def fftshift(image):
sh = image.shape
x = np.arange(0, sh[2], 1)
y = np.arange(0, sh[3], 1)
xm, ym = np.meshgrid(x,y)
shifter = (-1)**(xm + ym)
shifter = torch.from_numpy(shifter)
return image*shifter
shift_im = fftshift(conv_gray_im)
padded_fil = F.pad(conv_fil, (0, gray_im.shape[0]-fil.shape[0], 0, gray_im.shape[1]-fil.shape[1]))
shift_fil = fftshift(padded_fil)
fft_shift_im = torch.rfft(shift_im, 2, onesided=False)
fft_shift_fil = torch.rfft(shift_fil, 2, onesided=False)
shift_prod = fft_shift_im*fft_shift_fil
shift_fft_conv = fftshift(torch.irfft(shift_prod, 2, onesided=False))
fft_op = shift_fft_conv.squeeze()
plt.figure('shifted fft')
plt.imshow(fft_op, cmap='gray')
original image -
spatial convolution output -
fft-based convolution output -
Could someone kindly explain the issue?
The main problem with your code is that Torch doesn't do complex numbers, the output of its FFT is a 3D array, with the 3rd dimension having two values, one for the real component and one for the imaginary. Consequently, the multiplication does not do a complex multiplication.
There currently is no complex multiplication defined in Torch (see this issue), we'll have to define our own.
A minor issue, but also important if you want to compare the two convolution operations, is the following:
The FFT takes the origin of its input in the first element (top-left pixel for an image). To avoid a shifted output, you need to generate a padded kernel where the origin of the kernel is the top-left pixel. This is quite tricky, actually...
Your current code:
fil = torch.tensor([[1/9,1/9,1/9],[1/9,1/9,1/9],[1/9,1/9,1/9]])
conv_fil = fil.unsqueeze(0).unsqueeze(0)
padded_fil = F.pad(conv_fil, (0, gray_im.shape[0]-fil.shape[0], 0, gray_im.shape[1]-fil.shape[1]))
generates a padded kernel where the origin is in pixel (1,1), rather than (0,0). It needs to be shifted by one pixel in each direction. NumPy has a function roll that is useful for this, I don't know the Torch equivalent (I'm not at all familiar with Torch). This should work:
fil = torch.tensor([[1/9,1/9,1/9],[1/9,1/9,1/9],[1/9,1/9,1/9]])
padded_fil = fil.unsqueeze(0).unsqueeze(0).numpy()
padded_fil = np.pad(padded_fil, ((0, gray_im.shape[0]-fil.shape[0]), (0, gray_im.shape[1]-fil.shape[1])))
padded_fil = np.roll(padded_fil, -1, axis=(0, 1))
padded_fil = torch.from_numpy(padded_fil)
Finally, your fftshift function, applied to the spatial-domain image, causes the frequency-domain image (the result of the FFT applied to the image) to be shifted such that the origin is in the middle of the image, rather than the top-left. This shift is useful when looking at the output of the FFT, but is pointless when computing the convolution.
Putting these things together, the convolution is now:
def complex_multiplication(t1, t2):
real1, imag1 = t1[:,:,0], t1[:,:,1]
real2, imag2 = t2[:,:,0], t2[:,:,1]
return torch.stack([real1 * real2 - imag1 * imag2, real1 * imag2 + imag1 * real2], dim = -1)
fft_im = torch.rfft(gray_im, 2, onesided=False)
fft_fil = torch.rfft(padded_fil, 2, onesided=False)
fft_conv = torch.irfft(complex_multiplication(fft_im, fft_fil), 2, onesided=False)
Note that you can do one-sided FFTs to save a bit of computation time:
fft_im = torch.rfft(gray_im, 2, onesided=True)
fft_fil = torch.rfft(padded_fil, 2, onesided=True)
fft_conv = torch.irfft(complex_multiplication(fft_im, fft_fil), 2, onesided=True, signal_sizes=gray_im.shape)
Here the frequency domain is about half the size as in the full FFT, but it is only redundant parts that are left out. The result of the convolution is unchanged.

Rearrange 3D array in python

I have big binary 3D data and I want to re-arrange the data such as it is a sequence of values in order achieved by parsing the original data as sub-arrays of size (4x4x4).
For example, if the data is 2D and I want to re-arrange the data from 2x2 sub-arrays
example image
I used simple loops for this but just iterating over the loops took way more times, I am trying to to use some numpy functions to do so but I am new to SciPy
My code looks like this
x,y,z = 1200,800,400
data = np.fromfile(file_name, dtype=np.float32)
data.shape = (z,y,x)
new_data = np.empty(shape=x*y*z, dtype = np.float32)
index = 0
for zz in range(0,z,4):
for yy in range(0,y,4):
for xx in range(0,x,4):
for zShift in range(4):
for yShift in range(4):
for xShift in range(4):
new_data[index] = data[zz+zShift][yy+yShift][xx+xShift]
index+=1
new_data.tofile(output)
However, this takes a lot of time, any better implementation ideas?
As I said, the code works as intended, however, I need a smarter, pythonic way to achieve my output
Thank you!
x,y,z = 1200,800,400
data = np.empty([x,y,z])
# numpy calculates the shape of -1
out = data.reshape(-1, 4, 4, 4)
out.shape
>>> (6000000, 4, 4, 4)
Perform the following test, for smaller data and block size:
x, y, z = 4, 4, 4 # Dimensions
stp = 2 # Block size (in each dimension)
# Create the test array
arr = np.arange(x * y * z).reshape((x, y, z))
And to create a list of "blocks", run:
new_data = []
for xx in range(0, x, stp):
for yy in range(0, y, stp):
for zz in range(0, z, stp):
print('Index:', xx, yy, zz)
obj = arr[xx:xx+stp, yy:yy+stp, zz:zz+stp].copy()
print(obj)
new_data.append(obj)
In the target version of your code:
restore original values of x, y and z,
read the array from your source,
change stp back to 4,
drop test printouts.
Note also that your code adds individual elements to new_data,
only iterating over blocks of size 4 * 4 * 4,
whereas you wrote that you want a sequence of smaller arrays
(i.e. slices) of size 4 * 4 * 4, what my code does.
So if you need a list of slices (smaller arrays), not a single
4-D array, use my code.

2d convolution using python and numpy

I am trying to perform a 2d convolution in python using numpy
I have a 2d array as follows with kernel H_r for the rows and H_c for the columns
data = np.zeros((nr, nc), dtype=np.float32)
#fill array with some data here then convolve
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
data = data.astype(np.uint8);
It does not produce the output that I was expecting, does this code look OK, I think the problem is with the casting from float32 to 8bit. Whats the best way to do this
Thanks
Maybe it is not the most optimized solution, but this is an implementation I used before with numpy library for Python:
def convolution2d(image, kernel, bias):
m, n = kernel.shape
if (m == n):
y, x = image.shape
y = y - m + 1
x = x - m + 1
new_image = np.zeros((y,x))
for i in range(y):
for j in range(x):
new_image[i][j] = np.sum(image[i:i+m, j:j+m]*kernel) + bias
return new_image
I hope this code helps other guys with the same doubt.
Regards.
Edit [Jan 2019]
#Tashus comment bellow is correct, and #dudemeister's answer is thus probably more on the mark. The function he suggested is also more efficient, by avoiding a direct 2D convolution and the number of operations that would entail.
Possible Problem
I believe you are doing two 1d convolutions, the first per columns and the second per rows, and replacing the results from the first with the results of the second.
Notice that numpy.convolve with the 'same' argument returns an array of equal shape to the largest one provided, so when you make the first convolution you already populated the entire data array.
One good way to visualize your arrays during these steps is to use Hinton diagrams, so you can check which elements already have a value.
Possible Solution
You can try to add the results of the two convolutions (use data[:,c] += .. instead of data[:,c] = on the second for loop), if your convolution matrix is the result of using the one dimensional H_r and H_c matrices like so:
Another way to do that would be to use scipy.signal.convolve2d with a 2d convolution array, which is probably what you wanted to do in the first place.
Since you already have your kernel separated you should simply use the sepfir2d function from scipy:
from scipy.signal import sepfir2d
convolved = sepfir2d(data, H_r, H_c)
On the other hand, the code you have there looks all right ...
I checked out many implementations and found none for my purpose, which should be really simple. So here is a dead-simple implementation with for loop
def convolution2d(image, kernel, stride, padding):
image = np.pad(image, [(padding, padding), (padding, padding)], mode='constant', constant_values=0)
kernel_height, kernel_width = kernel.shape
padded_height, padded_width = image.shape
output_height = (padded_height - kernel_height) // stride + 1
output_width = (padded_width - kernel_width) // stride + 1
new_image = np.zeros((output_height, output_width)).astype(np.float32)
for y in range(0, output_height):
for x in range(0, output_width):
new_image[y][x] = np.sum(image[y * stride:y * stride + kernel_height, x * stride:x * stride + kernel_width] * kernel).astype(np.float32)
return new_image
It might not be the most optimized solution either, but it is approximately ten times faster than the one proposed by #omotto and it only uses basic numpy function (as reshape, expand_dims, tile...) and no 'for' loops:
def gen_idx_conv1d(in_size, ker_size):
"""
Generates a list of indices. This indices correspond to the indices
of a 1D input tensor on which we would like to apply a 1D convolution.
For instance, with a 1D input array of size 5 and a kernel of size 3, the
1D convolution product will successively looks at elements of indices [0,1,2],
[1,2,3] and [2,3,4] in the input array. In this case, the function idx_conv1d(5,3)
outputs the following array: array([0,1,2,1,2,3,2,3,4]).
args:
in_size: (type: int) size of the input 1d array.
ker_size: (type: int) kernel size.
return:
idx_list: (type: np.array) list of the successive indices of the 1D input array
access to the 1D convolution algorithm.
example:
>>> gen_idx_conv1d(in_size=5, ker_size=3)
array([0, 1, 2, 1, 2, 3, 2, 3, 4])
"""
f = lambda dim1, dim2, axis: np.reshape(np.tile(np.expand_dims(np.arange(dim1),axis),dim2),-1)
out_size = in_size-ker_size+1
return f(ker_size, out_size, 0)+f(out_size, ker_size, 1)
def repeat_idx_2d(idx_list, nbof_rep, axis):
"""
Repeats an array of indices (idx_list) a number of time (nbof_rep) "along" an axis
(axis). This function helps to browse through a 2d array of size
(len(idx_list),nbof_rep).
args:
idx_list: (type: np.array or list) a 1D array of indices.
nbof_rep: (type: int) number of repetition.
axis: (type: int) axis "along" which the repetition will be applied.
return
idx_list: (type: np.array) a 1D array of indices of size len(idx_list)*nbof_rep.
example:
>>> a = np.array([0, 1, 2])
>>> repeat_idx_2d(a, 3, 0) # repeats array 'a' 3 times along 'axis' 0
array([0, 0, 0, 1, 1, 1, 2, 2, 2])
>>> repeat_idx_2d(a, 3, 1) # repeats array 'a' 3 times along 'axis' 1
array([0, 1, 2, 0, 1, 2, 0, 1, 2])
>>> b = np.reshape(np.arange(3*4), (3,4))
>>> b[repeat_idx_2d(np.arange(3), 4, 0), repeat_idx_2d(np.arange(4), 3, 1)]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
"""
assert axis in [0,1], "Axis should be equal to 0 or 1."
tile_axis = (nbof_rep,1) if axis else (1,nbof_rep)
return np.reshape(np.tile(np.expand_dims(idx_list, 1),tile_axis),-1)
def conv2d(im, ker):
"""
Performs a 'valid' 2D convolution on an image. The input image may be
a 2D or a 3D array.
The output image first two dimensions will be reduced depending on the
convolution size.
The kernel may be a 2D or 3D array. If 2D, it will be applied on every
channel of the input image. If 3D, its last dimension must match the
image one.
args:
im: (type: np.array) image (2D or 3D).
ker: (type: np.array) convolution kernel (2D or 3D).
returns:
im: (type: np.array) convolved image.
example:
>>> im = np.reshape(np.arange(10*10*3),(10,10,3))/(10*10*3) # 3D image
>>> ker = np.array([[0,1,0],[-1,0,1],[0,-1,0]]) # 2D kernel
>>> conv2d(im, ker) # 3D array of shape (8,8,3)
"""
if len(im.shape)==2: # if the image is a 2D array, it is reshaped by expanding the last dimension
im = np.expand_dims(im,-1)
im_x, im_y, im_w = im.shape
if len(ker.shape)==2: # if the kernel is a 2D array, it is reshaped so it will be applied to all of the image channels
ker = np.tile(np.expand_dims(ker,-1),[1,1,im_w]) # the same kernel will be applied to all of the channels
assert ker.shape[-1]==im.shape[-1], "Kernel and image last dimension must match."
ker_x = ker.shape[0]
ker_y = ker.shape[1]
# shape of the output image
out_x = im_x - ker_x + 1
out_y = im_y - ker_y + 1
# reshapes the image to (out_x, ker_x, out_y, ker_y, im_w)
idx_list_x = gen_idx_conv1d(im_x, ker_x) # computes the indices of a 1D conv (cf. idx_conv1d doc)
idx_list_y = gen_idx_conv1d(im_y, ker_y)
idx_reshaped_x = repeat_idx_2d(idx_list_x, len(idx_list_y), 0) # repeats the previous indices to be used in 2D (cf. repeat_idx_2d doc)
idx_reshaped_y = repeat_idx_2d(idx_list_y, len(idx_list_x), 1)
im_reshaped = np.reshape(im[idx_reshaped_x, idx_reshaped_y, :], [out_x, ker_x, out_y, ker_y, im_w]) # reshapes
# reshapes the 2D kernel
ker = np.reshape(ker,[1, ker_x, 1, ker_y, im_w])
# applies the kernel to the image and reduces the dimension back to the one of original input image
return np.squeeze(np.sum(im_reshaped*ker, axis=(1,3)))
I tried to add a lot of comments to explain the method but the global idea is to reshape the 3D input image to a 5D one of shape (output_image_height, kernel_height, output_image_width, kernel_width, output_image_channel) and then to apply the kernel directly using the basic array multiplication. Of course, this methods is then using more memory (during the execution the size of the image is thus multiply by kernel_height*kernel_width) but it is faster.
To do this reshape step, I 'over-used' the indexing methods of numpy arrays, especially, the possibility of giving a numpy array as indices into a numpy array.
This methods could also be used to re-code the 2D convolution product in Pytorch or Tensorflow using the base math functions but I have no doubt in saying that it will be slower than the existing nn.conv2d operator...
I really enjoyed coding this method by only using the numpy basic tools.
One of the most obvious is to hard code the kernel.
img = img.convert('L')
a = np.array(img)
out = np.zeros([a.shape[0]-2, a.shape[1]-2], dtype='float')
out += a[:-2, :-2]
out += a[1:-1, :-2]
out += a[2:, :-2]
out += a[:-2, 1:-1]
out += a[1:-1,1:-1]
out += a[2:, 1:-1]
out += a[:-2, 2:]
out += a[1:-1, 2:]
out += a[2:, 2:]
out /= 9.0
out = out.astype('uint8')
img = Image.fromarray(out)
This example does a box blur 3x3 completely unrolled. You can multiply the values where you have a different value and divide them by a different amount. But, if you honestly want the quickest and dirtiest method this is it. I think it beats Guillaume Mougeot's method by a factor of like 5. His method beating the others by a factor of 10.
It may lose a few steps if you're doing something like a gaussian blur. and need to multiply some stuff.
Try to first round and then cast to uint8:
data = data.round().astype(np.uint8);
I wrote this convolve_stride which uses numpy.lib.stride_tricks.as_strided. Moreover it supports both strides and dilation. It is also compatible to tensor with order > 2.
import numpy as np
from numpy.lib.stride_tricks import as_strided
from im2col import im2col
def conv_view(X, F_s, dr, std):
X_s = np.array(X.shape)
F_s = np.array(F_s)
dr = np.array(dr)
Fd_s = (F_s - 1) * dr + 1
if np.any(Fd_s > X_s):
raise ValueError('(Dilated) filter size must be smaller than X')
std = np.array(std)
X_ss = np.array(X.strides)
Xn_s = (X_s - Fd_s) // std + 1
Xv_s = np.append(Xn_s, F_s)
Xv_ss = np.tile(X_ss, 2) * np.append(std, dr)
return as_strided(X, Xv_s, Xv_ss, writeable=False)
def convolve_stride(X, F, dr=None, std=None):
if dr is None:
dr = np.ones(X.ndim, dtype=int)
if std is None:
std = np.ones(X.ndim, dtype=int)
if not (X.ndim == F.ndim == len(dr) == len(std)):
raise ValueError('X.ndim, F.ndim, len(dr), len(std) must be the same')
Xv = conv_view(X, F.shape, dr, std)
return np.tensordot(Xv, F, axes=X.ndim)
%timeit -n 100 -r 10 convolve_stride(A, F)
#31.2 ms ± 1.31 ms per loop (mean ± std. dev. of 10 runs, 100 loops each)
Super simple and fast convolution using only basic numpy:
import numpy as np
def conv2d(image, kernel):
# apply kernel to image, return image of the same shape
# assume both image and kernel are 2D arrays
# kernel = np.flipud(np.fliplr(kernel)) # optionally flip the kernel
k = kernel.shape[0]
width = k//2
# place the image inside a frame to compensate for the kernel overlap
a = framed(image, width)
b = np.zeros(image.shape) # fill the output array with zeros; do not use np.empty()
# shift the image around each pixel, multiply by the corresponding kernel value and accumulate the results
for p, dp, r, dr in [(i, i + image.shape[0], j, j + image.shape[1]) for i in range(k) for j in range(k)]:
b += a[p:dp, r:dr] * kernel[p, r]
# or just write two nested for loops if you prefer
# np.clip(b, 0, 255, out=b) # optionally clip values exceeding the limits
return b
def framed(image, width):
a = np.zeros((image.shape[0]+2*width, image.shape[1]+2*width))
a[width:-width, width:-width] = image
# alternatively fill the frame with ones or copy border pixels
return a
Run it:
Image.fromarray(conv2d(image, kernel).astype('uint8'))
Instead of sliding the kernel along the image and computing the transformation pixel by pixel, create a series of shifted versions of the image corresponding to each element in the kernel and apply the corresponding kernel value to each of the shifted image versions.
This is probably the fastest you can get using just basic numpy; the speed is already comparable to C implementation of scipy convolve2d and better than fftconvolve. The idea is similar to #Tatarize. This example works only for one color component; for RGB just repeat for each (or modify the algorithm accordingly).
Typically, Convolution 2D is a misnomer. Ideally, under the hood,
whats being done is a correlation of 2 matrices.
pad == same
returns the output as the same as input dimension
It can also take asymmetric images. In order to perform correlation(convolution in deep learning lingo) on a batch of 2d matrices, one can iterate over all the channels, calculate the correlation for each of the channel slices with the respective filter slice.
For example: If image is (28,28,3) and filter size is (5,5,3) then take each of the 3 slices from the image channel and perform the cross correlation using the custom function above and stack the resulting matrix in the respective dimension of the output.
def get_cross_corr_2d(W, X, pad = 'valid'):
if(pad == 'same'):
pr = int((W.shape[0] - 1)/2)
pc = int((W.shape[1] - 1)/2)
conv_2d = np.zeros((X.shape[0], X.shape[1]))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.inner(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
else:
pr = W.shape[0] - 1
pc = W.shape[1] - 1
conv_2d = np.zeros((X.shape[0] - W.shape[0] + 2*pr + 1,
X.shape[1] - W.shape[1] + 2*pc + 1))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.multiply(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
This code incorrect:
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
See Nussbaumer transformation from multidimentional convolution to one dimentional.

Categories