I am trying to make a plot to specify gravitational redshift as a function of distance. However, i have a problem in plotting. I want to plot it from rs=1.0 because no object can be detectable within a schwarzshild radius, rs=1.0 in my case.
I tried to do mask but it was not working. Is there any method to do contour plot with the starting radius about at r>1?. Actually, in the above figure, I want to let my imshow to plot the amount of redshift from the blue solid circle, not at r=0 (i have no idea why it starts there).
import numpy as np
import matplotlib.pyplot as plt
rs=1
ang=np.linspace(0,2*np.pi,2000)
x, y = np.mgrid[2:100, 2:100]
dist = np.hypot(x, y) # Linear distance from point 0, 0
z = np.sqrt(1/dist)
f=1/np.sqrt((1-rs*z)/(1-rs/4))*(1/10)
plt.imshow(f, interpolation='bilinear')
a=np.cos(ang)
b=np.sin(ang)
plt.xlim(0,15)
plt.ylim(0,15)
plt.plot(a,b)
plt.colorbar()
plt.show()
I think there is a misunderstanding in the kind of plot. plt.imshow creates colormappings of 2D-arrays - but the scales of the axes are not showing the independant data variables, but only the indices of the array. This is different from e.g. plt.contourf.
In fact, your array f doesn't even have values at [x=1, y=1], as xand y start at 2...
Let's compare imshow and contourf:
fig, axs = plt.subplots(1, 2)
axs[0].imshow(f, interpolation='bilinear')
axs[0].set_xlim(0,15)
axs[0].set_ylim(0,15)
axs[1].contourf(x, y, f)
axs[1].set_aspect(1)
axs[1].set_xlim(0,15)
axs[1].set_ylim(0,15)
Or in other words: check the limits of your scales without setting xlim and ylim: they go from -0,5 to 97,5 instead of 2 to 99...
However, there are interesting kwargs of imshow for you.
Look what happens to the above plot with
axs[0].imshow(f, interpolation='bilinear', origin='lower', extent=[2, 99, 2, 99])
Related
I have a MxN (say, 1000x50) array. I want to plot each 50-point line onto the same plot, and have a heatmap of their density.
Simply doing a plt.pcolor(data) is not what I want, since I don't want to plot the matrix.
This is what I want to plot, but as I said it doesn't provide me with the heatmap I need.
import numpy as np
import matplotlib.pyplot as plt
data = np.random.rand(1000, 50)
fig, ax = plt.subplots()
for i in range(0,1000):
ax.plot(data[i], '.')
plt.show()
I would like a way of getting this together (I assume it will have something to do with histograms and binning?).
EDIT: simply adding an alpha value to the plot ( ax.plot(data[i], '.r', alpha=0.01)) achieves something similar to what I want. I would like, however, to have a heatmap with different colours.
As you already pointed out in your question, probably one of the simplest approaches involves histograms. A linear approximation of the histogram is probably enough for this application.
You can use np.histogram to calculate bin heights and edges and use scipy.interpolate.interp1d to obtain a function that provides an interpolation of the histogram. We can define a simple helper function to get the approximate density around each value in one column of the data array:
# import scipy.interpolate as interp
def get_density(vals, bins=30, kind="linear"):
y, bin_edges = np.histogram(vals, bins=bins, density=True)
x = (bin_edges[1:] + bin_edges[:-1])/2.
f = interp.interp1d(x, y, kind=kind, fill_value="extrapolate")
return f(vals)
Then you can use any colormap you want to map the density to a color value. The easiest way to go from here is to use plt.scatter instead of plot, where you can provide a specific color for every data point.
I would do something like this:
fig, ax = plt.subplots()
for i in range(data.shape[1]):
colors = plt.cm.viridis(get_density(data[:, i]))
ax.scatter(i*np.ones(data.shape[0]), data[:, i], c=colors, marker='.')
For example the orientation of histogram in the picture below is (2,-2)
Use transformations. Since you did not provide any code that would plot the non-rotated picture, I'm using a simple example:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy
n = numpy.random.normal(size=10000)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_aspect(1)
ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)
base_trans = ax.transData
tr = matplotlib.transforms.Affine2D().rotate_deg(-30) + base_trans
ax.hist(n, normed=True, transform=tr, bins=20)
fig.savefig('t.png')
Notes:
I do not know what you mean by a "direction given by a tuple". In your picture the axes are clearly not just rotated, but moved as well (the (0,0) point is not on the x-axis). I only used rotation in this example; see docs for Affine2D for more transformation properties.
In order for your graph to not look skewed, you must match the plot's aspect ratio, x/y limits, and the transformation's scaling coefficients. In the example I used the aspect 1 and the same scale for x and y axes, so I could just use the rotate_deg() method without any additional corrections.
Is there a python module that will do a waterfall plot like MATLAB does? I googled 'numpy waterfall', 'scipy waterfall', and 'matplotlib waterfall', but did not find anything.
You can do a waterfall in matplotlib using the PolyCollection class. See this specific example to have more details on how to do a waterfall using this class.
Also, you might find this blog post useful, since the author shows that you might obtain some 'visual bug' in some specific situation (depending on the view angle chosen).
Below is an example of a waterfall made with matplotlib (image from the blog post):
(source: austringer.net)
Have a look at mplot3d:
# copied from
# http://matplotlib.sourceforge.net/mpl_examples/mplot3d/wire3d_demo.py
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
plt.show()
I don't know how to get results as nice as Matlab does.
If you want more, you may also have a look at MayaVi: http://mayavi.sourceforge.net/
The Wikipedia type of Waterfall chart one can obtain also like this:
import numpy as np
import pandas as pd
def waterfall(series):
df = pd.DataFrame({'pos':np.maximum(series,0),'neg':np.minimum(series,0)})
blank = series.cumsum().shift(1).fillna(0)
df.plot(kind='bar', stacked=True, bottom=blank, color=['r','b'])
step = blank.reset_index(drop=True).repeat(3).shift(-1)
step[1::3] = np.nan
plt.plot(step.index, step.values,'k')
test = pd.Series(-1 + 2 * np.random.rand(10), index=list('abcdefghij'))
waterfall(test)
I have generated a function that replicates the matlab waterfall behaviour in matplotlib. That is:
It generates the 3D shape as many independent and parallel 2D curves
Its color comes from a colormap in the z values
I started from two examples in matplotlib documentation: multicolor lines and multiple lines in 3d plot. From these examples, I only saw possible to draw lines whose color varies following a given colormap according to its z value following the example, which is reshaping the input array to draw the line by segments of 2 points and setting the color of the segment to the z mean value between these 2 points.
Thus, given the input matrixes n,m matrixes X,Y and Z, the function loops over the smallest dimension between n,m to plot each of the waterfall plot independent lines as a line collection of the 2 points segments as explained above.
def waterfall_plot(fig,ax,X,Y,Z,**kwargs):
'''
Make a waterfall plot
Input:
fig,ax : matplotlib figure and axes to populate
Z : n,m numpy array. Must be a 2d array even if only one line should be plotted
X,Y : n,m array
kwargs : kwargs are directly passed to the LineCollection object
'''
# Set normalization to the same values for all plots
norm = plt.Normalize(Z.min().min(), Z.max().max())
# Check sizes to loop always over the smallest dimension
n,m = Z.shape
if n>m:
X=X.T; Y=Y.T; Z=Z.T
m,n = n,m
for j in range(n):
# reshape the X,Z into pairs
points = np.array([X[j,:], Z[j,:]]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
# The values used by the colormap are the input to the array parameter
lc = LineCollection(segments, cmap='plasma', norm=norm, array=(Z[j,1:]+Z[j,:-1])/2, **kwargs)
line = ax.add_collection3d(lc,zs=(Y[j,1:]+Y[j,:-1])/2, zdir='y') # add line to axes
fig.colorbar(lc) # add colorbar, as the normalization is the same for all
# it doesent matter which of the lc objects we use
ax.auto_scale_xyz(X,Y,Z) # set axis limits
Therefore, plots looking like matlab waterfall can be easily generated with the same input matrixes as a matplotlib surface plot:
import numpy as np; import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from mpl_toolkits.mplot3d import Axes3D
# Generate data
x = np.linspace(-2,2, 500)
y = np.linspace(-2,2, 60)
X,Y = np.meshgrid(x,y)
Z = np.sin(X**2+Y**2)-.2*X
# Generate waterfall plot
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
waterfall_plot(fig,ax,X,Y,Z,linewidth=1.5,alpha=0.5)
ax.set_xlabel('X'); ax.set_ylabel('Y'); ax.set_zlabel('Z')
fig.tight_layout()
The function assumes that when generating the meshgrid, the x array is the longest, and by default the lines have fixed y, and its the x coordinate what varies. However, if the size of the y array is longer, the matrixes are transposed, generating the lines with fixed x. Thus, generating the meshgrid with the sizes inverted (len(x)=60 and len(y)=500) yields:
To see what are the possibilities of the **kwargs argument, refer to the LineCollection class documantation and to its set_ methods.
I have the following Python code which I am using to plot a filled contour plot:
def plot_polar_contour(values, azimuths, zeniths):
theta = np.radians(azimuths)
zeniths = np.array(zeniths)
values = np.array(values)
values = values.reshape(len(azimuths), len(zeniths))
r, theta = np.meshgrid(zeniths, np.radians(azimuths))
fig, ax = subplots(subplot_kw=dict(projection='polar'))
ax.set_theta_zero_location("N")
ax.set_theta_direction(-1)
cax = ax.contourf(theta, r, values, 30)
autumn()
cb = fig.colorbar(cax)
cb.set_label("Pixel reflectance")
show()
This gives me a plot like:
However, when I add the line ax.plot(0, 30, 'p') just before show() I get the following:
It seems that just adding that one point (which is well within the original axis range) screws up the axis range on the radius axis.
Is this by design, or is this a bug? What would you suggest doing to fix it? Do I need to manually adjust the axis ranges, or is there a way to stop the extra plot command doing this?
If the axis auto-scaling mode isn't explicitly specified, plot will use "loose" autoscaling and contourf will use "tight" autoscaling.
The same things happens for non-polar axes. E.g.
import matplotlib.pyplot as plt
import numpy as np
plt.imshow(np.random.random((10,10)))
plt.plot([7], [7], 'ro')
plt.show()
You have a number of options.
Explicitly call ax.axis('image') or ax.axis('tight') at some point in the code.
Pass in scalex=False and scaley=False as keyword arguments to plot.
Manually set the axis limits.
The easiest and most readable is to just explicitly call ax.axis('tight'), i.m.o.
I need to generate a stack of 2D polar plots (a 3D cylindrical plot) so that I can view a distorted cylinder. I want to use matplotlib since I already have it installed and want to distribute my code to others who only have matplotlib. For example, say I have a bunch of 2-D arrays. Is there any way I can do this without having to download an external package? Here's my code.
#!usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-180.0,190.0,10)
theta = (np.pi/180.0 )*x # in radians
A0 = 55.0
offset = 60.0
R = [116.225,115.105,114.697,115.008,115.908,117.184,118.61,119.998,121.224,122.216,\
122.93,123.323,123.343,122.948,122.134,120.963,119.575,118.165,116.941,116.074,115.66\
,115.706,116.154,116.913,117.894,119.029,120.261,121.518,122.684,123.594,124.059,\
123.917,123.096,121.661,119.821,117.894,116.225]
fig = plt.figure()
ax = fig.add_axes([0.1,0.1,0.8,0.8],polar=True) # Polar plot
ax.plot(theta,R,lw=2.5)
ax.set_rmax(1.5*(A0)+offset)
plt.show()
I have 10 more similar 2D polar plots and I want to stack them up nicely. If there's any better way to visualize a distorted cylinder in 3D, I'm totally open to suggestions. Any help would be appreciated. Thanks!
If you want to stack polar charts using matplotlib, one approach is to use the Axes3D module. You'll notice that I used polar coordinates first and then converted them back to Cartesian when I was ready to plot them.
from numpy import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
n = 1000
fig = plt.figure()
ax = fig.gca(projection='3d')
for k in linspace(0, 5, 5):
THETA = linspace(0, 2*pi, n)
R = ones(THETA.shape)*cos(THETA*k)
# Convert to Cartesian coordinates
X = R*cos(THETA)
Y = R*sin(THETA)
ax.plot(X, Y, k-2)
plt.show()
If you play with the last argument of ax.plot, it controls the height of each slice. For example, if you want to project all of your data down to a single axis you would use ax.plot(X, Y, 0). For a more exotic example, you can map the height of the data onto a function, say a saddle ax.plot(X, Y, -X**2+Y**2 ). By playing with the colors as well, you could in theory represent multiple 4 dimensional datasets (though I'm not sure how clear this would be). Examples below: