How to save a nltk FreqDist plot? - python

I've tried different methods to save my plot but every thing I've tried has turned up with a blank image and I'm not currently out of ideas. Any help with other suggestions that could fix this? The code sample is below.
word_frequency = nltk.FreqDist(merged_lemmatizedTokens) #obtains frequency distribution for each token
print("\nMost frequent top-10 words: ", word_frequency.most_common(10))
word_frequency.plot(10, title='Top 10 Most Common Words in Corpus')
plt.savefig('img_top10_common.png')

I was able to save the NLTK FreqDist plot, when I first initialized a figure object, then called the plot function and finally saved the figure object.
import matplotlib.pyplot as plt
from nltk.probability import FreqDist
fig = plt.figure(figsize = (10,4))
plt.gcf().subplots_adjust(bottom=0.15) # to avoid x-ticks cut-off
fdist = FreqDist(merged_lemmatizedTokens)
fdist.plot(10, cumulative=False)
plt.show()
fig.savefig('freqDist.png', bbox_inches = "tight")

I think you can try the following:
plt.ion()
word_frequency.plot(10, title='Top 10 Most Common Words in Corpus')
plt.savefig('img_top10_common.png')
plt.ioff()
plt.show()
This is because inside nltk's plot function, plt.show() is called and once the figure is closed, plt.savefig() has no active figure to save anymore.
The workaround is to turn interactive mode on, such that the plt.show() from inside the nltk function does not block. Then savefig is called with a current figure available and saves the correct plot. To then show the figure, interactive mode needs to be turned off again and plt.show() be called externally - this time in a blocking mode.
Ideally, nltk would rewrite their plotting function to either allow to set the blocking status, or to not show the plot and return the created figure, or to take a Axes as input to which to plot. Feel free to reach out to them with this request.

Related

Use loop for plotting, but plot only particular images from the plot

I have to use different csv files to create plots out of them in the same figure. My coding environment is google colab (it's like Jupyter notebook in google's cloud). So I decided to create a figure and then loop through the files and do the plots. It looks something like this:
import healpy as hp
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(16,12))
ax = fig.add_subplot(111)
for void_file in ['./filepath1.csv','./filepath2.csv','./filepath3.csv', ...]:
helper_image = hp.gnomview(void_file, .....)
data = func1(helper_image, .....)
plt.plot(len(data), data, ......)
What I want is to only add into the figure the plots created with the line plt.plot(len(data), data, ......), but what happens is that also the helper images from the line helper_image = hp.gnomview(....) sneak into the image and spoil it (healpy is a package for spherical data). The line helper_image = .... is only there to make some necessary calculations, but unfortunately they come along with plots.
How can I suppress the creation of the plots by helper_image = hp.gnomview(....)? Or can I somehow tell the figure or ax to include only plots that I specify? Or are there any easy alternatives that don't require a loop for plotting? Tnx
you can use return_projected_image=True and no_plot=True keyword arguments, see https://healpy.readthedocs.io/en/latest/generated/healpy.visufunc.gnomview.html

How to save overlayed images in matplotlib? [duplicate]

This displays the figure in a GUI:
import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [1, 4, 9])
plt.show()
But how do I instead save the figure to a file (e.g. foo.png)?
When using matplotlib.pyplot.savefig, the file format can be specified by the extension:
from matplotlib import pyplot as plt
plt.savefig('foo.png')
plt.savefig('foo.pdf')
That gives a rasterized or vectorized output respectively.
In addition, there is sometimes undesirable whitespace around the image, which can be removed with:
plt.savefig('foo.png', bbox_inches='tight')
Note that if showing the plot, plt.show() should follow plt.savefig(); otherwise, the file image will be blank.
As others have said, plt.savefig() or fig1.savefig() is indeed the way to save an image.
However I've found that in certain cases the figure is always shown. (eg. with Spyder having plt.ion(): interactive mode = On.) I work around this by
forcing the the figure window to close with:
plt.close(figure_object)
(see documentation). This way I don't have a million open figures during a large loop. Example usage:
import matplotlib.pyplot as plt
fig, ax = plt.subplots( nrows=1, ncols=1 ) # create figure & 1 axis
ax.plot([0,1,2], [10,20,3])
fig.savefig('path/to/save/image/to.png') # save the figure to file
plt.close(fig) # close the figure window
You should be able to re-open the figure later if needed to with fig.show() (didn't test myself).
The solution is:
pylab.savefig('foo.png')
Just found this link on the MatPlotLib documentation addressing exactly this issue:
http://matplotlib.org/faq/howto_faq.html#generate-images-without-having-a-window-appear
They say that the easiest way to prevent the figure from popping up is to use a non-interactive backend (eg. Agg), via matplotib.use(<backend>), eg:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig('myfig')
I still personally prefer using plt.close( fig ), since then you have the option to hide certain figures (during a loop), but still display figures for post-loop data processing. It is probably slower than choosing a non-interactive backend though - would be interesting if someone tested that.
UPDATE: for Spyder, you usually can't set the backend in this way (Because Spyder usually loads matplotlib early, preventing you from using matplotlib.use()).
Instead, use plt.switch_backend('Agg'), or Turn off "enable support" in the Spyder prefs and run the matplotlib.use('Agg') command yourself.
From these two hints: one, two
If you don't like the concept of the "current" figure, do:
import matplotlib.image as mpimg
img = mpimg.imread("src.png")
mpimg.imsave("out.png", img)
import datetime
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
# Create the PdfPages object to which we will save the pages:
# The with statement makes sure that the PdfPages object is closed properly at
# the end of the block, even if an Exception occurs.
with PdfPages('multipage_pdf.pdf') as pdf:
plt.figure(figsize=(3, 3))
plt.plot(range(7), [3, 1, 4, 1, 5, 9, 2], 'r-o')
plt.title('Page One')
pdf.savefig() # saves the current figure into a pdf page
plt.close()
plt.rc('text', usetex=True)
plt.figure(figsize=(8, 6))
x = np.arange(0, 5, 0.1)
plt.plot(x, np.sin(x), 'b-')
plt.title('Page Two')
pdf.savefig()
plt.close()
plt.rc('text', usetex=False)
fig = plt.figure(figsize=(4, 5))
plt.plot(x, x*x, 'ko')
plt.title('Page Three')
pdf.savefig(fig) # or you can pass a Figure object to pdf.savefig
plt.close()
# We can also set the file's metadata via the PdfPages object:
d = pdf.infodict()
d['Title'] = 'Multipage PDF Example'
d['Author'] = u'Jouni K. Sepp\xe4nen'
d['Subject'] = 'How to create a multipage pdf file and set its metadata'
d['Keywords'] = 'PdfPages multipage keywords author title subject'
d['CreationDate'] = datetime.datetime(2009, 11, 13)
d['ModDate'] = datetime.datetime.today()
I used the following:
import matplotlib.pyplot as plt
p1 = plt.plot(dates, temp, 'r-', label="Temperature (celsius)")
p2 = plt.plot(dates, psal, 'b-', label="Salinity (psu)")
plt.legend(loc='upper center', numpoints=1, bbox_to_anchor=(0.5, -0.05), ncol=2, fancybox=True, shadow=True)
plt.savefig('data.png')
plt.show()
plt.close()
I found very important to use plt.show after saving the figure, otherwise it won't work.figure exported in png
The other answers are correct. However, I sometimes find that I want to open the figure object later. For example, I might want to change the label sizes, add a grid, or do other processing. In a perfect world, I would simply rerun the code generating the plot, and adapt the settings. Alas, the world is not perfect. Therefore, in addition to saving to PDF or PNG, I add:
with open('some_file.pkl', "wb") as fp:
pickle.dump(fig, fp, protocol=4)
Like this, I can later load the figure object and manipulate the settings as I please.
I also write out the stack with the source-code and locals() dictionary for each function/method in the stack, so that I can later tell exactly what generated the figure.
NB: Be careful, as sometimes this method generates huge files.
After using the plot() and other functions to create the content you want, you could use a clause like this to select between plotting to the screen or to file:
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(4, 5)) # size in inches
# use plot(), etc. to create your plot.
# Pick one of the following lines to uncomment
# save_file = None
# save_file = os.path.join(your_directory, your_file_name)
if save_file:
plt.savefig(save_file)
plt.close(fig)
else:
plt.show()
If, like me, you use Spyder IDE, you have to disable the interactive mode with :
plt.ioff()
(this command is automatically launched with the scientific startup)
If you want to enable it again, use :
plt.ion()
You can either do:
plt.show(hold=False)
plt.savefig('name.pdf')
and remember to let savefig finish before closing the GUI plot. This way you can see the image beforehand.
Alternatively, you can look at it with plt.show()
Then close the GUI and run the script again, but this time replace plt.show() with plt.savefig().
Alternatively, you can use
fig, ax = plt.figure(nrows=1, ncols=1)
plt.plot(...)
plt.show()
fig.savefig('out.pdf')
According to question Matplotlib (pyplot) savefig outputs blank image.
One thing should note: if you use plt.show and it should after plt.savefig, or you will give a blank image.
A detailed example:
import numpy as np
import matplotlib.pyplot as plt
def draw_result(lst_iter, lst_loss, lst_acc, title):
plt.plot(lst_iter, lst_loss, '-b', label='loss')
plt.plot(lst_iter, lst_acc, '-r', label='accuracy')
plt.xlabel("n iteration")
plt.legend(loc='upper left')
plt.title(title)
plt.savefig(title+".png") # should before plt.show method
plt.show()
def test_draw():
lst_iter = range(100)
lst_loss = [0.01 * i + 0.01 * i ** 2 for i in xrange(100)]
# lst_loss = np.random.randn(1, 100).reshape((100, ))
lst_acc = [0.01 * i - 0.01 * i ** 2 for i in xrange(100)]
# lst_acc = np.random.randn(1, 100).reshape((100, ))
draw_result(lst_iter, lst_loss, lst_acc, "sgd_method")
if __name__ == '__main__':
test_draw()
The Solution :
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
plt.figure()
ts.plot()
plt.savefig("foo.png", bbox_inches='tight')
If you do want to display the image as well as saving the image use:
%matplotlib inline
after
import matplotlib
When using matplotlib.pyplot, you must first save your plot and then close it using these 2 lines:
fig.savefig('plot.png') # save the plot, place the path you want to save the figure in quotation
plt.close(fig) # close the figure window
import matplotlib.pyplot as plt
plt.savefig("image.png")
In Jupyter Notebook you have to remove plt.show() and add plt.savefig(), together with the rest of the plt-code in one cell.
The image will still show up in your notebook.
Additionally to those above, I added __file__ for the name so the picture and Python file get the same names. I also added few arguments to make It look better:
# Saves a PNG file of the current graph to the folder and updates it every time
# (nameOfimage, dpi=(sizeOfimage),Keeps_Labels_From_Disappearing)
plt.savefig(__file__+".png",dpi=(250), bbox_inches='tight')
# Hard coded name: './test.png'
Just a extra note because I can't comment on posts yet.
If you are using plt.savefig('myfig') or something along these lines make sure to add a plt.clf() after your image is saved. This is because savefig does not close the plot and if you add to the plot after without a plt.clf() you'll be adding to the previous plot.
You may not notice if your plots are similar as it will plot over the previous plot, but if you are in a loop saving your figures the plot will slowly become massive and make your script very slow.
Given that today (was not available when this question was made) lots of people use Jupyter Notebook as python console, there is an extremely easy way to save the plots as .png, just call the matplotlib's pylab class from Jupyter Notebook, plot the figure 'inline' jupyter cells, and then drag that figure/image to a local directory. Don't forget
%matplotlib inline in the first line!
As suggested before, you can either use:
import matplotlib.pyplot as plt
plt.savefig("myfig.png")
For saving whatever IPhython image that you are displaying. Or on a different note (looking from a different angle), if you ever get to work with open cv, or if you have open cv imported, you can go for:
import cv2
cv2.imwrite("myfig.png",image)
But this is just in case if you need to work with Open CV. Otherwise plt.savefig() should be sufficient.
well, I do recommend using wrappers to render or control the plotting. examples can be mpltex (https://github.com/liuyxpp/mpltex) or prettyplotlib (https://github.com/olgabot/prettyplotlib).
import mpltex
#mpltex.acs_decorator
def myplot():
plt.figure()
plt.plot(x,y,'b-',lable='xxx')
plt.tight_layout(pad=0.5)
plt.savefig('xxxx') # the figure format was controlled by the decorator, it can be either eps, or pdf or png....
plt.close()
I basically use this decorator a lot for publishing academic papers in various journals at American Chemical Society, American Physics Society, Opticcal Society American, Elsivier and so on.
An example can be found as following image (https://github.com/MarkMa1990/gradientDescent):
You can do it like this:
def plotAFig():
plt.figure()
plt.plot(x,y,'b-')
plt.savefig("figurename.png")
plt.close()
Nothing was working for me. The problem is that the saved imaged was very small and I could not find how the hell make it bigger.
This seems to make it bigger, but still not full screen.
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.set_size_inches
fig.set_size_inches((w, h))
Hope that helps somebody.
You can save your image with any extension(png, jpg,etc.) and with the resolution you want. Here's a function to save your figure.
import os
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)
'fig_id' is the name by which you want to save your figure. Hope it helps:)
using 'agg' due to no gui on server.
Debugging on ubuntu 21.10 with gui and VSC.
In debug, trying to both display a plot and then saving to file for web UI.
Found out that saving before showing is required, otherwise saved plot is blank. I suppose that showing will clear the plot for some reason. Do this:
plt.savefig(imagePath)
plt.show()
plt.close(fig)
Instead of this:
plt.show()
plt.savefig(imagePath)
plt.close(fig)

How can plots plotted in a foor-loop be successively inspected (no subplots!)?

I have data for several subjects and would like to make a plot for each of them. The goal is to loop through the individual subjects, extract the data for the current subject and then plot it. Once the data of the first subject is plotted, the program should stop and wait for user input, so that the plot for that subject can be inspected in peace. How is this possible?
Note: Im not interested in making subplots.
Im working with PyCharm and the TkAgg Backend.
import matplotlib.pyplot as plt
import numpy as np
data_per_subject = [np.array([1,2]),
np.array([3,4]),
np.array([5,6])]
for data in data_per_subject:
# open figure and plot data of current subject
fig, ax = plt.subplots()
plt.plot(data)
# Here some magic has to take place, so that the program waits for my
# input. The importent thing is, that I have to be able to inspect
# the plot for the current subject while the programm is waiting for my
# input!
# close figure
plt.close()

Matplotlib: Save exact figure of imshow() automatically [duplicate]

This displays the figure in a GUI:
import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [1, 4, 9])
plt.show()
But how do I instead save the figure to a file (e.g. foo.png)?
When using matplotlib.pyplot.savefig, the file format can be specified by the extension:
from matplotlib import pyplot as plt
plt.savefig('foo.png')
plt.savefig('foo.pdf')
That gives a rasterized or vectorized output respectively.
In addition, there is sometimes undesirable whitespace around the image, which can be removed with:
plt.savefig('foo.png', bbox_inches='tight')
Note that if showing the plot, plt.show() should follow plt.savefig(); otherwise, the file image will be blank.
As others have said, plt.savefig() or fig1.savefig() is indeed the way to save an image.
However I've found that in certain cases the figure is always shown. (eg. with Spyder having plt.ion(): interactive mode = On.) I work around this by
forcing the the figure window to close with:
plt.close(figure_object)
(see documentation). This way I don't have a million open figures during a large loop. Example usage:
import matplotlib.pyplot as plt
fig, ax = plt.subplots( nrows=1, ncols=1 ) # create figure & 1 axis
ax.plot([0,1,2], [10,20,3])
fig.savefig('path/to/save/image/to.png') # save the figure to file
plt.close(fig) # close the figure window
You should be able to re-open the figure later if needed to with fig.show() (didn't test myself).
The solution is:
pylab.savefig('foo.png')
Just found this link on the MatPlotLib documentation addressing exactly this issue:
http://matplotlib.org/faq/howto_faq.html#generate-images-without-having-a-window-appear
They say that the easiest way to prevent the figure from popping up is to use a non-interactive backend (eg. Agg), via matplotib.use(<backend>), eg:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig('myfig')
I still personally prefer using plt.close( fig ), since then you have the option to hide certain figures (during a loop), but still display figures for post-loop data processing. It is probably slower than choosing a non-interactive backend though - would be interesting if someone tested that.
UPDATE: for Spyder, you usually can't set the backend in this way (Because Spyder usually loads matplotlib early, preventing you from using matplotlib.use()).
Instead, use plt.switch_backend('Agg'), or Turn off "enable support" in the Spyder prefs and run the matplotlib.use('Agg') command yourself.
From these two hints: one, two
If you don't like the concept of the "current" figure, do:
import matplotlib.image as mpimg
img = mpimg.imread("src.png")
mpimg.imsave("out.png", img)
import datetime
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
# Create the PdfPages object to which we will save the pages:
# The with statement makes sure that the PdfPages object is closed properly at
# the end of the block, even if an Exception occurs.
with PdfPages('multipage_pdf.pdf') as pdf:
plt.figure(figsize=(3, 3))
plt.plot(range(7), [3, 1, 4, 1, 5, 9, 2], 'r-o')
plt.title('Page One')
pdf.savefig() # saves the current figure into a pdf page
plt.close()
plt.rc('text', usetex=True)
plt.figure(figsize=(8, 6))
x = np.arange(0, 5, 0.1)
plt.plot(x, np.sin(x), 'b-')
plt.title('Page Two')
pdf.savefig()
plt.close()
plt.rc('text', usetex=False)
fig = plt.figure(figsize=(4, 5))
plt.plot(x, x*x, 'ko')
plt.title('Page Three')
pdf.savefig(fig) # or you can pass a Figure object to pdf.savefig
plt.close()
# We can also set the file's metadata via the PdfPages object:
d = pdf.infodict()
d['Title'] = 'Multipage PDF Example'
d['Author'] = u'Jouni K. Sepp\xe4nen'
d['Subject'] = 'How to create a multipage pdf file and set its metadata'
d['Keywords'] = 'PdfPages multipage keywords author title subject'
d['CreationDate'] = datetime.datetime(2009, 11, 13)
d['ModDate'] = datetime.datetime.today()
I used the following:
import matplotlib.pyplot as plt
p1 = plt.plot(dates, temp, 'r-', label="Temperature (celsius)")
p2 = plt.plot(dates, psal, 'b-', label="Salinity (psu)")
plt.legend(loc='upper center', numpoints=1, bbox_to_anchor=(0.5, -0.05), ncol=2, fancybox=True, shadow=True)
plt.savefig('data.png')
plt.show()
plt.close()
I found very important to use plt.show after saving the figure, otherwise it won't work.figure exported in png
The other answers are correct. However, I sometimes find that I want to open the figure object later. For example, I might want to change the label sizes, add a grid, or do other processing. In a perfect world, I would simply rerun the code generating the plot, and adapt the settings. Alas, the world is not perfect. Therefore, in addition to saving to PDF or PNG, I add:
with open('some_file.pkl', "wb") as fp:
pickle.dump(fig, fp, protocol=4)
Like this, I can later load the figure object and manipulate the settings as I please.
I also write out the stack with the source-code and locals() dictionary for each function/method in the stack, so that I can later tell exactly what generated the figure.
NB: Be careful, as sometimes this method generates huge files.
After using the plot() and other functions to create the content you want, you could use a clause like this to select between plotting to the screen or to file:
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(4, 5)) # size in inches
# use plot(), etc. to create your plot.
# Pick one of the following lines to uncomment
# save_file = None
# save_file = os.path.join(your_directory, your_file_name)
if save_file:
plt.savefig(save_file)
plt.close(fig)
else:
plt.show()
If, like me, you use Spyder IDE, you have to disable the interactive mode with :
plt.ioff()
(this command is automatically launched with the scientific startup)
If you want to enable it again, use :
plt.ion()
You can either do:
plt.show(hold=False)
plt.savefig('name.pdf')
and remember to let savefig finish before closing the GUI plot. This way you can see the image beforehand.
Alternatively, you can look at it with plt.show()
Then close the GUI and run the script again, but this time replace plt.show() with plt.savefig().
Alternatively, you can use
fig, ax = plt.figure(nrows=1, ncols=1)
plt.plot(...)
plt.show()
fig.savefig('out.pdf')
According to question Matplotlib (pyplot) savefig outputs blank image.
One thing should note: if you use plt.show and it should after plt.savefig, or you will give a blank image.
A detailed example:
import numpy as np
import matplotlib.pyplot as plt
def draw_result(lst_iter, lst_loss, lst_acc, title):
plt.plot(lst_iter, lst_loss, '-b', label='loss')
plt.plot(lst_iter, lst_acc, '-r', label='accuracy')
plt.xlabel("n iteration")
plt.legend(loc='upper left')
plt.title(title)
plt.savefig(title+".png") # should before plt.show method
plt.show()
def test_draw():
lst_iter = range(100)
lst_loss = [0.01 * i + 0.01 * i ** 2 for i in xrange(100)]
# lst_loss = np.random.randn(1, 100).reshape((100, ))
lst_acc = [0.01 * i - 0.01 * i ** 2 for i in xrange(100)]
# lst_acc = np.random.randn(1, 100).reshape((100, ))
draw_result(lst_iter, lst_loss, lst_acc, "sgd_method")
if __name__ == '__main__':
test_draw()
The Solution :
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
plt.figure()
ts.plot()
plt.savefig("foo.png", bbox_inches='tight')
If you do want to display the image as well as saving the image use:
%matplotlib inline
after
import matplotlib
When using matplotlib.pyplot, you must first save your plot and then close it using these 2 lines:
fig.savefig('plot.png') # save the plot, place the path you want to save the figure in quotation
plt.close(fig) # close the figure window
import matplotlib.pyplot as plt
plt.savefig("image.png")
In Jupyter Notebook you have to remove plt.show() and add plt.savefig(), together with the rest of the plt-code in one cell.
The image will still show up in your notebook.
Additionally to those above, I added __file__ for the name so the picture and Python file get the same names. I also added few arguments to make It look better:
# Saves a PNG file of the current graph to the folder and updates it every time
# (nameOfimage, dpi=(sizeOfimage),Keeps_Labels_From_Disappearing)
plt.savefig(__file__+".png",dpi=(250), bbox_inches='tight')
# Hard coded name: './test.png'
Just a extra note because I can't comment on posts yet.
If you are using plt.savefig('myfig') or something along these lines make sure to add a plt.clf() after your image is saved. This is because savefig does not close the plot and if you add to the plot after without a plt.clf() you'll be adding to the previous plot.
You may not notice if your plots are similar as it will plot over the previous plot, but if you are in a loop saving your figures the plot will slowly become massive and make your script very slow.
Given that today (was not available when this question was made) lots of people use Jupyter Notebook as python console, there is an extremely easy way to save the plots as .png, just call the matplotlib's pylab class from Jupyter Notebook, plot the figure 'inline' jupyter cells, and then drag that figure/image to a local directory. Don't forget
%matplotlib inline in the first line!
As suggested before, you can either use:
import matplotlib.pyplot as plt
plt.savefig("myfig.png")
For saving whatever IPhython image that you are displaying. Or on a different note (looking from a different angle), if you ever get to work with open cv, or if you have open cv imported, you can go for:
import cv2
cv2.imwrite("myfig.png",image)
But this is just in case if you need to work with Open CV. Otherwise plt.savefig() should be sufficient.
well, I do recommend using wrappers to render or control the plotting. examples can be mpltex (https://github.com/liuyxpp/mpltex) or prettyplotlib (https://github.com/olgabot/prettyplotlib).
import mpltex
#mpltex.acs_decorator
def myplot():
plt.figure()
plt.plot(x,y,'b-',lable='xxx')
plt.tight_layout(pad=0.5)
plt.savefig('xxxx') # the figure format was controlled by the decorator, it can be either eps, or pdf or png....
plt.close()
I basically use this decorator a lot for publishing academic papers in various journals at American Chemical Society, American Physics Society, Opticcal Society American, Elsivier and so on.
An example can be found as following image (https://github.com/MarkMa1990/gradientDescent):
You can do it like this:
def plotAFig():
plt.figure()
plt.plot(x,y,'b-')
plt.savefig("figurename.png")
plt.close()
Nothing was working for me. The problem is that the saved imaged was very small and I could not find how the hell make it bigger.
This seems to make it bigger, but still not full screen.
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.set_size_inches
fig.set_size_inches((w, h))
Hope that helps somebody.
You can save your image with any extension(png, jpg,etc.) and with the resolution you want. Here's a function to save your figure.
import os
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)
'fig_id' is the name by which you want to save your figure. Hope it helps:)
using 'agg' due to no gui on server.
Debugging on ubuntu 21.10 with gui and VSC.
In debug, trying to both display a plot and then saving to file for web UI.
Found out that saving before showing is required, otherwise saved plot is blank. I suppose that showing will clear the plot for some reason. Do this:
plt.savefig(imagePath)
plt.show()
plt.close(fig)
Instead of this:
plt.show()
plt.savefig(imagePath)
plt.close(fig)

Python SAC plot w/ grid

I'm required to use the information from a .sac file and plot it against a grid. I know that using various ObsPy functions one is able to plot the Seismograms using st.plot() but I can't seem to get it against a grid. I've also tried following the example given here "How do I draw a grid onto a plot in Python?" but have trouble when trying to configure my x axis to use UTCDatetime. I'm new to python and programming of this sort so any advice / help would be greatly appreciated.
Various resources used:
"http://docs.obspy.org/tutorial/code_snippets/reading_seismograms.html"
"http://docs.obspy.org/packages/autogen/obspy.core.stream.Stream.plot.html#obspy.core.stream.Stream.plot"
The Stream's plot() method actually automatically generates a grid, e.g. if you take the default example and plot it via:
from obspy.core import read
st = read() # without filename an example file is loaded
tr = st[0] # we will use only the first channel
tr.plot()
You may want to play with the number_of_ticks, tick_format and tick_rotationparameters as pointed out in http://docs.obspy.org/packages/autogen/obspy.core.stream.Stream.plot.html.
However if you want more control you can pass a matplotlib figure as input parameter to the plot() method:
from obspy.core import read
import matplotlib.pyplot as plt
fig = plt.figure()
st = read('/path/to/file.sac')
st.plot(fig=fig)
# at this point do whatever you want with your figure, e.g.
fig.gca().set_axis_off()
# finally display your figure
fig.show()
Hope it helps.

Categories