ValueError: shape mismatch - python

I am trying K-means image compression, but I am getting this error
File "C:/Users/[user]/PycharmProjects/project/CompressMe.py", Line23, in <module>
final[pixel_centroids == cluster_no] = cluster_centers[cluster_no]
ValueError: shape mismatch: value array of shape (4,) could not be broadcast to indexing result of shape (267049,3)
My Code:
import numpy as np
from PIL import Image
from sklearn.cluster import KMeans
import matplotlib.pyplot as mpimg
import matplotlib.pyplot as plt
import os
img = Image.open('Capture.png')
img_np = np.asarray(img)
pixels = img_np.reshape(img_np.shape[0] * img_np.shape[1], img_np.shape[2])
model = KMeans(n_clusters = 32)
model.fit(pixels)
pixel_centroids = model.labels_
cluster_centers = model.cluster_centers_
final = np.zeros((pixel_centroids.shape[0], 3))
for cluster_no in range(32):
final[pixel_centroids == cluster_no] = cluster_centers[cluster_no]
comp_image = final.reshape(img_np.shape[0], img_np.shape[1], 3)
comp_image = Image.fromarray(np.uint8(comp_image))
comp_image.save('Capture_compressed.png')
img1 = mpimg.imread('Capture.png')
img2 = mpimg.imread('Capture_compressed.png')
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,20))
ax1.imshow(img1)
ax1.set_title('Original image')
ax2.imshow(img2)
ax2.set_title('Compressed image')
plt.show()
print('size of original image: ', int(os.stat('Capture.png').st_size / 1024), 'kB')
print('size of compressed image:', int(os.stat('Capture_compressed.png').st_size / 1024), 'kB')

You hardcoded the number of png output channels to 3, which could be different to the input, when you initialize the "final" array. Correct the following lines:
final = np.zeros((pixel_centroids.shape[0], img_np.shape[2]))
and
comp_image = final.reshape(img_np.shape[0], img_np.shape[1], img_np.shape[2])

Related

Trying to Plot FFT for an Image Array

I'm trying to create a signal plot for an array of pictures using the following code:
import numpy as np
import sys
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
imgArr = {}
stnArr = {}
frmArr = {}
sgnArr = {}
for i in range(1,2397):
imgArr[i] = mpimg.imread("20210209_themis_rank"+ str(i)+ ".png")
stnArr[i] = np.mean([imgArr[i]]/std(imgArr[i]))
frmArr[i] = i
signal = np.fft.fft(imgArr[i])
for i in range(1,2397):
plt.plot(frmArr,np.abs(signal))
plt.show()
However, I keep on running into the following error. How can I get it to work?
raise ValueError(f"x and y must have same first dimension, but "
ValueError: x and y must have same first dimension, but have shapes (1,) and (600, 600, 4)

To fix an error : could not broadcast input array from shape (5,5) into shape (5,5,4)

I want to preprocess such an image dataset using an unsupervised wiener algorithm. But it doesn't work properly. when I run the code, it shows me a value attribute error. For convenience, my code is given below -
import cv2
import glob
from matplotlib import pyplot as plt
from skimage import io, restoration, img_as_float
import scipy.stats as st
import numpy as np
dataset = glob.glob('input/train/*.png')
directory = 'output/train/'
for img_id, img_path in enumerate(dataset):
img = img_as_float(io.imread(img_path))
def gkern(kernlen=21, nsig=2): #Returns a 2D Gaussian kernel.
lim = kernlen//2 + (kernlen % 2)/2
x = np.linspace(-lim, lim, kernlen+1)
kern1d = np.diff(st.norm.cdf(x))
kern2d = np.outer(kern1d, kern1d)
return kern2d/kern2d.sum()
psf = gkern(5,3) #Kernel length and sigma
deconvolved, _ = restoration.unsupervised_wiener(img, psf)
cl2 = cv2.resize(deconvolved, (512,512), interpolation = cv2.INTER_CUBIC)
plt.imsave(f"output/unsupervised_{img_id}.png", cl2, cmap='gray')
I am getting the error :
File "C:\Users\Junaed\.spyder-py3\unsupervised_wiener.py", line 33, in <module>
deconvolved, _ = restoration.unsupervised_wiener(img, psf)
ValueError: could not broadcast input array from shape (5,5) into shape (5,5,4)
How could I fix this issue, Can someone help me here?

Point in Polygon in a numpy array

I am using skimage. I need to create a mask equal in area to an image. The mask will have a region which will hide part of the image. I am building it as in the sample below but this is very slow and am sure there is a pythonic way of doing it. Could anyone highlight this please?
Code am using presently:
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import skimage as sk
sourceimage = './sample.jpg'
img = np.copy(io.imread(sourceimage, as_gray=True))
mask = np.full(img.shape, 1)
maskpolygon = [(1,200),(300,644),(625,490),(625,1)]
from shapely.geometry import Point
from shapely.geometry.polygon import Polygon
pgon = Polygon(maskpolygon)
for r in range(mask.shape[0]):
for c in range(mask.shape[1]):
p = Point(r,c)
if pgon.contains(p):
mask[r,c] = 0
Expected result is like (for a 9x9 image - but I am working on 700x700)
[1,1,1,1,1,1,1,1,1]
[1,1,1,1,1,1,1,1,1]
[1,1,0,0,1,1,1,1,1]
[1,1,0,0,1,1,1,1,1]
[1,1,0,0,0,0,1,1,1]
[1,1,0,0,0,0,0,1,1]
[1,1,1,0,0,0,0,1,1]
[1,1,1,1,0,0,1,1,1]
[1,1,1,1,1,1,1,1,1]
I can invert 1's and 0's to show/hide region.
Thank you.
I have been able to resolve this thanks to #HansHirse.
Below is how I worked it out
sourceimage = './sample.jpg'
figuresize = (100, 100)
from skimage.draw import polygon
#open source and create a copy
img = np.copy(io.imread(sourceimage, as_gray=True))
mask = np.full(img.shape, 0)
maskpolygon = [(1,1), (280,1),(625, 280),(460, 621),(15, 625)]
maskpolygonr = [x[0] for x in maskpolygon]
maskpolygonc = [x[1] for x in maskpolygon]
rr, cc = polygon(maskpolygonr, maskpolygonc)
mask[rr ,cc] = 1
masked_image = img * mask
# show step by step what is happening
fig, axs = plt.subplots(nrows = 3, ncols = 1, sharex=True, sharey = True, figsize=figuresize )
ax = axs.ravel()
ax[0].imshow(img)#, cmap=plt.cm.gray)
ax[1].imshow(mask)#, cmap=plt.cm.gray)
ax[2].imshow(masked_image)#, cmap=plt.cm.gray)

Trying to understand masking

I've been trying to understand masking and how it works with image filters. I'm using the following code to try to develop my understanding.
import scipy.ndimage as ndi
import matplotlib.pyplot as plt
import numpy as np
# Generate a random binary mask
np.random.seed(seed=182)
mask = np.random.randint(2, size=(901, 877))
img = np.random.rand(901, 877)
img_masked = np.ma.masked_array(img, mask = mask)
img_masked_filtered = ndi.median_filter(img_masked, size=10)
img_unmasked_filtered = ndi.median_filter(img, size=10)
median_masked = np.ma.median(img_masked)
median_unmasked = np.ma.median(img)
In the results, median_unmasked != median_masked as I expect, but img_masked_filtered == img_unmasked_filtered which I don't want. scipy.ndimage.median_filter does exactly the job I need, but it doesn't work with masked images. What can I use that will do the same thing as the median filter, but which will work on a masked image?
The weird size I'm using for the array is because that's the size of the image I eventually want to filter.
The ndimage filters do not respect masked arrays' masks. Instead, "mask" an ordinary NumPy array with nan values, and then use ndimage.generic_filter to call np.nanmedian:
import scipy.ndimage as ndi
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(seed=182)
# h, w = 901, 877
h, w = 10, 10
mask = np.random.randint(2, size=(h, w))
img = np.random.rand(h, w)
img_masked = np.where(mask, img, np.nan)
size = 3
img_masked_median = ndi.generic_filter(img_masked, np.nanmedian, size=size)
img_unmasked_median = ndi.median_filter(img, size=size)
fig, ax = plt.subplots(nrows=2, ncols=2)
ax[0,0].imshow(img)
ax[0,0].set_title('img')
ax[0,1].imshow(img_masked)
ax[0,1].set_title('img_masked')
ax[1,0].imshow(img_unmasked_median)
ax[1,0].set_title('img_unmasked_median')
ax[1,1].imshow(img_masked_median)
ax[1,1].set_title('img_masked_median')
plt.show()

Why CIFAR-10 images are not displayed properly using matplotlib?

From the training set I took a image('img') of size (3,32,32).
I have used plt.imshow(img.T). The image is not clear. Now changes I have to make to image('img') to make it more clearly visible.
Thanks.
Following prints 5X5 grid of random Cifar10 images. It isn't blurry, though not perfect either. Any suggestions welcome.
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from six.moves import cPickle
f = open('data/cifar10/cifar-10-batches-py/data_batch_1', 'rb')
datadict = cPickle.load(f,encoding='latin1')
f.close()
X = datadict["data"]
Y = datadict['labels']
X = X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("uint8")
Y = np.array(Y)
#Visualizing CIFAR 10
fig, axes1 = plt.subplots(5,5,figsize=(3,3))
for j in range(5):
for k in range(5):
i = np.random.choice(range(len(X)))
axes1[j][k].set_axis_off()
axes1[j][k].imshow(X[i:i+1][0])
Make sure you don't normalize your dataset when you want to display the image.
Example :
The loader...
import torch
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('../data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# transforms.Normalize(
# (0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
])),
batch_size=64, shuffle=True)
The code that shows the image...
img = next(iter(train_loader))[0][0]
plt.imshow(transforms.ToPILImage()(img))
Normalized
Wihtout normalization
This file reads the cifar10 dataset and plots individual images using matplotlib.
import _pickle as pickle
import argparse
import numpy as np
import os
import matplotlib.pyplot as plt
cifar10 = "./cifar-10-batches-py/"
parser = argparse.ArgumentParser("Plot training images in cifar10 dataset")
parser.add_argument("-i", "--image", type=int, default=0,
help="Index of the image in cifar10. In range [0, 49999]")
args = parser.parse_args()
def unpickle(file):
with open(file, 'rb') as fo:
data = pickle.load(fo, encoding='bytes')
return data
def cifar10_plot(data, meta, im_idx=0):
im = data[b'data'][im_idx, :]
im_r = im[0:1024].reshape(32, 32)
im_g = im[1024:2048].reshape(32, 32)
im_b = im[2048:].reshape(32, 32)
img = np.dstack((im_r, im_g, im_b))
print("shape: ", img.shape)
print("label: ", data[b'labels'][im_idx])
print("category:", meta[b'label_names'][data[b'labels'][im_idx]])
plt.imshow(img)
plt.show()
def main():
batch = (args.image // 10000) + 1
idx = args.image - (batch-1)*10000
data = unpickle(os.path.join(cifar10, "data_batch_" + str(batch)))
meta = unpickle(os.path.join(cifar10, "batches.meta"))
cifar10_plot(data, meta, im_idx=idx)
if __name__ == "__main__":
main()
The image is blurry due to interpolation. To prevent blurring in matplotlib, call imshow with keyword interpolation='nearest':
plt.imshow(img.T, interpolation='nearest')
Also, it appears that your x and y axes are being swapped when you use the transpose so you may want to display like this instead:
plt.imshow(np.transpose(img, (1, 2, 0)), interpolation='nearest')
I have used the following code to show all CIFAR data as one big image. The code show the image, but if you want to save it and not be blurtry i sugest using plt.savefig(fname, format='png', dpi=1000)
import numpy as np
import matplotlib.pyplot as plt
def reshape_and_print(self, cifar_data):
# number of images in rows and columns
rows = cols = np.sqrt(cifar_data.shape[0]).astype(np.int32)
# Image hight and width. Divide by 3 because of 3 color channels
imh = imw = np.sqrt(cifar_data.shape[1] // 3).astype(np.int32)
# reshape to number of images X color channels X image size
# transpose to color channels X number of images X image size
timg = cifar_data.reshape(rows * cols, 3, imh * imh).transpose(1, 0, 2)
# reshape to color channels X rows X cols X image hight X image with
# swap axis to color channels X rows X image hight X cols X image with
timg = timg.reshape(3, rows, cols, imh, imw).swapaxes(2, 3)
# reshape to color channels X combined image hight X combined image with
# transpose to combined image hight X combined image with X color channels
timg = timg.reshape(3, rows * imh, cols * imw).transpose(1, 2, 0)
plt.imshow(timg)
plt.show()
I made a quick data helper class that i used for a small test project, I hope is can be useful:
import gzip
import pickle
import numpy as np
import matplotlib.pyplot as plt
class DataSet(object):
def __init__(self, seed=42, setsize=10000):
self.seed = seed
# set the seed for reproducability
np.random.seed(seed)
# load the data
train_set, test_set = self.load_data()
# self.split_data(train_set, valid_set, test_set)
self.split_data(train_set, test_set, setsize)
def split_data(self, data_set, test_set, split_size):
permutation = np.random.permutation(data_set.shape[0])
self.train = data_set[permutation[:split_size]]
self.valid = data_set[permutation[split_size:split_size * 2]]
self.test = test_set[:split_size]
def reshape_for_print(self, data):
raise NotImplemented
def load_data(self):
raise NotImplemented
def show_all_imgs(self, data):
raise NotImplemented
class CIFAR(DataSet):
def load_data(self):
# try to load data
with open('./data/cifar-100-python/train', 'rb') as f:
data = pickle.load(f, encoding='latin1')
train_set = data['data'].astype(np.float32) / 255.0
with open('./data/cifar-100-python/test', 'rb') as f:
data = pickle.load(f, encoding='latin1')
test_set = data['data'].astype(np.float32) / 255.0
return train_set, test_set
def reshape_for_print(self, data):
gh = gw = np.sqrt(data.shape[0]).astype(np.int32)
imh = imw = np.sqrt(data.shape[1] // 3).astype(np.int32)
timg = data.reshape(gh * gw, 3, imh * imh).transpose(1, 0, 2)
timg = timg.reshape(3, gh, gw, imh, imw).swapaxes(2, 3)
timg = timg.reshape(3, gh * imh, gw * imw).transpose(1, 2, 0)
return timg
def show_all_imgs(self, data):
timg = self.reshape_for_print(data)
plt.imshow(timg)
plt.show()
class MNIST(DataSet):
def load_data(self):
# try to load data
with gzip.open('./data/mnist.pkl.gz', 'rb') as f:
train_set, valid_set, test_set = pickle.load(f, encoding='latin1')
return train_set[0], test_set[0]
def reshape_for_print(self, data):
gh = gw = np.sqrt(data.shape[0]).astype(np.int32)
imh = imw = np.sqrt(data.shape[1]).astype(np.int32)
timg = data.reshape(gh, gw, imh, imw).swapaxes(1, 2)
timg = timg.reshape(gh * imh, gw * imw)
return timg
def show_all_imgs(self, data):
timg = self.reshape_for_print(data)
plt.imshow(timg, cmap=plt.cm.gray)
plt.show()
I made a function to plot the RGB image from a row in the CIFAR10 dataset.The image will be blurry at best since the original size of the image is very small (32px X 32px).
def unpickle(file):
with open(file, 'rb') as fo:
dict1 = pickle.load(fo, encoding='bytes')
return dict1
pd_tr = pd.DataFrame()
tr_y = pd.DataFrame()
for i in range(1,6):
data = unpickle('data/data_batch_' + str(i))
pd_tr = pd_tr.append(pd.DataFrame(data[b'data']))
tr_y = tr_y.append(pd.DataFrame(data[b'labels']))
pd_tr['labels'] = tr_y
tr_x = np.asarray(pd_tr.iloc[:, :3072])
tr_y = np.asarray(pd_tr['labels'])
ts_x = np.asarray(unpickle('data/test_batch')[b'data'])
ts_y = np.asarray(unpickle('data/test_batch')[b'labels'])
labels = unpickle('data/batches.meta')[b'label_names']
def plot_CIFAR(ind):
arr = tr_x[ind]
sc_dpi = 157.35
R = arr[0:1024].reshape(32,32)/255.0
G = arr[1024:2048].reshape(32,32)/255.0
B = arr[2048:].reshape(32,32)/255.0
img = np.dstack((R,G,B))
title = re.sub('[!##$b]', '', str(labels[tr_y[ind]]))
fig = plt.figure(figsize=(3,3))
ax = fig.add_subplot(111)
ax.imshow(img,interpolation='bicubic')
ax.set_title('Category = '+ title,fontsize =15)
plot_CIFAR(4)
try using
import matplotlib.pyplot as plt
from scipy.misc import toimage
plt.imshow(toimage(img))
I am not 100% sure of how the code works, but I think that because the images are stored in floating point numpy arrays, the imshow() function has a difficult time mapping them to the right colors. By typecasting them to image using toimage() you convert them into proper image format that imshow() expects, i.e not an array but an image encoded as .png or .jpg.
This code works for me every time I want to display images in python.
code result is: Try below code.
I found a very useful link about visualization of mnist and cifar images. You can find codes for various images :
https://machinelearningmastery.com/how-to-load-and-visualize-standard-computer-vision-datasets-with-keras/
cifar10 image code is below:
It works well. Image is above.
# example of loading the cifar10 dataset
from matplotlib import pyplot
from keras.datasets import cifar10
# load dataset
(trainX, trainy), (testX, testy) = cifar10.load_data()
# summarize loaded dataset
print('Train: X=%s, y=%s' % (trainX.shape, trainy.shape))
print('Test: X=%s, y=%s' % (testX.shape, testy.shape))
# plot first few images
for i in range(9):
# define subplot
pyplot.subplot(330 + 1 + i)
# plot raw pixel data
pyplot.imshow(trainX[i])
# show the figure
pyplot.show()
Add 0.5:
plt.imshow(np.transpose(img, (1, 2, 0)) + 0.5)

Categories