Create an pd.Dataframe from series - python

I have a Dataframe like this:
then i am going to get one row with this and add a new column with an column Name time and value 15.
loc_OBL_ein = df.loc[5]
loc_OBL_ein.insert(1,'time',value=15)
then i get an error 'Series' object has no attribute 'insert'.
My idea now was to convert loc_OBL_ein into an object with the same column names like df. How can I do that?
Or is there another way to get this one particular row and keep the object format?
Thank you,
R

It seems you need nested lists to get the row in the DataFrame from index 5:
df = pd.DataFrame({
'A':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')
})
print (df)
A B C D E F
0 a 4 7 1 5 a
1 b 5 8 3 3 a
2 c 4 9 5 6 a
3 d 5 4 7 9 b
4 e 5 2 1 2 b
5 f 4 3 0 4 b
loc_OBL_ein = df.loc[[5]]
loc_OBL_ein.insert(1,'time',value=15)
print (loc_OBL_ein)
A time B C D E F
5 f 15 4 3 0 4 b

Related

Add all columns form one dataframe to another without joining on a key/index

Having two dataframes df1 and df2 (same number of rows) how can we, very simply, take all the columns from df2 and add them to df1? Using join, we are joining them on the index or a given column, but assuming their index's are completely different and they have no columns in common. Is that doable (without the obvious way of looping over each column in df2and add them as new to df1)?
EDIT: added an example.
Note; no index, column names are mentioned since it should not matter (thats is the "problem").
df1= [[1,3,2,
[11,20,33]]
df2 = [["bird",np.nan,37,np.sqrt(2)]
["dog",0.123,3.14,0]]
pd.some_operation(df1,df2)
#[[1,3,2,"bird",np.nan,37,np.sqrt(2)]
#[11,20,33,"dog",0.123,3.14,0]]
Samples:
df1 = pd.DataFrame({
'A':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
}, index = list('QRSTUW'))
df2 = pd.DataFrame({
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')
}, index = list('KLMNOP'))
Pandas always use index values if use join or concat by axis=1, so for correct alignement is necessary create same index values:
df = df1.join(df2.set_index(df1.index))
df = pd.concat([df1, df2.set_index(df1.index)], axis=1)
print (df)
A B C D E F
Q a 4 7 1 5 a
R b 5 8 3 3 a
S c 4 9 5 6 a
T d 5 4 7 9 b
U e 5 2 1 2 b
W f 4 3 0 4 b
Or create default index in both DataFrames:
df = df1.reset_index(drop=True).join(df2.reset_index(drop=True))
df = pd.concat([df1.reset_index(drop=True), df2.reset_index(drop=True)], axis=1)
print (df)
A B C D E F
0 a 4 7 1 5 a
1 b 5 8 3 3 a
2 c 4 9 5 6 a
3 d 5 4 7 9 b
4 e 5 2 1 2 b
5 f 4 3 0 4 b

Multi-indexing failure

I'm trying to create multi-indexing to my database, based on 2 columns: plant and date.
I want the column of "plant" to be the first one to be the outisde one and then the date.
I worked but for some reason the dates are not "aggregated" into one cell, like you can see here:
my code:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df_plants = pd.read_csv('Data_plants_26_11_2019.csv')
df_Nit=pd.read_csv('chemometrics.csv')
#create new colum which contains aonly the hour using lambda
df_plants['Hour']=df_plants['time'].apply(lambda time: time.split(' ')[1])
df_plants['date']=df_plants['time'].apply(lambda time: time.split(' ')[0])
#select only plants that their nitrogen content was checked
options=['J01B','J01C','J02C','J02D','J03B','J03C','J04C','J08C','J08D','J09A','J09C','J10A','J12C','J12D','J13A','J14A','J15A','J18A']
filter_plants=df_plants.loc[df_plants['plant'].isin(options)].copy()
filter_plants['Hour'] = pd.to_datetime(filter_plants['Hour']).apply(lambda x: str(x.hour) + ':00')
#index by plant ,date and hour
df_indices.set_index(['plant', 'date'], inplace=True)
df_indices.sort_index(inplace=True)
df_indices
My end goal:to have the same dates inside one cell.
This failure is expected output of MultiIndex, it 'remove' (actually not display) only all levels without last, so here first level if duplicates.
If create 3 levels DataFrame it display like you need:
df_indices.set_index(['plant', 'date', 'Hour'], inplace=True)
df_indices = pd.DataFrame({
'A':list('aaabbb'),
'B':list('eeffee'),
'C':[1,3,5,7,1,0],
'D':[5,3,6,9,2,4]
})
df_indices.set_index(['A', 'B'], inplace=True)
print (df_indices)
C D
A B
a e 1 5
e 3 3
f 5 6
b f 7 9
e 1 2
e 0 4
#temporaly display multi_sparse DataFrame (how data are real)
with pd.option_context('display.multi_sparse', False):
print (df_indices)
C D
A B
a e 1 5
a e 3 3
a f 5 6
b f 7 9
b e 1 2
b e 0 4
df_indices = pd.DataFrame({
'A':list('aaabbb'),
'B':list('eeffee'),
'C':[1,3,5,7,1,0],
'D':[5,3,6,9,2,4]
})
df_indices.set_index(['A', 'B', 'C'], inplace=True)
print (df_indices)
D
A B C
a e 1 5
3 3
f 5 6
b f 7 9
e 1 2
0 4
#temporaly display multi_sparse DataFrame (how data are real)
with pd.option_context('display.multi_sparse', False):
print (df_indices)
D
A B C
a e 1 5
a e 3 3
a f 5 6
b f 7 9
b e 1 2
b e 0 4

Pandas Copy columns from one data frame to another with different name

I have to copy columns from one DataFrame A to another DataFrame B. The column names in A and B do not match.
What is the best way to do it? There are several columns like this. Do I need to write for each column like B["SO"] = A["Sales Order"] etc.
i would use pd.concat
combined_df = pd.concat([df1, df2[['column_a', 'column_b']]], axis=1)
also gives you the power to concat different size dateframes , outer join etc.
Use:
df1 = pd.DataFrame({
'SO':list('abcdef'),
'RI':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
})
print (df1)
SO RI C
0 a 4 7
1 b 5 8
2 c 4 9
3 d 5 4
4 e 5 2
5 f 4 3
df2 = pd.DataFrame({
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')
})
print (df2)
D E F
0 1 5 a
1 3 3 a
2 5 6 a
3 7 9 b
4 1 2 b
5 0 4 b
Create dictionary for rename, select columns matched, rename by dict and DataFrame.join to original - DataFrames matched by index values:
d = {'SO':'Sales Order',
'RI':'Retail Invoices'}
df11 = df1[d.keys()].rename(columns=d)
print (df11)
Sales Order Retail Invoices
0 a 4
1 b 5
2 c 4
3 d 5
4 e 5
5 f 4
df = df2.join(df11)
print (df)
D E F Sales Order Retail Invoices
0 1 5 a a 4
1 3 3 a b 5
2 5 6 a c 4
3 7 9 b d 5
4 1 2 b e 5
5 0 4 b f 4
Make a dictionary of abbreviations. And try this code.
Ex:
full_form_dict = {'SO':'Sales Order',
'RI':'Retail Invoices',}
A_col = list(A.columns)
B_col = [v for k,v in full_form_dict.items() if k in A_col]
# to loop over A_col
# B_col = [v for col in A_col for k,v in full_form_dict.items() if k == col]

Creating a Dictionary of Dataframes from a Large Dataframe based on Multi-Index via a Loop

Sorry if this seems simple but have been struggling to find an answer to this.
I have a large dataframe of the format in the picture:
Each row can be uniquely identified by the multi-index built from the columns "trip_id", "direction_id", "stop_sequence".
I would like to request methods using loops to create a python-dictionary of dataframes where each dataframe is a subset of the large dataframe which contains all the rows for each "trip_id" + "direction_id" multi-index.
At the end of the loops I would like to be able to have a python-dictionary of dataframes where I can access each dictionary with a simple index key such as from 0 - 10,000 or the key being the combination of trip_id and direction_id
E.g. for the image above, I would like all the rows where the trip_id is "17067064.T0.2-EPP-F-mjp-1.8.R" and the direction ID is "1" to be in one dataframe of this dictionary collection.
Thank you for your help.
Kind regards,
Ben
Use groupby with dictionary comprehension:
df = pd.DataFrame({
'A':list('abcdef'),
'B':[4,5,5,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')
}).set_index(['F','B','C'])
print (df)
A D E
F B C
a 4 7 a 1 5
5 8 b 3 3
9 c 5 6
b 5 4 d 7 9
2 e 1 2
4 3 f 0 4
A D E
#python 3.6+
dfs = {f'{a}_{b}':v for (a, b), v in df.groupby(level=['F','B'])}
#python bellow
#dfs = {'{}_{}'.format(a,b):v for (a, b), v in df.groupby(level=['F','B'])}
print (dfs)
{'a_4': A D E
F B C
a 4 7 a 1 5, 'a_5': A D E
F B C
a 5 8 b 3 3
9 c 5 6, 'b_4': A D E
F B C
b 4 3 f 0 4, 'b_5': A D E
F B C
b 5 4 d 7 9
2 e 1 2}
print (dfs['a_4'])
A D E
F B C
a 4 7 a 1 5

Formatting dataframe in appending

I want to append 2 dataframes:
data1:
a
1 a
2 b
3 c
4 d
5 e
data2:
b
1 f
2 g
3 h
4 i
5 j
output:
1 a
2 b
3 c
4 d
5 e
6 f
7 g
8 h
9 i
10 j
currently i am using:
all_data= data1.append(data2, ignore_index=True)
this gives me result as:
a b
1 a
2 b
3 c
4 d
5 e
6 f
7 g
8 h
9 i
10 j
i.e. in different columns.
How can i get them in the same column?
Also tried converting the dataframes into list and then tring to append it. But it gave me the error:
TypeError: append() takes no keyword arguments
Also, is there any other function to remove duplicates from the datarame of strings? The drop_duplicates() function does not work in my case. The data still has duplicates.
You need to change one column name, so append can detect hat you want to do:
data2.columns = ["a"]
or
data1.columns = ["b"]
And then, after using data2.columns = ["a"]:
all_data = data1.append(data2, ignore_index=True)
all_data
a
0 a
1 b
2 c
3 d
4 e
5 f
6 g
7 h
8 i
9 j
And here you have your column named after the column's name of data1, which you can rename if you want:
all_data.columns = ["Foo"]
merge or concat work on keys. In this case, there are no common columns. However, why not use numpy append and create the dataframe?
In [68]: pd.DataFrame(pd.np.append(data1.values, data2.values), columns=['A'])
Out[68]:
A
0 a
1 b
2 c
3 d
4 e
5 f
6 g
7 h
8 i
9 j
df1.columns = ['b']
Out[78]:
b
0 a
1 b
2 c
3 d
4 e
pd.concat([df1 , df2] , ignore_index=True)
Out[80]:
b
0 a
1 b
2 c
3 d
4 e
5 f
6 g
7 h
8 i
9 j

Categories