While trying to figure out why my tests fails to create sqlite schema, I tried this very simple example issued from https://pysheeet.readthedocs.io/en/latest/notes/python-sqlalchemy.html
from sqlalchemy import create_engine
from sqlalchemy import MetaData
from sqlalchemy import Table
from sqlalchemy import Column
from sqlalchemy import Integer, String
db_uri = 'sqlite:///db.sqlite'
engine = create_engine(db_uri)
# Create a metadata instance
metadata = MetaData(engine)
# Declare a table
table = Table('Example',metadata,
Column('id',Integer, primary_key=True),
Column('name',String))
# Create all tables
metadata.create_all()
for _t in metadata.tables:
print("Table: ", _t)
But still I get this db locked message:
sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) database is locked [SQL: '\nCREATE TABLE "Example" (\n\tid INTEGER NOT NULL, \n\tname VARCHAR, \n\tPRIMARY KEY (id)\n)\n\n'] (Background on this error at: http://sqlalche.me/e/e3q8)
Any idea of how to use create all with non 'in memory' sqlite db ?
Related
I try to copy the sql-server's table with its keys and other constraints through SQLAlchemy in python
`from sqlalchemy import *
DATABASE_CONN = f'mssql://#{SERVER}/{DATABASE}?driver={DRIVER}'
DATABASE_CONN2 = f'mssql://#{SERVER}/{DB2}?driver={DRIVER}'
engine = create_engine(DATABASE_CONN)
engine2 = create_engine(DATABASE_CONN2)
connection = engine.connect() connection2 = engine2.connect()
metadata = MetaData() table = Table('table_name', metadata, autoload=True, autoload_with=engine) table.create(engine2)
ERROR:
sqlalchemy.exc.NoSuchTableError: table_name
if i putting the specific table name instead of 'table_name' then it create that table in new databse but i have to do it for all table so any technique to resolve this issue and make the copy of all table with its keys and other constraint at one go.
You recreate all the table schema from one database in a second by reflecting the first into a metadata object and then creating the tables in the second:
meta = MetaData()
meta.reflect(engine)
meta.create_all(engine2)
It's possible to control precisely which tables get reflected - review the docs for Reflecting Database Objects and metadata.reflect.
I create a very simple database with sqlalchemy as follows:
from sqlalchemy import Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
Base = declarative_base()
class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
name = Column(String(250), nullable=False)
engine = create_engine('sqlite:///sqlalchemy_example.db')
# Create all tables in the engine. This is equivalent to "Create Table"
# statements in raw SQL.
Base.metadata.create_all(engine)
Base.metadata.bind = engine
DBSession = sessionmaker(bind=engine)
session = DBSession()
# Insert a Person in the person table
new_person = Person(name='new person')
session.add(new_person)
session.commit()
and then I tried to read it using pyDAL reference.
from pydal import DAL, Field
db = DAL('sqlite://sqlalchemy_example.db', auto_import=True)
db.tables
>> []
db.define_table('person', Field('name'))
>> OperationalError: table "person" already exists
How do I access the table using pyDAL?
thank you
First, do not set auto_import=True, as that is only relevant if pyDAL *.table migration metadata files exist for the tables, which will not be the case here.
Second, pyDAL does not know the table already exists, and because migrations are enabled by default, it attempts to create the table. To prevent this, you can simply disable migrations:
# Applies to all tables.
db = DAL('sqlite://sqlalchemy_example.db', migrate_enabled=False)
or:
# Applies to this table only.
db.define_table('person', Field('name'), migrate=False)
If you would like pyDAL to take over migrations for future changes to this table, then you should run a "fake migration", which will cause pyDAL to generate a *.table migration metadata file for this table without actually running the migration. To do this, temporarily make the following change:
db.define_table('person', Field('name'), fake_migrate=True)
After leaving the above in place for a single request, the *.table file will be generated, and you can remove the fake_migrate=True argument.
Finally, note that pyDAL expects the id field to be an auto-incrementing integer primary key field.
I created the table on the server using SQLALchemy:
from sqlalchemy import create_engine, Table, Column, String, MetaData
engine = create_engine('mssql://server/database?driver=SQL+Server&trusted_connection=yes')
meta = MetaData()
table = Table('test17', meta,
Column('id', Integer, primary_key=True),
Column('name', String('255'))
)
metadata.create_all(engine)
Then I connected to this database using SSMS 2012 and added a new column:
ALTER TABLE test17 ADD age INT NULL
How do I tell using SQLALchemy that a new column appears in the table?
I tried to do something like:
meta2 = MetaData()
table = Table('test17', meta, autoload=True, autoload_with=engine)
But in the end I get the same table structure that I defined initially using SQLALchemy.
I think you forgot to bind your MetaData to the engine. Create the engine first, then read the metadata from the db using the engine.
metadata = db.MetaData(bind=engine)
test17 = db.Table('test17', metadata, autoload=True)
I am using SQLAlchemy as ORM for a python project. I have created few models/schema and it is working fine. Now I need to query a existing MySQL database, no insert/update just the select statement.
How can I create a wrapper around the tables of this existing database? I have briefly gone through the sqlalchemy docs and SO but couldn't find anything relevant. All suggest execute method, where I need to write the raw sql queries, while I want to use the SQLAlchemy query method in same way as I am using with the SA models.
For example if the existing db has table name User then I want to query it using the dbsession ( only the select operation, probably with join)
You seem to have an impression that SQLAlchemy can only work with a database structure created by SQLAlchemy (probably using MetaData.create_all()) - this is not correct. SQLAlchemy can work perfectly with a pre-existing database, you just need to define your models to match database tables. One way to do that is to use reflection, as Ilja Everilä suggests:
from sqlalchemy import Table
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class MyClass(Base):
__table__ = Table('mytable', Base.metadata,
autoload=True, autoload_with=some_engine)
(which, in my opinion, would be totally fine for one-off scripts but may lead to incredibly frustrating bugs in a "real" application if there's a potential that the database structure may change over time)
Another way is to simply define your models as usual taking care to define your models to match the database tables, which is not that difficult. The benefit of this approach is that you can map only a subset of database tables to you models and even only a subset of table columns to your model's fields. Suppose you have 10 tables in the database but only interested in users table from where you only need id, name and email fields:
import sqlalchemy as sa
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class User(Base):
id = sa.Column(sa.Integer, primary_key=True)
name = sa.Column(sa.String)
email = sa.Column(sa.String)
(note how we didn't need to define some details which are only needed to emit correct DDL, such as the length of the String fields or the fact that the email field has an index)
SQLAlchemy will not emit INSERT/UPDATE queries unless you create or modify models in your code. If you want to ensure that your queries are read-only you may create a special user in the database and grant that user SELECT privileges only. Alternatively/in addition, you may also experiment with rolling back the transaction in your application code.
You can access an existing table using the automap extension:
from sqlalchemy.ext.automap import automap_base
from sqlalchemy.orm import Session
Base = automap_base()
Base.prepare(engine, reflect=True)
Users = Base.classes.users
session = Session(engine)
res = session.query(Users).first()
Create a table with autoload enabled that will inspect it. Some example code:
from sqlalchemy.sql import select
from sqlalchemy import create_engine, MetaData, Table
CONN_STR = '…'
engine = create_engine(CONN_STR, echo=True)
metadata = MetaData()
cookies = Table('cookies', metadata, autoload=True,
autoload_with=engine)
cols = cookies.c
with engine.connect() as conn:
query = (
select([cols.created_at, cols.name])
.order_by(cols.created_at)
.limit(1)
)
for row in conn.execute(query):
print(row)
Other answers don't mention what to do if you have a table with no primary key, so I thought I would address this. Assuming a table called Customers that has columns for CustomerId, CustomerName, CustomerLocation you could do;
from sqlalchemy.ext.automap import automap_base
from sqlalchemy import create_engine, MetaData, Column, String, Table
from sqlalchemy.orm import Session
Base = automap_base()
conn_str = '...'
engine = create_engine(conn_str)
metadata = MetaData()
# you only need to define which column is the primary key. It can automap the rest of the columns.
customers = Table('Customers',metadata, Column('CustomerId', String, primary_key=true), autoload=True, autoload_with=engine)
Base.prepare()
Customers= Base.classes.Customers
session = Session(engine)
customer1 = session.query(Customers).first()
print(customer1.CustomerName)
Assume we have a Postgresql database named accounts. And we already have a table named users.
import sqlalchemy as sa
psw = "verysecret"
db = "accounts"
# create an engine
pengine = sa.create_engine('postgresql+psycopg2://postgres:' + psw +'#localhost/' + db)
from sqlalchemy.ext.declarative import declarative_base
# define declarative base
Base = declarative_base()
# reflect current database engine to metadata
metadata = sa.MetaData(pengine)
metadata.reflect()
# build your User class on existing `users` table
class User(Base):
__table__ = sa.Table("users", metadata)
# call the session maker factory
Session = sa.orm.sessionmaker(pengine)
session = Session()
# filter a record
session.query(User).filter(User.id==1).first()
Warning: Your table should have a Primary Key defined. Otherwise, Sqlalchemy won't like it.
I am giving Pylons a try with SQLAlchemy, and I love it, there is just one thing, is it possible to print out the raw SQL CREATE TABLE data generated from Table().create() before it's executed?
from sqlalchemy.schema import CreateTable
print(CreateTable(table))
If you are using declarative syntax:
print(CreateTable(Model.__table__))
Update:
Since I have the accepted answer and there is important information in klenwell answer, I'll also add it here.
You can get the SQL for your specific database (MySQL, Postgresql, etc.) by compiling with your engine.
print(CreateTable(Model.__table__).compile(engine))
Update 2:
#jackotonye Added in the comments a way to do it without an engine.
print(CreateTable(Model.__table__).compile(dialect=postgresql.dialect()))
You can set up you engine to dump the metadata creation sequence, using the following:
def metadata_dump(sql, *multiparams, **params):
# print or write to log or file etc
print(sql.compile(dialect=engine.dialect))
engine = create_engine(myDatabaseURL, strategy='mock', executor=metadata_dump)
metadata.create_all(engine)
One advantage of this approach is that enums and indexes are included in the printout. Using CreateTable leaves this out.
Another advantage is that the order of the schema definitions is correct and (almost) usable as a script.
I needed to get the raw table sql in order to setup tests for some existing models. Here's a successful unit test that I created for SQLAlchemy 0.7.4 based on Antoine's answer as proof of concept:
from sqlalchemy import create_engine
from sqlalchemy.schema import CreateTable
from model import Foo
sql_url = "sqlite:///:memory:"
db_engine = create_engine(sql_url)
table_sql = CreateTable(Foo.table).compile(db_engine)
self.assertTrue("CREATE TABLE foos" in str(table_sql))
Something like this? (from the SQLA FAQ)
http://docs.sqlalchemy.org/en/latest/faq/sqlexpressions.html
It turns out this is straight-forward:
from sqlalchemy.dialects import postgresql
from sqlalchemy.schema import CreateTable
from sqlalchemy import Table, Column, String, MetaData
metadata = MetaData()
users = Table('users', metadata,
Column('username', String)
)
statement = CreateTable(users)
print(statement.compile(dialect=postgresql.dialect()))
Outputs this:
CREATE TABLE users (
username VARCHAR
)
Going further, it can even support bound parameters in prepared statements.
Reference
How do I render SQL expressions as strings, possibly with bound parameters inlined?
...
or without an Engine:
from sqlalchemy.dialects import postgresql
print(statement.compile(dialect=postgresql.dialect()))
SOURCE: http://docs.sqlalchemy.org/en/latest/faq/sqlexpressions.html#faq-sql-expression-string
Example: Using SQL Alchemy to generate a user rename script
#!/usr/bin/env python
import csv
from sqlalchemy.dialects import postgresql
from sqlalchemy import bindparam, Table, Column, String, MetaData
metadata = MetaData()
users = Table('users', metadata,
Column('username', String)
)
renames = []
with open('users.csv') as csvfile:
for row in csv.DictReader(csvfile):
renames.append({
'from': row['sAMAccountName'],
'to': row['mail']
})
for rename in renames:
stmt = (users.update()
.where(users.c.username == rename['from'])
.values(username=rename['to']))
print(str(stmt.compile(dialect=postgresql.dialect(),
compile_kwargs={"literal_binds": True})) + ';')
When processing this users.csv:
sAMAccountName,mail
bmcboatface,boaty.mcboatface#example.com
ndhyani,naina.dhyani#contoso.com
Gives output like this:
UPDATE users SET username='boaty.mcboatface#example.com' WHERE users.username = 'bmcboatface';
UPDATE users SET username='naina.dhyani#contoso.com' WHERE users.username = 'ndhyani';users.username = 'ndhyani';
Why a research vessel has an email address is yet to be determined. I have been in touch with Example Inc's IT team and have had no response.
May be you mean echo parameter of sqlalchemy.create_engine?
/tmp$ cat test_s.py
import sqlalchemy as sa
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class Department(Base):
__tablename__ = "departments"
department_id = sa.Column(sa.types.Integer, primary_key=True)
name = sa.Column(sa.types.Unicode(100), unique=True)
chief_id = sa.Column(sa.types.Integer)
parent_department_id = sa.Column(sa.types.Integer,
sa.ForeignKey("departments.department_id"))
parent_department = sa.orm.relation("Department")
engine = sa.create_engine("sqlite:///:memory:", echo=True)
Base.metadata.create_all(bind=engine)
/tmp$ python test_s.py
2011-03-24 15:09:58,311 INFO sqlalchemy.engine.base.Engine.0x...42cc PRAGMA table_info("departments")
2011-03-24 15:09:58,312 INFO sqlalchemy.engine.base.Engine.0x...42cc ()
2011-03-24 15:09:58,312 INFO sqlalchemy.engine.base.Engine.0x...42cc
CREATE TABLE departments (
department_id INTEGER NOT NULL,
name VARCHAR(100),
chief_id INTEGER,
parent_department_id INTEGER,
PRIMARY KEY (department_id),
UNIQUE (name),
FOREIGN KEY(parent_department_id) REFERENCES departments (department_id)
)
2011-03-24 15:09:58,312 INFO sqlalchemy.engine.base.Engine.0x...42cc ()
2011-03-24 15:09:58,312 INFO sqlalchemy.engine.base.Engine.0x...42cc COMMIT