Optimizing Numpy Euclidean Distance and Direction Function - python

I am trying to calculate the euclidean distance and direction from a source coordinate within a numpy array.
Graphic Example
Here is what I was able to come up with, however it is relatively slow for large arrays. Euclidean Distance and Direction based on source coordinates rely heavily on the index of each cell. that is why I am looping each row and column. I have looked into scipy cdist, pdist, and np linalg.
import numpy as np
from math import atan, degrees, sqrt
from timeit import default_timer
def euclidean_from_source(input_array, y_index, x_index):
# copy arrays
distance = np.empty_like(input_array, dtype=float)
direction = np.empty_like(input_array, dtype=int)
# loop each row
for i, row in enumerate(X):
# loop each cell
for c, cell in enumerate(row):
# get b
b = x_index - i
# get a
a = y_index - c
hypotenuse = sqrt(a * a + b * b) * 10
distance[i][c] = hypotenuse
direction[i][c] = get_angle(a, b)
return [distance, direction]
def calibrate_angle(a, b, angle):
if b > 0 and a > 0:
angle+=90
elif b < 0 and a < 0:
angle+=270
elif b > 0 > a:
angle+=270
elif a > 0 > b:
angle+=90
return angle
def get_angle(a, b):
# get angle
if b == 0 and a == 0:
angle = 0
elif b == 0 and a >= 0:
angle = 90
elif b == 0 and a < 0:
angle = 270
elif a == 0 and b >= 0:
angle = 180
elif a == 0 and b < 0:
angle = 360
else:
theta = atan(b / a)
angle = degrees(theta)
return calibrate_angle(a, b, angle)
if __name__ == "__main__":
dimension_1 = 5
dimension_2 = 5
X = np.random.rand(dimension_1, dimension_2)
y_index = int(dimension_1/2)
x_index = int(dimension_2/2)
start = default_timer()
distance, direction = euclidean_from_source(X, y_index, x_index)
print('Total Seconds {{'.format(default_timer() - start))
print(distance)
print(direction)
UPDATE
I was able to use the broadcasting function to do exactly what I needed, and at a fraction of the speed. however I am still figuring out how to calibrate the angle to 0, 360 throughout the matrix (modulus will not work in this scenario).
import numpy as np
from math import atan, degrees, sqrt
from timeit import default_timer
def euclidean_from_source_update(input_array, y_index, x_index):
size = input_array.shape
center = (y_index, x_index)
x = np.arange(size[0])
y = np.arange(size[1])
# use broadcasting to get euclidean distance from source point
distance = np.multiply(np.sqrt((x - center[0]) ** 2 + (y[:, None] - center[1]) ** 2), 10)
# use broadcasting to get euclidean direction from source point
direction = np.rad2deg(np.arctan2((x - center[0]) , (y[:, None] - center[1])))
return [distance, direction]
def euclidean_from_source(input_array, y_index, x_index):
# copy arrays
distance = np.empty_like(input_array, dtype=float)
direction = np.empty_like(input_array, dtype=int)
# loop each row
for i, row in enumerate(X):
# loop each cell
for c, cell in enumerate(row):
# get b
b = x_index - i
# get a
a = y_index - c
hypotenuse = sqrt(a * a + b * b) * 10
distance[i][c] = hypotenuse
direction[i][c] = get_angle(a, b)
return [distance, direction]
def calibrate_angle(a, b, angle):
if b > 0 and a > 0:
angle+=90
elif b < 0 and a < 0:
angle+=270
elif b > 0 > a:
angle+=270
elif a > 0 > b:
angle+=90
return angle
def get_angle(a, b):
# get angle
if b == 0 and a == 0:
angle = 0
elif b == 0 and a >= 0:
angle = 90
elif b == 0 and a < 0:
angle = 270
elif a == 0 and b >= 0:
angle = 180
elif a == 0 and b < 0:
angle = 360
else:
theta = atan(b / a)
angle = degrees(theta)
return calibrate_angle(a, b, angle)
if __name__ == "__main__":
dimension_1 = 5
dimension_2 = 5
X = np.random.rand(dimension_1, dimension_2)
y_index = int(dimension_1/2)
x_index = int(dimension_2/2)
start = default_timer()
distance, direction = euclidean_from_source(X, y_index, x_index)
print('Total Seconds {}'.format(default_timer() - start))
start = default_timer()
distance2, direction2 = euclidean_from_source_update(X, y_index, x_index)
print('Total Seconds {}'.format(default_timer() - start))
print(distance)
print(distance2)
print(direction)
print(direction2)
Update 2
Thanks everyone for the responses, after testing methods, these two methods were the fastest and produced the results I needed. I am still open to any optimizations you guys can think of.
def get_euclidean_direction(input_array, y_index, x_index):
rdist = np.arange(input_array.shape[0]).reshape(-1, 1) - x_index
cdist = np.arange(input_array.shape[1]).reshape(1, -1) - y_index
direction = np.mod(np.degrees(np.arctan2(rdist, cdist)), 270)
direction[y_index:, :x_index]+= -90
direction[y_index:, x_index:]+= 270
direction[y_index][x_index] = 0
return direction
def get_euclidean_distance(input_array, y_index, x_index):
size = input_array.shape
center = (y_index, x_index)
x = np.arange(size[0])
y = np.arange(size[1])
return np.multiply(np.sqrt((x - center[0]) ** 2 + (y[:, None] - center[1]) ** 2), 10)

This operation is extremely easy to vectorize. For one thing, a and b don't need to be computed in 2D at all, since they only depend on one direction in the array. The distance can be computed with np.hypot. Broadcasting will convert the shape into the correct 2D form.
Your angle function is almost exactly equivalent to applying np.degrees to np.arctan2.
It's unclear why you label your rows with xand columns with y instead of the standard way of doing it, but as long as you're consistent, it should be fine.
So here's the vectorized version:
def euclidean_from_source(input_array, c, r):
rdist = np.arange(input_array.shape[0]).reshape(-1, 1) - r
# Broadcasting doesn't require this second reshape
cdist = np.arange(input_array.shape[1]).reshape(1, -1) - c
distance = np.hypot(rdist, cdist) * 10
direction = np.degrees(np.arctan2(rdist, cdist))
return distance, direction
I will leave it as an exercise for the reader to determine if any additional processing is necessary to fine-tune the angle, and if so, to implement it in a vectorized manner.

Might be easier to just pass the corrdinate you want to measure as an array or tuple. Also, while it might take a bit more memory, I think using np.indices might be a bit faster for the calculation (as it allows np.einsum to do its magic).
def euclidean_from_source(input_array, coord):
grid = np.indices(input_array.shape)
grid -= np.asarray(coord)[:, None, None]
distance = np.einsum('ijk, ijk -> jk', grid, grid) ** .5
direction = np.degrees(np.arctan2(grid[0], grid[1]))
return distance, direction
This method is also a bit more extensible to n-d (although obviously the angle calculations would be a bit trickier

Related

Angles calculated by function are inconsistent

I have a function that is intended to rotate polygons by 5 degrees left or right and return their new points. This function is as follows, along with the function player_center that it requires.
# finds center of player shape
# finds slope and midpoint of each vertice-midpoint line on the longer sides,
# then the intercept of them all
def player_center(player):
left_mid = line_midpoint(player[0], player[1])
right_mid = line_midpoint(player[0], player[2])
left_mid_slope = line_slope(left_mid, player[2])
right_mid_slope = line_slope(right_mid, player[1])
left_mid_line = find_equation(player[2], left_mid_slope, True)
right_mid_line = find_equation(player[1], right_mid_slope, True)
standard_left_mid_line = slope_intercept_to_standard(left_mid_line[0], left_mid_line[1], left_mid_line[2])
standard_right_mid_line = slope_intercept_to_standard(right_mid_line[0], right_mid_line[1], right_mid_line[2])
lines = sym.Matrix([standard_left_mid_line, standard_right_mid_line])
return (float(lines.rref()[0].row(0).col(2)[0]), float(lines.rref()[0].row(1).col(2)[0]))
# rotates the player using SOHCAHTOA
# divides x coordinate by radius to find angle, then adds or subtracts increment of 5 to it depending on direction
# calculates the position of point at incremented angle, then appends to new set of points
# finally, new set is returned
# direction; 1 is left, 0 is right
def rotate_player(player, direction):
increment = math.pi/36 # radian equivalent of 5 degrees
full_circle = 2 * math.pi # radian equivalent of 360 degrees
center = player_center(player)
new_player = []
for point in player:
radius = line_distance(point, center)
point_sin = (center[1] - point[1])/radius
while (point_sin > 1):
point_sin -= 1
point_angle = math.asin(point_sin)
if (direction == 1):
if ((point_angle+increment) > math.pi * 2):
new_angle = (point_angle+increment) - math.pi * 2
else:
new_angle = point_angle + increment
else:
if ((point_angle-increment) < 0):
new_angle = 2 * math.pi + (point_angle-increment)
else:
new_angle = point_angle-increment
print("The angle was {}".format(math.degrees(point_angle)))
print("The angle is now {}".format(math.degrees(new_angle))) # print lines are for debug purposes
new_point = ((radius * math.cos(new_angle)) + center[0], -(radius * math.sin(new_angle)) + center[1])
new_player.append(new_point)
print(new_player)
return new_player
The geometric functions that it relies on are all defined in this file here:
import math
import sympy as sym
# shape is in form of list of tuples e.g [(1,1), (2,1), (1,0), (2,0)]
# angle is in degrees
# def rotate_shape(shape, angle):
def line_distance(first_point, second_point):
return math.sqrt( (second_point[0] - first_point[0]) ** 2 + (second_point[1] - first_point[1]) ** 2)
# undefined is represented by None in this program
def line_slope(first_point, second_point):
if (second_point[0] - first_point[0] == 0):
return None
elif (second_point[1] - first_point[1] == 0):
return 0
else:
return (second_point[1] - first_point[1])/(second_point[0] - first_point[0])
def line_midpoint(first_point, second_point):
return ( (first_point[0] + second_point[0])/2, (first_point[1] + second_point[1])/2 )
def find_equation(coord_pair, slope, array_form):
# Array form useful for conversion into standard form
if (array_form == True):
if (slope == 0):
intercept = coord_pair[1]
return [0, 1, intercept]
elif (slope == None):
intercept = coord_pair[0]
return [1, 0, intercept]
else:
intercept = coord_pair[1] - (coord_pair[0] * slope)
return [slope, 1, intercept]
else:
if (slope == 0):
intercept = coord_pair[1]
print("y = {0}".format(intercept))
return
elif (slope == None):
intercept = coord_pair[0]
print("x = {0}".format(intercept))
return
else:
intercept = coord_pair[1] - (coord_pair[0] * slope)
if (intercept >= 0):
print("y = {0}x + {1}".format(slope, intercept))
return
else:
print("y = {0}x - {1}".format(slope, intercept))
def find_perpendicular(slope):
if (slope == 0):
return None
elif (slope == None):
return 0
else:
return -(1/slope)
def find_perp_bisector(first_point, second_point):
# This function finds the perpendicular bisector between two points, using funcs made previously
midpoint = line_midpoint(first_point, second_point)
slope = line_slope(first_point, second_point)
return find_equation(midpoint, -(1/slope))
def find_perp_equation(x, y, m, array_form):
# returns the perpendicular equation of a given line
if (array_form == True):
return [find_perpendicular(x), y, m]
else:
if (m >= 0):
print("{0}y = {1}x + {2}".format(y, find_perpendicular(x), m))
else:
print("{0}y = {1}x - {2}".format(y, find_perpendicular(x), m))
def find_hyp(a, b):
return math.sqrt((a**2) + (b**2))
def find_tri_area(a, b, c):
# finds area of triangle using Heron's formula
semi = (a+b+c)/2
return math.sqrt(semi * (semi - a) * (semi - b) * (semi - c) )
def r_tri_check(a, b, c):
if (a**2) + (b**2) != (c**2):
print("This thing fake, bro.")
def find_point_section(first_point, second_point, ratio):
# I coded this half a year ago and can't remember what for, but kept it here anyway.
# separtions aren't necessary, but good for code readability
first_numerator = (ratio[0] * second_point[0]) + (ratio[1] * first_point[0])
second_numerator = (ratio[0] * second_point[1]) + (ratio[1] * first_point[1])
return ( first_numerator/(ratio[0]+ratio[1]), second_numerator/(ratio[0] + ratio[1]))
def slope_intercept_to_standard(x, y, b):
# x and y are the coeffients of the said variables, for example 5y = 3x + 8 would be inputted as (3, 5, 8)
if (x == 0):
return [0, 1, b]
elif (y == 0):
return [x, 0, b]
else:
return [x, -y, -b]
It mathematically seems sound, but when I try to apply it, all hell breaks loose.
For example when trying to apply it with the set polygon_points equal to [(400, 300), (385, 340), (415, 340)], All hell breaks loose.
An example of the output among repeated calls to the function upon polygon_points(outputs manually spaced for clarity):
The angle was 90.0
The angle is now 95.0
The angle was -41.633539336570394
The angle is now -36.633539336570394
The angle was -41.63353933657017
The angle is now -36.63353933657017
The angle was 64.4439547804165
The angle is now 69.4439547804165
The angle was -64.44395478041695
The angle is now -59.44395478041695
The angle was -64.44395478041623
The angle is now -59.44395478041624
The angle was 80.94458887142648
The angle is now 85.94458887142648
The angle was -80.9445888714264
The angle is now -75.9445888714264
The angle was -80.94458887142665
The angle is now -75.94458887142665
Can anyone explain this?
Too much irrelevant code, a lot of magic like this while (point_sin > 1): point_sin -= 1 - so hard to reproduce.
To rotate point around some center, you need just this (where cos(fi), sin(fi) are precalculated value in your case):
new_x = center_x + (old_x - center_x) * cos(fi) - (old_y - center_y) * sin(fi)
new_y = center_y + (old_x - center_x) * sin(fi) + (old_y - center_y) * cos(fi)
This is a built-in capability of RegularPolygon in SymPy:
>>> from sympy import RegularPolygon, rad
>>> p = RegularPolygon((0,0), 1, 5)
>>> p.vertices[0]
Point2D(1, 0)
>>> p.rotate(rad(30)) # or rad(-30)
>>> p.vertices[0]
Point2D(sqrt(3)/2, 1/2)

Distance from point to box boundary

In a game I'm writing with Pygame, I have a 2D point (x,y) in a box from (0,0) to (1,1) (perfect square with side length 1).
I want to calculate the euclidean distance from the point to the box boundary in a direction alpha, where alpha is an azimuth direction measured in radians counter-clockwise, starting from alpha=0 as the x-axis direction.
I wrote a python code that calculates this distance, but I'm not sure it's the most efficient/cleanest way:
import numpy as np
def get_distance_to_boundary(x, y, angle):
cos_angle, sin_angle = np.cos(angle), np.sin(angle)
if cos_angle == 0:
return y if sin_angle < 0 else 1 - y
if sin_angle == 0:
return x if cos_angle < 0 else 1 - x
x_target = 1 if cos_angle > 0 else 0
y_target = y + (x_target - x) * np.tan(angle)
if y_target > 1:
return np.fabs((1 - y) / sin_angle)
if y_target < 0:
return np.fabs(y / sin_angle)
return np.sqrt((x_target - x) ** 2 + (y_target - y) ** 2)
Any idea for a better approach?
Illustration:
This method is a little more efficient/cleaner because you don't need tan, fabs, sqrt or **2:
def distance(x,y,angle):
cos_angle, sin_angle = np.cos(angle), np.sin(angle)
if cos_angle == 0:
return y if sin_angle < 0 else 1 - y
if sin_angle == 0:
return x if cos_angle < 0 else 1 - x
distance_EW = (1-x)/cos_angle if cos_angle>0 else -x/cos_angle
distance_NS = (1-y)/sin_angle if sin_angle>0 else -y/sin_angle
return min(distance_EW, distance_NS)
I define distance_EW as the distance in the case where the target is on the East wall (if cos_angle>0) or on the West wall (if cos_angle<0). Similarly, define distance_NS for the North or South wall.
...
WARNING: My distance function will sometimes produce different results than your function because of rounding errors!! This is especially problematic when your starting point is at the border of the box and angle is close to a multiple of π/2.
I would suggest you set some sort of tolerance like if abs(sin_angle) < 1e-12:, instead of if sin_angle == 0:. That way, sin_angle = np.sin(np.pi) will be accepted in the if condition, even though it is not exactly equal to 0 (because np.sin(np.pi) is 1.2e-16 with python).

Monte Carlo simulation of a system of Lennard-Jones + FENE potential

I want to generate two linear chains of 20 monomers each at some distance to each other. The following code generates a single chain. Could someone help me with how to generate the second chain?
The two chains are fixed to a surface i.e the first monomer of the chain is fixed and the rest of the monomers move freely in x-y-z directions but the z component of the monomers should be positive.
Something like this:
import numpy as np
import numba as nb
#import pandas as pd
#nb.jit()
def gen_chain(N):
x = np.zeros(N)
y = np.zeros(N)
z = np.linspace(0, (N)*0.9, num=N)
return np.column_stack((x, y, z)), np.column_stack((x1, y1, z1))
#coordinates = np.loadtxt('2GN_50_T_10.txt', skiprows=199950)
#return coordinates
#nb.jit()
def lj(rij2):
sig_by_r6 = np.power(sigma**2 / rij2, 3)
sig_by_r12 = np.power(sigma**2 / rij2, 6)
lje = 4 * epsilon * (sig_by_r12 - sig_by_r6)
return lje
#nb.jit()
def fene(rij2):
return (-0.5 * K * np.power(R, 2) * np.log(1 - ((np.sqrt(rij2) - r0) / R)**2))
#nb.jit()
def total_energy(coord):
# Non-bonded energy.
e_nb = 0.0
for i in range(N):
for j in range(i - 1):
ri = coord[i]
rj = coord[j]
rij = ri - rj
rij2 = np.dot(rij, rij)
if (rij2 < rcutoff_sq):
e_nb += lj(rij2)
# Bonded FENE potential energy.
e_bond = 0.0
for i in range(1, N):
ri = coord[i]
rj = coord[i - 1] # Can be [i+1] ??
rij = ri - rj
rij2 = np.dot(rij, rij)
e_bond += fene(rij2)
return e_nb + e_bond
#nb.jit()
def move(coord):
trial = np.ndarray.copy(coord)
for i in range(1, N):
while True:
delta = (2 * np.random.rand(3) - 1) * max_delta
trial[i] += delta
#while True:
if trial[i,2] > 0.0:
break
trial[i] -= delta
return trial
#nb.jit()
def accept(delta_e):
beta = 1.0 / T
if delta_e < 0.0:
return True
random_number = np.random.rand(1)
p_acc = np.exp(-beta * delta_e)
if random_number < p_acc:
return True
return False
if __name__ == "__main__":
# FENE potential parameters.
K = 40.0
R = 0.3
r0 = 0.7
# L-J potential parameters
sigma = 0.5716
epsilon = 1.0
# MC parameters
N = 20 # Numbers of monomers
rcutoff = 2.5 * sigma
rcutoff_sq = rcutoff * rcutoff
max_delta = 0.01
n_steps = 100000
T = 10
# MAIN PART OF THE CODE
coord = gen_chain(N)
energy_current = total_energy(coord)
traj = open('2GN_20_T_10.xyz', 'w')
traj_txt = open('2GN_20_T_10.txt', 'w')
for step in range(n_steps):
if step % 1000 == 0:
traj.write(str(N) + '\n\n')
for i in range(N):
traj.write("C %10.5f %10.5f %10.5f\n" % (coord[i][0], coord[i][1], coord[i][2]))
traj_txt.write("%10.5f %10.5f %10.5f\n" % (coord[i][0], coord[i][1], coord[i][2]))
print(step, energy_current)
coord_trial = move(coord)
energy_trial = total_energy(coord_trial)
delta_e = energy_trial - energy_current
if accept(delta_e):
coord = coord_trial
energy_current = energy_trial
traj.close()
I except the chain of particles to collapse into a globule.
There is some problem with the logic of the MC you are implementing.
To perform a MC you need to ATTEMPT a move, evaluate the energy of the new state and then accept/reject according to a random number.
In your code there is not the slightest sign of the attempt to move a particle.
You need to move one (or more of them), evaluate the energy, and then update your coordinates.
By the way, I suppose this is not your entire code. There are many parameters that are not defined like the "k" and the "R0" in your fene potential
The FENE potential models bond interactions. What your code is saying is that all particles within the cutoff are bonded by FENE springs, and that the bonds are not fixed but rather defined by the cutoff. With a r_cutoff = 3.0, larger than equilibrium distance of the LJ well, you are essentially considering that each particle is bonded to potentially many others. You are treating the FENE potential as a non-bonded one.
For the bond interactions you should ignore the cutoff and only evaluate the energy for the actual pairs that are bonded according to your topology, which means that first you need to define a topology. I suggest generating a linear molecule of N atoms in a box big enough to contain the whole stretched molecule, and consider the i-th atom as bonded to the (i-1)-th atom, with i = 2, ..., N. In this way the topology is well defined and persistent. Then consider both interactions separately, non-bonded and bond, and add them at the end.
Something like this, in pseudo-code:
e_nb = 0
for particle i = 1 to N:
for particle j = 1 to i-1:
if (dist(i, j) < rcutoff):
e_nb += lj(i, j)
e_bond = 0
for particle i = 2 to N:
e_bond += fene(i, i-1)
e_tot = e_nb + e_bond
Below you can find a modified version of your code. To make things simpler, in this version there is no box and no boundary conditions, just a chain in free space. The chain is initialized as a linear sequence of particles each distant 80% of R0 from the next, since R0 is the maximum length of the FENE bond. The code considers that particle i is bonded with i+1 and the bond is not broken. This code is just a proof of concept.
#!/usr/bin/python
import numpy as np
def gen_chain(N, R):
x = np.linspace(0, (N-1)*R*0.8, num=N)
y = np.zeros(N)
z = np.zeros(N)
return np.column_stack((x, y, z))
def lj(rij2):
sig_by_r6 = np.power(sigma/rij2, 3)
sig_by_r12 = np.power(sig_by_r6, 2)
lje = 4.0 * epsilon * (sig_by_r12 - sig_by_r6)
return lje
def fene(rij2):
return (-0.5 * K * R0**2 * np.log(1-(rij2/R0**2)))
def total_energy(coord):
# Non-bonded
e_nb = 0
for i in range(N):
for j in range(i-1):
ri = coord[i]
rj = coord[j]
rij = ri - rj
rij2 = np.dot(rij, rij)
if (rij2 < rcutoff):
e_nb += lj(rij2)
# Bonded
e_bond = 0
for i in range(1, N):
ri = coord[i]
rj = coord[i-1]
rij = ri - rj
rij2 = np.dot(rij, rij)
e_bond += fene(rij2)
return e_nb + e_bond
def move(coord):
trial = np.ndarray.copy(coord)
for i in range(N):
delta = (2.0 * np.random.rand(3) - 1) * max_delta
trial[i] += delta
return trial
def accept(delta_e):
beta = 1.0/T
if delta_e <= 0.0:
return True
random_number = np.random.rand(1)
p_acc = np.exp(-beta*delta_e)
if random_number < p_acc:
return True
return False
if __name__ == "__main__":
# FENE parameters
K = 40
R0 = 1.5
# LJ parameters
sigma = 1.0
epsilon = 1.0
# MC parameters
N = 50 # number of particles
rcutoff = 3.5
max_delta = 0.01
n_steps = 10000000
T = 1.5
coord = gen_chain(N, R0)
energy_current = total_energy(coord)
traj = open('traj.xyz', 'w')
for step in range(n_steps):
if step % 1000 == 0:
traj.write(str(N) + '\n\n')
for i in range(N):
traj.write("C %10.5f %10.5f %10.5f\n" % (coord[i][0], coord[i][1], coord[i][2]))
print(step, energy_current)
coord_trial = move(coord)
energy_trial = total_energy(coord_trial)
delta_e = energy_trial - energy_current
if accept(delta_e):
coord = coord_trial
energy_current = energy_trial
traj.close()
The code prints the current configuration at each step, you can just load it up on VMD and see how it behaves. The bonds will not show correctly at first on VMD, you must use a bead representation for the particles and define the bonds manually or with a script within VMD. In any case, you don't need to see the bonds to notice that the chain does not collapse.
Please bear in mind that if you want to simulate a chain at a certain density, you need to be careful to generate the correct topology. I recommend the EMC package to efficiently generate polymers at the desired thermodynamic conditions. It is by no means a trivial problem, especially for larger chains.
By the way, your code had an error in the FENE energy evaluation. rij2 is already squared, you squared it again.
Below you can see how the total energy as a function of the number of steps behaves for T = 1.0, N = 20, rcutoff = 3.5, and also the last current configuration after 10 thousand steps.
And below for N = 50, T = 1.5, max_delta = 0.01, K = 40, R = 1.5, rcutoff = 3.5, and 10 million steps. This is the last current configuration.
The full "trajectory", which isn't really a trajectory since this is MC, you can find here (it's under 6 MB).

Puzzle: how many ways can you hit a target with a laser beam within four reflective walls

You are confronted with an enemy within a rectangular shaped room and you've got only a laser beam weapon, the room has no obstructions in it and the walls can completely reflect the laser beam. However the laser can only travels a certain distance before it become useless and if it hit a corner it would reflect back in the same direction it came from.
That's how the puzzle goes and you are given the coordinates of your location and the target's location, the room dimensions and the maximum distance the beam can travel. for example If the room is 3 by 2 and your location is (1, 1) and the target is (2, 1) then the possible solutions are:
I tried the following approach, start from the source (1, 1) and create a vector at angle 0 radians, trace the vector path and reflections until either it hits the target or the total length of the vectors exceeds the max allowed length, repeat with 0.001 radians interval until it completes a full cycle. This the code I have so far:
from math import *
UPRIGHT = 0
DOWNRIGHT = 1
DOWNLEFT = 2
UPLEFT = 3
UP = 4
RIGHT = 5
LEFT = 6
DOWN = 7
def roundDistance (a):
b = round (a * 100000)
return b / 100000.0
# only used for presenting and doesn't affect percision
def double (a):
b = round (a * 100)
if b / 100.0 == b: return int (b)
return b / 100.0
def roundAngle (a):
b = round (a * 1000)
return b / 1000.0
def isValid (point):
x,y = point
if x < 0 or x > width or y < 0 or y > height: return False
return True
def isCorner (point):
if point in corners: return True
return False
# Find the angle direction in relation to the origin (observer) point
def getDirection (a):
angle = roundAngle (a)
if angle == 0: return RIGHT
if angle > 0 and angle < pi / 2: return UPRIGHT
if angle == pi / 2: return UP
if angle > pi / 2 and angle < pi: return UPLEFT
if angle == pi: return LEFT
if angle > pi and angle < 3 * pi / 2: return DOWNLEFT
if angle == 3 * pi / 2: return DOWN
return DOWNRIGHT
# Measure reflected vector angle
def getReflectionAngle (tail, head):
v1 = (head[0] - tail[0], head[1] - tail[1])
vx,vy = v1
n = (0, 0)
# Determin the normal vector from the tail's position on the borders
if head[0] == 0: n = (1, 0)
if head[0] == width: n = (-1, 0)
if head[1] == 0: n = (0, 1)
if head[1] == height: n = (0, -1)
nx,ny = n
# Calculate the reflection vector using the formula:
# r = v - 2(v.n)n
r = (vx * (1 - 2 * nx * nx), vy * (1 - 2 * ny * ny))
# calculating the angle of the reflection vector using it's a and b values
# if b (adjacent) is zero that means the angle is either pi/2 or -pi/2
if r[0] == 0:
return pi / 2 if r[1] >= 0 else 3 * pi / 2
return (atan2 (r[1], r[0]) + (2 * pi)) % (2 * pi)
# Find the intersection point between the vector and borders
def getIntersection (tail, angle):
if angle < 0:
print "Negative angle: %f" % angle
direction = getDirection (angle)
if direction in [UP, RIGHT, LEFT, DOWN]: return None
borderX, borderY = corners[direction]
x0,y0 = tail
opp = borderY - tail[1]
adj = borderX - tail[0]
p1 = (x0 + opp / tan (angle), borderY)
p2 = (borderX, y0 + adj * tan (angle))
if isValid (p1) and isValid (p2):
print "Both intersections are valid: ", p1, p2
if isValid (p1) and p1 != tail: return p1
if isValid (p2) and p2 != tail: return p2
return None
# Check if the vector pass through the target point
def isHit (tail, head):
d = calcDistance (tail, head)
d1 = calcDistance (target, head)
d2 = calcDistance (target, tail)
return roundDistance (d) == roundDistance (d1 + d2)
# Measure distance between two points
def calcDistance (p1, p2):
x1,y1 = p1
x2,y2 = p2
return ((y2 - y1)**2 + (x2 - x1)**2)**0.5
# Trace the vector path and reflections and check if it can hit the target
def rayTrace (point, angle):
path = []
length = 0
tail = point
path.append ([tail, round (degrees (angle))])
while length < maxLength:
head = getIntersection (tail, angle)
if head is None:
#print "Direct reflection at angle (%d)" % angle
return None
length += calcDistance (tail, head)
if isHit (tail, head) and length <= maxLength:
path.append ([target])
return [path, double (length)]
if isCorner (head):
#print "Corner reflection at (%d, %d)" % (head[0], head[1])
return None
p = (double (head[0]), double (head[1]))
path.append ([p, double (degrees (angle))])
angle = getReflectionAngle (tail, head)
tail = head
return None
def solve (w, h, po, pt, m):
# Initialize global variables
global width, height, origin, target, maxLength, corners, borders
width = w
height = h
origin = po
target = pt
maxLength = m
corners = [(w, h), (w, 0), (0, 0), (0, h)]
angle = 0
solutions = []
# Loop in anti-clockwise direction for one cycle
while angle < 2 * pi:
angle += 0.001
path = rayTrace (origin, angle)
if path is not None:
# extract only the points coordinates
route = [x[0] for x in path[0]]
if route not in solutions:
solutions.append (route)
print path
# Anser is 7
solve (3, 2, (1, 1), (2, 1), 4)
# Answer is 9
#solve (300, 275, (150, 150), (185, 100), 500)
The code works somehow but it doesn't find all the possible solutions, I have a big precision problem in it, I dont' know how many decimals should I consider when comparing distances or angles. I'm not sure it's the right way to do it but that's the best I was able to do.
How can I fix my code to extract all solutions? I need it to be efficient because the room can get quite large (500 x 500). Is there a better way or maybe some sort of algorithm to do this?
what if you started by mirroring the target at all the walls; then mirror the mirror images at all the walls and so on until the distance gets too big for the laser to reach the target? any laser shot in any direction of a target mirrored that way will hit said target. (this is my comment from above; repeated here to make answer more self-contained...)
this is the mirroring part of the answer: get_mirrored will return the four mirror images of point with the mirror-box limited by BOTTOM_LEFT and TOP_RIGHT.
BOTTOM_LEFT = (0, 0)
TOP_RIGHT = (3, 2)
SOURCE = (1, 1)
TARGET = (2, 1)
def get_mirrored(point):
ret = []
# mirror at top wall
ret.append((point[0], point[1] - 2*(point[1] - TOP_RIGHT[1])))
# mirror at bottom wall
ret.append((point[0], point[1] - 2*(point[1] - BOTTOM_LEFT[1])))
# mirror at left wall
ret.append((point[0] - 2*(point[0] - BOTTOM_LEFT[0]), point[1]))
# mirror at right wall
ret.append((point[0] - 2*(point[0] - TOP_RIGHT[0]), point[1]))
return ret
print(get_mirrored(TARGET))
this will return the 4 mirror images of the given point:
[(2, 3), (2, -1), (-2, 1), (4, 1)]
which is the target mirrored one time.
then you could iterate that until all the mirrored targets are out of range. all the mirror images within range will give you a direction in which to point your laser.
this is a way how you could iteratively get to the mirrored targets within a given DISTANCE
def get_targets(start_point, distance):
all_targets = set((start_point, )) # will also be the return value
last_targets = all_targets # need to memorize the new points
while True:
new_level_targets = set() # if this is empty: break the loop
for tgt in last_targets: # loop over what the last iteration found
new_targets = get_mirrored(tgt)
# only keep the ones within range
new_targets = set(
t for t in new_targets
if math.hypot(SOURCE[0]-t[0], SOURCE[1]-t[1]) <= DISTANCE)
# subtract the ones we already have
new_targets -= all_targets
new_level_targets |= new_targets
if not new_level_targets:
break
# add the new targets
all_targets |= new_level_targets
last_targets = new_level_targets # need these for the next iteration
return all_targets
DISTANCE = 5
all_targets = get_targets(start_point=TARGET, distance=DISTANCE)
print(all_targets)
all_targets is now the set that contains all the reachable points.
(none of that has been thouroughly tested...)
small update for your counter example:
def ray_length(point_list):
d = sum((math.hypot(start[0]-end[0], start[1]-end[1])
for start, end in zip(point_list, point_list[1:])))
return d
d = ray_length(point_list=((1,1),(2.5,2),(3,1.67),(2,1)))
print(d) # -> 3.605560890844135
d = ray_length(point_list=((1,1),(4,3)))
print(d) # -> 3.605551275463989

Calculate angle (clockwise) between two points

I have been not using math for a long time and this should be a simple problem to solve.
Suppose I have two points A: (1, 0) and B: (1, -1).
I want to use a program (Python or whatever programming language) to calculate the clockwise angle between A, origin (0, 0) and B. It will be something like this:
angle_clockwise(point1, point2)
Note that the order of the parameters matters. Since the angle calculation will be clockwise:
If I call angle_clockwise(A, B), it returns 45.
If I call angle_clockwise(B, A), it returns 315.
In other words, the algorithm is like this:
Draw a line (line 1) between the first point param with (0, 0).
Draw a line (line 2) between the second point param with (0, 0).
Revolve line 1 around (0, 0) clockwise until it overlaps line 2.
The angular distance line 1 traveled will be the returned angle.
Is there any way to code this problem?
Numpy's arctan2(y, x) will compute the counterclockwise angle (a value in radians between -π and π) between the origin and the point (x, y).
You could do this for your points A and B, then subtract the second angle from the first to get the signed clockwise angular difference. This difference will be between -2π and 2π, so in order to get a positive angle between 0 and 2π you could then take the modulo against 2π. Finally you can convert radians to degrees using np.rad2deg.
import numpy as np
def angle_between(p1, p2):
ang1 = np.arctan2(*p1[::-1])
ang2 = np.arctan2(*p2[::-1])
return np.rad2deg((ang1 - ang2) % (2 * np.pi))
For example:
A = (1, 0)
B = (1, -1)
print(angle_between(A, B))
# 45.
print(angle_between(B, A))
# 315.
If you don't want to use numpy, you could use math.atan2 in place of np.arctan2, and use math.degrees (or just multiply by 180 / math.pi) in order to convert from radians to degrees. One advantage of the numpy version is that you can also pass two (2, ...) arrays for p1 and p2 in order to compute the angles between multiple pairs of points in a vectorized way.
Use the inner product and the determinant of the two vectors. This is really what you should understand if you want to understand how this works. You'll need to know/read about vector math to understand.
See: https://en.wikipedia.org/wiki/Dot_product and https://en.wikipedia.org/wiki/Determinant
from math import acos
from math import sqrt
from math import pi
def length(v):
return sqrt(v[0]**2+v[1]**2)
def dot_product(v,w):
return v[0]*w[0]+v[1]*w[1]
def determinant(v,w):
return v[0]*w[1]-v[1]*w[0]
def inner_angle(v,w):
cosx=dot_product(v,w)/(length(v)*length(w))
rad=acos(cosx) # in radians
return rad*180/pi # returns degrees
def angle_clockwise(A, B):
inner=inner_angle(A,B)
det = determinant(A,B)
if det<0: #this is a property of the det. If the det < 0 then B is clockwise of A
return inner
else: # if the det > 0 then A is immediately clockwise of B
return 360-inner
In the determinant computation, you're concatenating the two vectors to form a 2 x 2 matrix, for which you're computing the determinant.
Here's a solution that doesn't require cmath.
import math
class Vector:
def __init__(self, x, y):
self.x = x
self.y = y
v1 = Vector(0, 1)
v2 = Vector(0, -1)
v1_theta = math.atan2(v1.y, v1.x)
v2_theta = math.atan2(v2.y, v2.x)
r = (v2_theta - v1_theta) * (180.0 / math.pi)
if r < 0:
r += 360.0
print r
A verified 0° to 360° solution
It is an old thread, but for me the other solutions didn't work well, so I implemented my own version.
My function will return a number between 0 and 360 (excluding 360) for two points on the screen (i.e. 'y' starts at the top and increasing towards the bottom), where results are as in a compass, 0° at the top, increasing clockwise:
def angle_between_points(p1, p2):
d1 = p2[0] - p1[0]
d2 = p2[1] - p1[1]
if d1 == 0:
if d2 == 0: # same points?
deg = 0
else:
deg = 0 if p1[1] > p2[1] else 180
elif d2 == 0:
deg = 90 if p1[0] < p2[0] else 270
else:
deg = math.atan(d2 / d1) / pi * 180
lowering = p1[1] < p2[1]
if (lowering and deg < 0) or (not lowering and deg > 0):
deg += 270
else:
deg += 90
return deg
Check out the cmath python library.
>>> import cmath
>>> a_phase = cmath.phase(complex(1,0))
>>> b_phase = cmath.phase(complex(1,-1))
>>> (a_phase - b_phase) * 180 / cmath.pi
45.0
>>> (b_phase - a_phase) * 180 / cmath.pi
-45.0
You can check if a number is less than 0 and add 360 to it if you want all positive angles, too.
Chris St Pierre: when using your function with:
A = (x=1, y=0)
B = (x=0, y=1)
This is supposed to be a 90 degree angle from A to B. Your function will return 270.
Is there an error in how you process the sign of the det or am I missing something?
A formula that calculates an angle clockwise, and is used in surveying:
f(E,N)=pi()-pi()/2*(1+sign(N))* (1-sign(E^2))-pi()/4*(2+sign(N))*sign(E)
-sign(N*E)*atan((abs(N)-abs(E))/(abs(N)+abs(E)))
The formula gives angles from 0 to 2pi,start from the North and
is working for any value of N and E. (N=N2-N1 and E=E2-E1)
For N=E=0 the result is undefined.
in radians, clockwise, from 0 to PI * 2
static angle(center:Coord, p1:Coord, p2:Coord) {
var a1 = Math.atan2(p1.y - center.y, p1.x - center.x);
var a2 = Math.atan2(p2.y - center.y, p2.x -center.x);
a1 = a1 > 0 ? a1 : Math.PI * 2 + a1;//make angle from 0 to PI * 2
a2 = a2 > 0 ? a2 : Math.PI * 2 + a2;
if(a1 > a2) {
return a1 - a2;
} else {
return Math.PI * 2 - (a2 - a1)
}
}

Categories