Having the following nparray describing my bin edges, created like so:
np.arange(min_value , max_value + 1, bin_size)
[ -1 35 71 107 143 179 215 251 287 323 359]
I would like to create string lables array like so:
['0-36','36-72','72-108','108-144','144-180','180-216','216-252','252-288','288-324','324-360']
What would be the way to do it?
Use list comprehension with f-strings:
b = [f'{i+1}-{j+1}' for i, j in zip(a[:-1], a[1:])]
print (b)
['0-36', '36-72', '72-108', '108-144', '144-180',
'180-216', '216-252', '252-288', '288-324', '324-360']
a += 1
b = [f'{i}-{j}' for i, j in zip(a[:-1], a[1:])]
Related
So in Python NumPy, I have a list of list from 0 to 99 divided by 5:
array_b = np.arange(0,100).reshape(5, 20)
list_a = array_b.tolist()
I want to add the numbers in the list by column so that the result will be:
[200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295]
I know how to do it in the array version, but I want to do the same thing in the list version (without using np.sum(array_b, axis=0)).
Any help?
Without numpy this can be done with zip and map quite elegantly:
list(map(sum, zip(*list_a)))
Explanation:
zip(*list_a) aggregates the lists element-wise
map(sum, ...) tells to apply the sum on each of these aggregations
finally, list(..) simply unpacks the iterator returned by map into a list.
Easy as (num)py...
Use .sum(axis=0) on a numpy array
import numpy as np
result = np.array(values).sum(axis=0)
# [200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295]
With the other axis possibilities
result = np.array(values).sum(axis=1) # [ 190 590 990 1390 1790]
result = np.array(values).sum() # 4950
import numpy as np
a = [[...]]
sum_array = np.sum(a, axis=0)
My program gives an output in a .txt file. There are 3 different tables in this output. I need to convert these three tables into pandas dataframes. I'm not sure what is the best way to approach this.
This is how my .txt output file looks like:
column_header standard_content (Old) standard_content (New)
214 STAFF_ORIGIN_IND_NATIVE_AMER N Y
215 STAFF_ORIGIN_IND_PACIF_ISLND N Y
128 STUDENT_INFORMATION_RELEASE N Y
211 STAFF_ORIGIN_IND_ASIAN N Y
105 STUDENT_ORIGIN_IND_NATIVE_AMER N Y
104 STUDENT_ORIGIN_IND_HISPANIC N Y
160 STUDENT_OUTSIDE_CATCHMENT N Y
346 COURSE_EXTRA_POINT_ELIGIBLE N Y
528 SUBSTITUTE_REQUIRED N Y
527 STAFF_ABSENCE_AUTHORIZED N Y
column_header data_req (Old) data_req (New)
20 SCHOOL_SIZE_GROUP N Y
241 STAFF_CONTACT N Y
346 COURSE_EXTRA_POINT_ELIGIBLE N Y
434 DISCIPLINE_FED_OFFENSE_GROUP N Y
32 SCHOOL_ATTENDANCE_TYPE N Y
142 STUDENT_COUNTRY_OF_BIRTH N Y
74 FACILITY_COUNTY_CODE N Y
64 FACILITY_PARKING_SPACES N Y
436 DISCIPLINE_DIST_OFFENSE_GROUP N Y
321 STAFF_BARGAINING_UNIT N Y
column_header element_type (Old) element_type (New)
331 DISTRICT_CODE Key Local
511 DISTRICT_CODE Key Local
445 DISTRICT_CODE Key Local
2 DISTRICT_CODE Key Local
302 STAFF_ASSIGN_FINANCIAL_CODE Key Local
493 SCHEDULE_SEQUENCE Key Local
461 INCIDENT_ID Key Local
431 INCIDENT_ID Key Local
159 STUDENT_CATCHMENT_CODE Key Local
393 DISTRICT_CODE Key Local
I tried to use this in a loop but it creates a single dataframe and it gets messed up.
df = pd.read_fwf(io.StringIO(report)
df.to_csv('data.csv')
result_df = pd.read_csv('data.csv', )
print("Final report", result_df)
Is there a way I can create a new dataframe based on a keyword, for example 'column_header', or any other way I can do this?
Do this in few steps.
Slurp the entire file
split according to a delimiter (empty lines)
read each part into a separate dataframe
if we let RAW_DATA be the content of your file, this could be done with
dfs = [pd.read_fwf(StringIO(part),
header=None, skiprows=1,
names=['id', 'header', 'old', 'new'])
for part in raw_data.strip().split('\n\n')]
The split looks for empty lines. The read_fwf call uses several pandas TextParser options to skip the header row and explicitly name the columns(the actual column headers throw off the fixed width parser).
The first frame will look like
id header old new
0 214 STAFF_ORIGIN_IND_NATIVE_AMER N Y
1 215 STAFF_ORIGIN_IND_PACIF_ISLND N Y
2 128 STUDENT_INFORMATION_RELEASE N Y
3 211 STAFF_ORIGIN_IND_ASIAN N Y
4 105 STUDENT_ORIGIN_IND_NATIVE_AMER N Y
5 104 STUDENT_ORIGIN_IND_HISPANIC N Y
6 160 STUDENT_OUTSIDE_CATCHMENT N Y
7 346 COURSE_EXTRA_POINT_ELIGIBLE N Y
8 528 SUBSTITUTE_REQUIRED N Y
9 527 STAFF_ABSENCE_AUTHORIZED N Y
I have a dataframe which looks like this:
df = pd.DataFrame({'hard': [['525', '21']], 'soft': [['1525', '221']], 'set': [['5245', '271']], 'purch': [['925', '201']], \
'mont': [['555', '621']], 'gest': [['536', '251']], 'memo': [['825', '241']], 'raw': [['532', '210']]})
df
Out:
gest hard memo mont purch raw set soft
0 [536, 251] [525, 21] [825, 241] [555, 621] [925, 201] [532, 210] [5245, 271] [1525, 221]
I should split all of the columns like this:
df1 = pd.DataFrame()
df1['gest_pos'] = df.gest.str[0].astype(int)
df1['gest_size'] = df.gest.str[1].astype(int)
df1['hard_pos'] = df.hard.str[0].astype(int)
df1['hard_size'] = df.hard.str[1].astype(int)
df1
gest_pos gest_size hard_pos hard_size
0 536 251 525 21
I have more than 70 columns and my method takes lot of place and time. Is there an easier way to do this job?
Thanks!
Different approach:
df2 = pd.DataFrame()
for column in df:
df2['{}_pos'.format(column)] = df[column].str[0].astype(int)
df2['{}_size'.format(column)] = df[column].str[1].astype(int)
print(df2)
You can use nested list comprehension with flattening and then create new DataFrame by constructor:
L = [[y for x in z for y in x] for z in df.values.tolist()]
#if want filter first 2 values per each list
#L = [[y for x in z for y in x[:2]] for z in df.values.tolist()]
#https://stackoverflow.com/a/45122198/2901002
def mygen(lst):
for item in lst:
yield item + '_pos'
yield item + '_size'
df = pd.DataFrame(L, columns = list(mygen(df.columns))).astype(int)
print (df)
hard_pos hard_size soft_pos soft_size set_pos set_size purch_pos purch_size \
0 525 21 1525 221 5245 271 925 201
mont_pos mont_size gest_pos gest_size memo_pos memo_size raw_pos raw_size
0 555 621 536 251 825 241 532 210
You can use NumPy operations to construct your list of columns and flatten out your series of lists:
import numpy as np
from itertools import chain
# create column label array
cols = np.repeat(df.columns, 2).values
cols[::2] += '_pos'
cols[1::2] += '_size'
# create data array
arr = np.array([list(chain.from_iterable(i)) for i in df.values]).astype(int)
# combine with pd.DataFrame constructor
res = pd.DataFrame(arr, columns=cols)
Result:
print(res)
gest_pos gest_size hard_pos hard_size memo_pos memo_size mont_pos \
0 536 251 525 21 825 241 555
mont_size purch_pos purch_size raw_pos raw_size set_pos set_size \
0 621 925 201 532 210 5245 271
soft_pos soft_size
0 1525 221
So I'm using sci-kit learn to classify some data. I have 13 different class values/categorizes to classify the data to. Now I have been able to use cross validation and print the confusion matrix. However, it only shows the TP and FP etc without the classlabels, so I don't know which class is what. Below is my code and my output:
def classify_data(df, feature_cols, file):
nbr_folds = 5
RANDOM_STATE = 0
attributes = df.loc[:, feature_cols] # Also known as x
class_label = df['task'] # Class label, also known as y.
file.write("\nFeatures used: ")
for feature in feature_cols:
file.write(feature + ",")
print("Features used", feature_cols)
sampler = RandomOverSampler(random_state=RANDOM_STATE)
print("RandomForest")
file.write("\nRandomForest")
rfc = RandomForestClassifier(max_depth=2, random_state=RANDOM_STATE)
pipeline = make_pipeline(sampler, rfc)
class_label_predicted = cross_val_predict(pipeline, attributes, class_label, cv=nbr_folds)
conf_mat = confusion_matrix(class_label, class_label_predicted)
print(conf_mat)
accuracy = accuracy_score(class_label, class_label_predicted)
print("Rows classified: " + str(len(class_label_predicted)))
print("Accuracy: {0:.3f}%\n".format(accuracy * 100))
file.write("\nClassifier settings:" + str(pipeline) + "\n")
file.write("\nRows classified: " + str(len(class_label_predicted)))
file.write("\nAccuracy: {0:.3f}%\n".format(accuracy * 100))
file.writelines('\t'.join(str(j) for j in i) + '\n' for i in conf_mat)
#Output
Rows classified: 23504
Accuracy: 17.925%
0 372 46 88 5 73 0 536 44 317 0 200 127
0 501 29 85 0 136 0 655 9 154 0 172 67
0 97 141 78 1 56 0 336 37 429 0 435 198
0 135 74 416 5 37 0 507 19 323 0 128 164
0 247 72 145 12 64 0 424 21 296 0 304 223
0 190 41 36 0 178 0 984 29 196 0 111 43
0 218 13 71 7 52 0 917 139 177 0 111 103
0 215 30 84 3 71 0 1175 11 55 0 102 62
0 257 55 156 1 13 0 322 184 463 0 197 160
0 188 36 104 2 34 0 313 99 827 0 69 136
0 281 80 111 22 16 0 494 19 261 0 313 211
0 207 66 87 18 58 0 489 23 157 0 464 239
0 113 114 44 6 51 0 389 30 408 0 338 315
As you can see, you can't really know what column is what and the print is also "misaligned" so it's difficult to understand.
Is there a way to print the labels as well?
From the doc, it seems that there is no such option to print the rows and column labels of the confusion matrix. However, you can specify the label order using argument labels=...
Example:
from sklearn.metrics import confusion_matrix
y_true = ['yes','yes','yes','no','no','no']
y_pred = ['yes','no','no','no','no','no']
print(confusion_matrix(y_true, y_pred))
# Output:
# [[3 0]
# [2 1]]
print(confusion_matrix(y_true, y_pred, labels=['yes', 'no']))
# Output:
# [[1 2]
# [0 3]]
If you want to print the confusion matrix with labels, you may try pandas and set the index and columns of the DataFrame.
import pandas as pd
cmtx = pd.DataFrame(
confusion_matrix(y_true, y_pred, labels=['yes', 'no']),
index=['true:yes', 'true:no'],
columns=['pred:yes', 'pred:no']
)
print(cmtx)
# Output:
# pred:yes pred:no
# true:yes 1 2
# true:no 0 3
Or
unique_label = np.unique([y_true, y_pred])
cmtx = pd.DataFrame(
confusion_matrix(y_true, y_pred, labels=unique_label),
index=['true:{:}'.format(x) for x in unique_label],
columns=['pred:{:}'.format(x) for x in unique_label]
)
print(cmtx)
# Output:
# pred:no pred:yes
# true:no 3 0
# true:yes 2 1
It is important to ensure that the way you label your confusion matrix rows and columns corresponds exactly to the way sklearn has coded the classes. The true order of the labels can be revealed using the .classes_ attribute of the classifier. You can use the code below to prepare a confusion matrix data frame.
labels = rfc.classes_
conf_df = pd.DataFrame(confusion_matrix(class_label, class_label_predicted, columns=labels, index=labels))
conf_df.index.name = 'True labels'
The second thing to note is that your classifier is not predicting labels well. The number of correctly predicted labels is shown on the main diagonal of the confusion matrix. You have non-zero values accross the matrix and some classes have not been predicted at all - the columns that are all zero. It might be a good idea to run the classifier with its default parameters and then try to optimise them.
Another better way of doing this is using crosstab function in pandas.
pd.crosstab(y_true, y_pred, rownames=['True'], colnames=['Predicted'], margins=True)
or
pd.crosstab(le.inverse_transform(y_true),
le.inverse_transform(y_pred),
rownames=['True'],
colnames=['Predicted'],
margins=True)
Since confusion matrix is just a numpy matrix, it does not contain any column information. What you can do is convert your matrix into a dataframe and then print this dataframe.
import pandas as pd
import numpy as np
def cm2df(cm, labels):
df = pd.DataFrame()
# rows
for i, row_label in enumerate(labels):
rowdata={}
# columns
for j, col_label in enumerate(labels):
rowdata[col_label]=cm[i,j]
df = df.append(pd.DataFrame.from_dict({row_label:rowdata}, orient='index'))
return df[labels]
cm = np.arange(9).reshape((3, 3))
df = cm2df(cm, ["a", "b", "c"])
print(df)
Code snippet is from https://gist.github.com/nickynicolson/202fe765c99af49acb20ea9f77b6255e
Output:
a b c
a 0 1 2
b 3 4 5
c 6 7 8
It appears your data has 13 different classes, which is why your confusion matrix has 13 rows and columns. Furthermore, your classes aren't labeled in any way, just integers from what I can see.
If this isn't the case, and your training data has actual labels, you can pass a list of unique labels to confusion_matrix
conf_mat = confusion_matrix(class_label, class_label_predicted, df['task'].unique())
The situation is as follows:
I have a 2D numpy array. Its shape is (1002, 1004). Each element contains a value between 0 and Inf. What I now want to do is determine the first 1000 maximum values and store the corresponding indices in to a list named x and a list named y. This is because I want to plot the maximum values and the indices actually correspond to real time x and y position of the value.
What I have so far is:
x = numpy.zeros(500)
y = numpy.zeros(500)
for idx in range(500):
x[idx] = numpy.unravel_index(full.argmax(), full.shape)[0]
y[idx] = numpy.unravel_index(full.argmax(), full.shape)[1]
full[full == full.max()] = 0.
print os.times()
Here full is my 2D numpy array. As can be seen from the for loop, I only determine the first 500 maximum values at the moment. This however already takes about 5 s. For the first 1000 maximum values, the user time should actually be around 0.5 s. I've noticed that a very time consuming part is setting the previous maximum value to 0 each time. How can I speed things up?
Thank you so much!
If you have numpy 1.8, you can use the argpartition function or method.
Here's a script that calculates x and y:
import numpy as np
# Create an array to work with.
np.random.seed(123)
full = np.random.randint(1, 99, size=(8, 8))
# Get the indices for the largest `num_largest` values.
num_largest = 8
indices = (-full).argpartition(num_largest, axis=None)[:num_largest]
# OR, if you want to avoid the temporary array created by `-full`:
# indices = full.argpartition(full.size - num_largest, axis=None)[-num_largest:]
x, y = np.unravel_index(indices, full.shape)
print("full:")
print(full)
print("x =", x)
print("y =", y)
print("Largest values:", full[x, y])
print("Compare to: ", np.sort(full, axis=None)[-num_largest:])
Output:
full:
[[67 93 18 84 58 87 98 97]
[48 74 33 47 97 26 84 79]
[37 97 81 69 50 56 68 3]
[85 40 67 85 48 62 49 8]
[93 53 98 86 95 28 35 98]
[77 41 4 70 65 76 35 59]
[11 23 78 19 16 28 31 53]
[71 27 81 7 15 76 55 72]]
x = [0 2 4 4 0 1 4 0]
y = [6 1 7 2 7 4 4 1]
Largest values: [98 97 98 98 97 97 95 93]
Compare to: [93 95 97 97 97 98 98 98]
You could loop through the array as #Inspired suggests, but looping through NumPy arrays item-by-item tends to lead to slower-performing code than code which uses NumPy functions since the NumPy functions are written in C/Fortran, while the item-by-item loop tends to use Python functions.
So, although sorting is O(n log n), it may be quicker than a Python-based one-pass O(n) solution. Below np.unique performs the sort:
import numpy as np
def nlargest_indices(arr, n):
uniques = np.unique(arr)
threshold = uniques[-n]
return np.where(arr >= threshold)
full = np.random.random((1002,1004))
x, y = nlargest_indices(full, 10)
print(full[x, y])
print(x)
# [ 2 7 217 267 299 683 775 825 853]
print(y)
# [645 621 132 242 556 439 621 884 367]
Here is a timeit benchmark comparing nlargest_indices (above) to
def nlargest_indices_orig(full, n):
full = full.copy()
x = np.zeros(n)
y = np.zeros(n)
for idx in range(n):
x[idx] = np.unravel_index(full.argmax(), full.shape)[0]
y[idx] = np.unravel_index(full.argmax(), full.shape)[1]
full[full == full.max()] = 0.
return x, y
In [97]: %timeit nlargest_indices_orig(full, 500)
1 loops, best of 3: 5 s per loop
In [98]: %timeit nlargest_indices(full, 500)
10 loops, best of 3: 133 ms per loop
For timeit purposes I needed to copy the array inside nlargest_indices_orig, lest full get mutated by the timing loop.
Benchmarking the copying operation:
def base(full, n):
full = full.copy()
In [102]: %timeit base(full, 500)
100 loops, best of 3: 4.11 ms per loop
shows this added about 4ms to the 5s benchmark for nlargest_indices_orig.
Warning: nlargest_indices and nlargest_indices_orig may return different results if arr contains repeated values.
nlargest_indices finds the n largest values in arr and then returns the x and y indices corresponding to the locations of those values.
nlargest_indices_orig finds the n largest values in arr and then returns one x and y index for each large value. If there is more than one x and y corresponding to the same large value, then some locations where large values occur may be missed.
They also return indices in a different order, but I suppose that does not matter for your purpose of plotting.
If you want to know the indices of the n max/min values in the 2d array, my solution (for largest is)
indx = divmod((-full).argpartition(num_largest,axis=None)[:3],full.shape[0])
This finds the indices of the largest values from the flattened array and then determines the index in the 2d array based on the remainder and mod.
Nevermind. Benchmarking shows the unravel method is twice as fast at least for num_largest = 3.
I'm afraid that the most time-consuming part is recalculating maximum. In fact, you have to calculate maximum of 1002*1004 numbers 500 times which gives you 500 million comparisons.
Probably you should write your own algorithm to find the solution in one pass: keep only 1000 greatest numbers (or their indices) somewhere while scanning your 2D array (without modifying the source array). I think that some sort of a binary heap (have a look at heapq) would suit for the storage.