How to apply cummulative count on multiple columns of dataframe - python

Dataframe
a b c
0 0 1 1
1 0 1 1
2 0 0 1
3 0 0 1
4 1 1 0
5 1 1 1
6 1 1 1
7 0 0 1
I am trying apply cummulative count cumcount on multiple columns of dataframe, i have tried applying the cummulative count by grouping each column. Is there any easy way to achieve expected output
I have tried this code , but it is not working
li =[]
for column in df.columns:
li.append(df.groupby(column)[column].cumcount())
pd.concat(li,axis=1)
Expected output
a b c
0 1 1 1
1 1 2 2
2 1 1 3
3 1 1 4
4 1 1 1
5 2 2 1
6 3 3 2
7 1 1 3

Create consecutive groups by comparing with shifted values and for each column apply cumcount, last set 1 by boolean mask:
df = (df.ne(df.shift()).cumsum()
.apply(lambda x: df.groupby(x).cumcount() + 1)
.mask(df == 0, 1))
print (df)
a b c
0 1 1 1
1 1 2 2
2 1 1 3
3 1 1 4
4 1 1 1
5 2 2 1
6 3 3 2
7 1 1 3
Another solution if performance is important - count only 1 values and last set 1 by mask by np.where:
a = df == 1
b = a.cumsum()
arr = np.where(a, b-b.mask(a).ffill().fillna(0).astype(int), 1)
df = pd.DataFrame(arr, index=df.index, columns=df.columns)
print (df)
a b c
0 1 1 1
1 1 2 2
2 1 1 3
3 1 1 4
4 1 1 1
5 2 2 1
6 3 3 2
7 1 1 3

Related

Pandas group consecutive and label the length

I want get consecutive length labeled data
a
---
1
0
1
0
1
1
1
0
1
1
I want :
a | c
--------
1 1
0 0
1 2
1 2
0 0
1 3
1 3
1 3
0 0
1 2
1 2
then I can calculate the mean of "b" column by group "c". tried with shift and cumsum and cumcount all not work.
Use GroupBy.transform by consecutive groups and then set 0 if not 1 in a column:
df['c1'] = (df.groupby(df.a.ne(df.a.shift()).cumsum())['a']
.transform('size')
.where(df.a.eq(1), 0))
print (df)
a b c c1
0 1 1 1 1
1 0 2 0 0
2 1 3 2 2
3 1 2 2 2
4 0 1 0 0
5 1 3 3 3
6 1 1 3 3
7 1 3 3 3
8 0 2 0 0
9 1 2 2 2
10 1 1 2 2
If there are only 0, 1 values is possible multiple by a:
df['c1'] = (df.groupby(df.a.ne(df.a.shift()).cumsum())['a']
.transform('size')
.mul(df.a))
print (df)
a b c c1
0 1 1 1 1
1 0 2 0 0
2 1 3 2 2
3 1 2 2 2
4 0 1 0 0
5 1 3 3 3
6 1 1 3 3
7 1 3 3 3
8 0 2 0 0
9 1 2 2 2
10 1 1 2 2

Change 1st row of a dataframe based on a condition in pandas

I have 2 columns on whose value I want to update the third column for only 1 row.
I have-
df = pd.DataFrame({'A':[1,1,2,3,4,4],
'B':[2,2,4,3,2,1],
'C':[0] * 6})
print (df)
A B C
0 1 2 0
1 1 2 0
2 2 4 0
3 3 3 0
4 4 2 0
5 4 1 0
If A= 1 and B=2 then only 1st row has C=1 like this -
print (df)
A B C
0 1 2 1
1 1 2 0
2 2 4 0
3 3 3 0
4 4 2 0
5 4 1 0
Right now I have used
df.loc[(df['A']==1) & (df['B']==2)].iloc[[0]].loc['C'] = 1
but it doesn't change the dataframe.
Solution if match always at least one row:
Create boolean mask and set to first True index value by idxmax:
mask = (df['A']==1) & (df['B']==2)
df.loc[mask.idxmax(), 'C'] = 1
But if no value matched idxmax return first False value, so added if-else:
mask = (df['A']==1) & (df['B']==2)
idx = mask.idxmax() if mask.any() else np.repeat(False, len(df))
df.loc[idx, 'C'] = 1
print (df)
A B C
0 1 2 1
1 1 2 0
2 2 4 0
3 3 3 0
4 4 2 0
5 4 1 0
mask = (df['A']==10) & (df['B']==20)
idx = mask.idxmax() if mask.any() else np.repeat(False, len(df))
df.loc[idx, 'C'] = 1
print (df)
A B C
0 1 2 0
1 1 2 0
2 2 4 0
3 3 3 0
4 4 2 0
5 4 1 0
Using pd.Series.cumsum to ensure only the first matching criteria is satisfied:
mask = df['A'].eq(1) & df['B'].eq(2)
df.loc[mask & mask.cumsum().eq(1), 'C'] = 1
print(df)
A B C
0 1 2 1
1 1 2 0
2 2 4 0
3 3 3 0
4 4 2 0
5 4 1 0
If performance is a concern, see Efficiently return the index of the first value satisfying condition in array.

Pandas - updating sequence of values

I have this Sample DataFrame:
pd.DataFrame(data={1:[0,3,4,1], 2:[4,1,0,0], 3:[0,0,1,2], 4:[1,2,3,4] })
1 2 3 4
0 0 4 0 1
1 3 1 0 2
2 4 0 1 3
3 1 0 2 4
But i want to convert it to the format below:
pd.DataFrame(data={1:[1,1,1,1], 2:[0,2,0,2], 3:[0,3,3,0], 4:[4,0,4,4] })
1 2 3 4
0 1 0 0 4
1 1 2 3 0
2 1 0 3 4
3 1 2 0 4
Is there any way or a function to do this as i have more than 100,000 rows so for loops, dictionaries, lists won't work.
My entry:
data = df.reset_index().melt("index").query("value > 0")
out = data.pivot("index", "value", "value").fillna(0).astype(int)
giving
In [273]: out
Out[273]:
value 1 2 3 4
index
0 1 0 0 4
1 1 2 3 0
2 1 0 3 4
3 1 2 0 4
Unfortunately you'd have to clear the index and column names if you want to get rid of them, using either df.index.name = df.columns.name = None or df.rename_axis(None).rename_axis(None, 1) or something.
Using get_dummies:
s = pd.get_dummies(df, columns=df.columns, prefix_sep='', prefix='')
out = s.groupby(s.columns, axis=1).sum().drop('0', 1)
out.mask(out.ne(0)).fillna(dict(zip(out.columns, out.columns))).astype(int)
1 2 3 4
0 1 0 0 4
1 1 2 3 0
2 1 0 3 4
3 1 2 0 4
Using zip and np.isin
pd.DataFrame([ np.isin(y, x)*df.columns.values for x , y in zip([df.columns.values]*len(df),df.values)])
Out[900]:
0 1 2 3
0 0 2 0 4
1 1 2 0 4
2 1 0 3 4
3 1 0 3 4

How to add incremental number to Dataframe using Pandas

I have original dataframe:
ID T value
1 0 1
1 4 3
2 0 0
2 4 1
2 7 3
The value is same previous row.
The output should be like:
ID T value
1 0 1
1 1 1
1 2 1
1 3 1
1 4 3
2 0 0
2 1 0
2 2 0
2 3 0
2 4 1
2 5 1
2 6 1
2 7 3
... ... ...
I tried loop it take long time process.
Any idea how to solve this for large dataframe?
Thanks!
For solution is necessary unique integer values in T for each group.
Use groupby with custom function - for each group use reindex and then replace NaNs in value column by forward filling ffill:
df1 = (df.groupby('ID')['T', 'value']
.apply(lambda x: x.set_index('T').reindex(np.arange(x['T'].min(), x['T'].max() + 1)))
.ffill()
.astype(int)
.reset_index())
print (df1)
ID T value
0 1 0 1
1 1 1 1
2 1 2 1
3 1 3 1
4 1 4 3
5 2 0 0
6 2 1 0
7 2 2 0
8 2 3 0
9 2 4 1
10 2 5 1
11 2 6 1
12 2 7 3
If get error:
ValueError: cannot reindex from a duplicate axis
it means some duplicated values per group like:
print (df)
ID T value
0 1 0 1
1 1 4 3
2 2 0 0
3 2 4 1 <-4 is duplicates per group 2
4 2 4 3 <-4 is duplicates per group 2
5 2 7 3
Solution is aggregate values first for unique T - e.g.by sum:
df = df.groupby(['ID', 'T'], as_index=False)['value'].sum()
print (df)
ID T value
0 1 0 1
1 1 4 3
2 2 0 0
3 2 4 4
4 2 7 3

Pandas - Assign unique ID to each group in grouped data

I have a dataframe with many attributes. I want to assign an id for all unique combinations of these attributes.
assume, this is my df:
df = pd.DataFrame(np.random.randint(1,3, size=(10, 3)), columns=list('ABC'))
A B C
0 2 1 1
1 1 1 1
2 1 1 1
3 2 2 2
4 1 2 2
5 1 2 1
6 1 2 2
7 1 2 1
8 1 2 2
9 2 2 1
Now, I need to append a new column with an id for unique combinations. It has to be 0, it the combination occurs only once. In this case:
A B C unique_combination
0 2 1 1 0
1 1 1 1 1
2 1 1 1 1
3 2 2 2 0
4 1 2 2 2
5 1 2 1 3
6 1 2 2 2
7 1 2 1 3
8 1 2 2 2
9 2 2 1 0
My first approach was to use a for loop and check for every row, if I find more than one combination in the dataframe of the row's values with .query:
unique_combination = 1 #acts as a counter
df['unique_combination'] = 0
for idx, row in df.iterrows():
if len(df.query('A == #row.A & B == #row.B & C == #row.C')) > 1:
# check, if one occurrence of the combination already has a value > 0???
df.loc[idx, 'unique_combination'] = unique_combination
unique_combination += 1
However, I have no idea how to check whether there already is an ID assigned for a combination (see comment in code). Additionally my approach feels very slow and hacky (I have over 15000 rows). Do you data wrangler see a different approach to my problem?
Thank you very much!
Step1 : Assign a new column with values 0
df['new'] = 0
Step2 : Create a mask with repetition more than 1 i.e
mask = df.groupby(['A','B','C'])['new'].transform(lambda x : len(x)>1)
Step3 : Assign the values factorizing based on mask i.e
df.loc[mask,'new'] = df.loc[mask,['A','B','C']].astype(str).sum(1).factorize()[0] + 1
# or
# df.loc[mask,'new'] = df.loc[mask,['A','B','C']].groupby(['A','B','C']).ngroup()+1
Output:
A B C new
0 2 1 1 0
1 1 1 1 1
2 1 1 1 1
3 2 2 2 0
4 1 2 2 2
5 1 2 1 3
6 1 2 2 2
7 1 2 1 3
8 1 2 2 2
9 2 2 1 0
A new feature added in Pandas version 0.20.2 creates a column of unique ids automatically for you.
df['unique_id'] = df.groupby(['A', 'B', 'C']).ngroup()
gives the following output
A B C unique_id
0 2 1 2 3
1 2 2 1 4
2 1 2 1 1
3 1 2 2 2
4 1 1 1 0
5 1 2 1 1
6 1 1 1 0
7 2 2 2 5
8 1 2 2 2
9 1 2 2 2
The groups are given ids based on the order they would be iterated over.
See the documentation here: https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#enumerate-groups

Categories