I have a dataframe with two columns: 1 timedelta 'Time', and 1 datetime 'DateTime'.
My timedelta column simply contains/displays a normal regular time, it never has more than 24 hours. It's not being used as a 'timedetla', just 'time'.
It's just the way it comes when pandas gets the data from my database.
I want a new column 'NewDateTime', with the date from the datetime, and time from the deltatime.
So I have this:
Time DateTime
1 09:01:00 2018-01-01 10:10:10
2 21:43:00 2018-01-01 11:11:11
3 03:20:00 2018-01-01 12:12:12
And I want this:
Time DateTime NewDateTime
1 09:01:00 2018-01-01 10:10:10 2018-01-01 09:01:00
2 21:43:00 2018-01-01 11:11:11 2018-01-01 21:43:00
3 03:20:00 2018-01-01 12:12:12 2018-01-01 03:20:00
At first I tried to set the DateTime column's hours, minutes and seconds to 0.
Then I planned to add the timedelta to the datetime.
But when I tried to do:
df['NewDateTime'] = df['DateTime'].dt.replace(hour=0, minute=0, second=0)
I get AttributeError: 'DatetimeProperties' object has no attribute 'replace'
Use Series.dt.floor for remove times:
df['NewDateTime'] = df['DateTime'].dt.floor('D') + pd.to_timedelta(df['Time'])
#if necesary convert times to strings
#df['NewDateTime'] = df['DateTime'].dt.floor('D') + pd.to_timedelta(df['Time'].astype(str))
print (df)
Time DateTime NewDateTime
1 09:01:00 2018-01-01 10:10:10 2018-01-01 09:01:00
2 21:43:00 2018-01-01 11:11:11 2018-01-01 21:43:00
3 03:20:00 2018-01-01 12:12:12 2018-01-01 03:20:00
Related
I have the following time series and I want to convert to datetime in DataFrame using "pd.to_datetime". I am getting the following error: "hour must be in 0..23: 2017/ 01/01 24:00:00". How can I go around this error?
DateTime
0 2017/ 01/01 01:00:00
1 2017/ 01/01 02:00:00
2 2017/ 01/01 03:00:00
3 2017/ 01/01 04:00:00
...
22 2017/ 01/01 23:00:00
23 2017/ 01/01 24:00:00
Given:
DateTime
0 2017/01/01 01:00:00
1 2017/01/01 02:00:00
2 2017/01/01 03:00:00
3 2017/01/01 04:00:00
4 2017/01/01 23:00:00
5 2017/01/01 24:00:00
As the error says, 24:00:00 isn't a valid time. Depending on what it actually means, we can salvage it like this:
# Split up your Date and Time Values into separate Columns:
df[['Date', 'Time']] = df.DateTime.str.split(expand=True)
# Convert them separately, one as datetime, the other as timedelta.
df.Date = pd.to_datetime(df.Date)
df.Time = pd.to_timedelta(df.Time)
# Fix your DateTime Column, Drop the helper Columns:
df.DateTime = df.Date + df.Time
df = df.drop(['Date', 'Time'], axis=1)
print(df)
print(df.dtypes)
Output:
DateTime
0 2017-01-01 01:00:00
1 2017-01-01 02:00:00
2 2017-01-01 03:00:00
3 2017-01-01 04:00:00
4 2017-01-01 23:00:00
5 2017-01-02 00:00:00
DateTime datetime64[ns]
dtype: object
df['DateTime'] =pd.to_datetime(df['DateTime'], format='%y-%m-%d %H:%M', errors='coerce')
Try this out!
(not a duplicate question)
I have the following datasets:
GMT TIME, Value
2018-01-01 00:00:00, 1.2030
2018-01-01 00:01:00, 1.2000
2018-01-01 00:02:00, 1.2030
2018-01-01 00:03:00, 1.2030
.... , ....
2018-12-31 23:59:59, 1.2030
I am trying to find a way to remove the following:
hh:mm:ss form the datetime
After removing the time (hh:mm:ss) section, we will have duplicate date entry like multiple 2018-01-01 and so on... so I need to remove the duplicate date data and only keep the last date, before the next date, eg 2018-01-02 and similarly keep the last 2018-01-02 before the next date 2018-01-03 and repeat...
How can I do it with Pandas?
Suppose you have data:
GMT TIME Value
0 2018-01-01 00:00:00 1.203
1 2018-01-01 00:01:00 1.200
2 2018-01-01 00:02:00 1.203
3 2018-01-01 00:03:00 1.203
4 2018-01-02 00:03:00 1.203
5 2018-01-03 00:03:00 1.203
6 2018-01-04 00:03:00 1.203
7 2018-12-31 23:59:59 1.203
Use pandas.to_datetime.dt.date with pandas.DataFrame.groupby:
import pandas as pd
df['GMT TIME'] = pd.to_datetime(df['GMT TIME']).dt.date
df.groupby(df['GMT TIME']).last()
Output:
Value
GMT TIME
2018-01-01 1.203
2018-01-02 1.203
2018-01-03 1.203
2018-01-04 1.203
2018-12-31 1.203
Or use pandas.DataFrame.drop_duplicates:
df['GMT TIME'] = pd.to_datetime(df['GMT TIME']).dt.date
df.drop_duplicates('GMT TIME', 'last')
Output:
GMT TIME Value
3 2018-01-01 1.203
4 2018-01-02 1.203
5 2018-01-03 1.203
6 2018-01-04 1.203
7 2018-12-31 1.203
Using duplicated
#df['GMT TIME'] = pd.to_datetime(df['GMT TIME']).dt.date
df[~df['GMT TIME'].dt.date.iloc[::-1].duplicated()]\
Or using
df.groupby(df['GMT TIME'].dt.date).tail(1)
I've developed a crude method to round timestamps to the previous 15 mins. For instance, if the timestamp is 8:10:00, it gets rounded to 8:00:00.
However, when it goes over 15 mins it rounds to the previous hour. For instance, if the timestamp was 8:20:00, it gets rounded to 7:00:00 for some reason? I'll list the two examples below.
Correct Rounding:
import pandas as pd
from datetime import datetime, timedelta
d = ({
'Time' : ['8:00:00'],
})
df = pd.DataFrame(data=d)
df['Time'] = pd.to_datetime(df['Time'])
FirstTime = df['Time'].iloc[0]
def hour_rounder(t):
return (t.replace(second=0, microsecond=0, minute=0, hour=t.hour)
-timedelta(hours=t.minute//15))
StartTime = hour_rounder(FirstTime)
StartTime = datetime.time(StartTime)
print(StartTime)
Out:
08:00:00
Incorrect Rounding:
import pandas as pd
from datetime import datetime, timedelta
d = ({
'Time' : ['8:20:00'],
})
df = pd.DataFrame(data=d)
df['Time'] = pd.to_datetime(df['Time'])
FirstTime = df['Time'].iloc[0]
def hour_rounder(t):
return (t.replace(second=0, microsecond=0, minute=0, hour=t.hour)
-timedelta(hours=t.minute//15))
StartTime = hour_rounder(FirstTime)
StartTime = datetime.time(StartTime)
print(StartTime)
Out:
07:00:00
I don't understand what I'm doing wrong?
- timedelta(hours=t.minute//15)
If minute is 20, then minute // 15 equals 1, so you're subtracting one hour.
Try this instead:
return t.replace(second=0, microsecond=0, minute=(t.minute // 15 * 15), hour=t.hour)
Use .dt.floor('15min') to round down to 15 minute invervals.
import pandas as pd
df = pd.DataFrame({'Time': pd.date_range('2018-01-01', freq='13.141min', periods=13)})
df['prev_15'] = df.Time.dt.floor('15min')
Output:
Time prev_15
0 2018-01-01 00:00:00.000 2018-01-01 00:00:00
1 2018-01-01 00:13:08.460 2018-01-01 00:00:00
2 2018-01-01 00:26:16.920 2018-01-01 00:15:00
3 2018-01-01 00:39:25.380 2018-01-01 00:30:00
4 2018-01-01 00:52:33.840 2018-01-01 00:45:00
5 2018-01-01 01:05:42.300 2018-01-01 01:00:00
6 2018-01-01 01:18:50.760 2018-01-01 01:15:00
7 2018-01-01 01:31:59.220 2018-01-01 01:30:00
8 2018-01-01 01:45:07.680 2018-01-01 01:45:00
9 2018-01-01 01:58:16.140 2018-01-01 01:45:00
10 2018-01-01 02:11:24.600 2018-01-01 02:00:00
11 2018-01-01 02:24:33.060 2018-01-01 02:15:00
12 2018-01-01 02:37:41.520 2018-01-01 02:30:00
There is also .dt.round() and .dt.ceil() if you need to get the nearest 15 minute, or the following 15 minute invterval respectively.
I have a time series covering January of 1979 with 6 hours time deltas. Time format is in continuous hour range:
1
7
13
18
25
31
.
.
.
739
Is it possible to convert these ints to dates? For instance:
1979/01/01 - 1:00
1979/01/01 - 7:00
1979/01/01 - 13:00
1979/01/01 - 18:00
1979/01/02 - 1:00
Thank you so much!
Setup
df = pd.DataFrame({'hour': [1,7,13,18,25,31]})
Use pd.to_datetime with the unit flag, and set the origin flag to the beginning of your desired year.
pd.to_datetime(df.hour, unit='h', origin='1979-01-01')
0 1979-01-01 01:00:00
1 1979-01-01 07:00:00
2 1979-01-01 13:00:00
3 1979-01-01 18:00:00
4 1979-01-02 01:00:00
5 1979-01-02 07:00:00
Name: hour, dtype: datetime64[ns]
Here is another way:
import pandas as pd
s = pd.Series([1,7,13])
s = pd.to_datetime(s*1e9*60*60+ pd.Timestamp(1979,1,1).value)
print(s)
Returns:
0 1979-01-01 01:00:00
1 1979-01-01 07:00:00
2 1979-01-01 13:00:00
dtype: datetime64[ns]
Could also just do this:
from datetime import datetime, timedelta
s = pd.Series([1,7,13,18,25])
s = s.apply(lambda h: datetime(1979, 1, 1) + timedelta(hours=h))
print(s)
Returns:
0 1979-01-01 01:00:00
1 1979-01-01 07:00:00
2 1979-01-01 13:00:00
3 1979-01-01 18:00:00
4 1979-01-02 01:00:00
dtype: datetime64[ns]
I'm trying to resample a dataframe with a time series from 1-hour increments to 15-minute. Both .resample() and .asfreq() do almost exactly what I want, but I'm having a hard time filling the last three intervals.
I could add an extra hour at the end, resample, and then drop that last hour, but it feels hacky.
Current code:
df = pd.DataFrame({'date':pd.date_range('2018-01-01 00:00', '2018-01-01 01:00', freq = '1H'), 'num':5})
df = df.set_index('date').asfreq('15T', method = 'ffill', how = 'end').reset_index()
Current output:
date num
0 2018-01-01 00:00:00 5
1 2018-01-01 00:15:00 5
2 2018-01-01 00:30:00 5
3 2018-01-01 00:45:00 5
4 2018-01-01 01:00:00 5
Desired output:
date num
0 2018-01-01 00:00:00 5
1 2018-01-01 00:15:00 5
2 2018-01-01 00:30:00 5
3 2018-01-01 00:45:00 5
4 2018-01-01 01:00:00 5
5 2018-01-01 01:15:00 5
6 2018-01-01 01:30:00 5
7 2018-01-01 01:45:00 5
Thoughts?
Not sure about asfreq but reindex works wonderfully:
df.set_index('date').reindex(
pd.date_range(
df.date.min(),
df.date.max() + pd.Timedelta('1H'), freq='15T', closed='left'
),
method='ffill'
)
num
2018-01-01 00:00:00 5
2018-01-01 00:15:00 5
2018-01-01 00:30:00 5
2018-01-01 00:45:00 5
2018-01-01 01:00:00 5
2018-01-01 01:15:00 5
2018-01-01 01:30:00 5
2018-01-01 01:45:00 5