Background
Auto-tuner for a car application: The application may change depending on model of the car, so naturally the objective function is going to change as well. The problem is to tune the parameters to the optimum ones for the specific car model. Input: car model, output: optimum paramters for the application for the specific car model. I want to solve this with optimization
I'm trying to minimize a complex nonlinear function, constrained with two nonlinear constraints, one inequality and one equality constraint. The problem is not bounded per se but i've put bounds on the parameters anyway to help speed up the optimization since I know more or less where the correct parameters lie. Parameters are: [x0,x1,x2,x3]
I've used the scipy.optimize.minimize() function with SLSQP method and found good results when the problem is bounded correctly. Although, the scipy.optimize.minimize() function is a local optimizer and solves QP problems which I don't think that my problem is. I've therefore started using a global optimization method with mystic,(mystic.differential_evolution). Since I'm not an expert in global optimization I naturally have some questions.
The problem
If I choose the bounds too wide the optimizer (mystic.differential_evolution) will stop iterating after a while and print:
STOP("ChangeOverGeneration with {'tolerance': 0.005, 'generations': 1500}")
When I run the solution that the optimizer found, I see that the result is not as good as if I were to lower(shrink) the bounds. Obviously the global optimizer has not found the global optimum, yet it stopped iterating. I know that there are a multiple parameter sets that yield the same global minimum.
Since the objective function may change with the car model, I want the bounds to remain relativley broad in case the global optimum changes which would change the correct parameters.
Question
How do I tune the settings of the optimizer to get it to keep searching and find the global optimum?
Is the npop = 10*dim rule a good approach to the problem?
Can I make broaden the horizon of the optimizers search algorithm to get it to find the optimal parameters which it missed?
Code
def optimize_mystic_wd(T, param_wp, w_max, safe_f):
# mystic
import mystic
from mystic.monitors import VerboseLoggingMonitor
from mystic.penalty import quadratic_inequality
from mystic.penalty import quadratic_equality
from mystic.solvers import diffev2
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# tools
from mystic.tools import getch
import pylab
import numpy as np
def objective(x):
from model_func import model
[val, _] = model(param_wp, x)
return -val
def penalty1(x): # <= 0.0
t = np.linspace(0, T, 100)
wd = (x[0] * np.sin(x[1] * t + x[3]) + x[2])
index = np.argmax(wd)
t_max = t[index]
return ((x[0] * np.sin(x[1] * t_max + x[3]) + x[2])) -2*np.pi
def penalty2(x): # == 0.0
return x[0] * (np.cos(x[3]) - np.cos(x[1] * T + x[3])) / x[1] + x[2] * T - 2 * np.pi
#quadratic_inequality(penalty1, k=1e12)
#quadratic_equality(penalty2, k=1e12)
def penalty(x):
return 0.0
b1 = (0, 2*np.pi)
b2 = (0, 2 * np.pi/(2*T))
b3 = (0, 2*np.pi)
b4 = (0, 2*np.pi/T)
bounds = [b1, b2, b3, b4]
stepmon = VerboseLoggingMonitor(1,1)
result = diffev2(objective, x0=bounds, bounds=bounds, penalty=penalty, npop=40, gtol=1500, disp=True, full_output=True, itermon=stepmon, handler=True, retall=True, maxiter=4000)
I'm the mystic author.
With regard to your questions:
Differential evolution can be tricky. It randomly mutates your candidate solution vector, and accepts changes that improve the cost. The default stop condition is that it quits when ngen number of steps have occurred with no improvement. This means that if the solver stops early, it's probably not even in a local minimum. There are several ways however, to help ensure the solver has a better chance of finding the global minimum.
Increase ngen, the number of steps to go without improvement.
Increase npop, the number of candidate solutions each iteration.
Increase the maximum number of iterations and function evaluations possible.
Pick a different termination condition that doesn't use ngen.
Personally, I usually use a very large ngen as the first approach. The consequence is that the solver will tend to run a very long time until it randomly finds the global minimum. This is expected for differential evolution.
Yes.
I'm not sure what you mean by the last question. With mystic, you certainly can broaden your parameter range either at optimizer start, or any point along the way. If you use the class interface (DifferentialEvolutionSolver not the "one-liner" diffev), then you have the option to:
Save the solver's state at any point in the process
Restart the solver with different solver parameters, including range.
Step the optimizer through the optimization, potentially changing the range (or constraints, or penalties) at any step.
Restrict (or remove restrictions on) the range of the solver by adding (or removing) constraints or penalties.
Lastly, you might want to look at mystic's ensemble solvers, which enable you to sample N optimizers from a distribution, each with different initial conditions. In this case, you'd pick fast local solvers... with the intent of quickly searching the local space, but sampling over the distribution helping guarantee you have searched globally. It's like a traditional grid search, but having optimizers start at each point of the "grid" (and using a distribution, and not necessarily a grid).
I might also suggest having a look at this example, which demonstrates how to use mystic.search.Searcher, whose purpose is to (for example) efficiently keep spawning solvers looking for local minima until you have found all the local minima, and hence the global minimum.
Related
I have a system of ODEs where my state variables and independent variable span many orders of magnitude (initial values are around 0 at t=0 and are expected to become about 10¹⁰ by t=10¹⁷). I also want to ensure that my state variables remain positive.
According to this Stack Overflow post, one way to enforce positivity is to log-transform the ODEs to solve for the evolution of the logarithm of a variable instead of the variable itself. However when I try this with my ODEs, I get an overflow error probably because of the huge dynamic range / orders of magnitude of my state variables and time variable. Am I doing something wrong or is log-transform just not applicable in my case?
Here is a minimal working example that is successfully solved by scipy.integrate.solve_ivp:
import numpy as np
from scipy.interpolate import interp1d
from scipy.integrate import solve_ivp
# initialize times at which we are given certain input quantities/parameters
# this is seconds corresponding to the age of the universe in billions of years
times = np.linspace(0.1,10,500) * 3.15e16
# assume we are given the amount of new mass flowing into the system in units of g/sec
# for this toy example we will assume a log-normal distribution and then interpolate it for our integrator function
mdot_grow_array = np.random.lognormal(mean=0,sigma=1,size=len(times))*1.989e33 / 3.15e7
interp_grow = interp1d(times,mdot_grow_array,kind='cubic')
# assume there is also a conversion efficiency for some fraction of mass to be converted to another form
# for this example we'll assume the fractions are drawn from a uniform random distribution and again interpolate
mdot_convert_array = np.random.uniform(0,0.1,len(times)) / 3.15e16 # fraction of M1 per second converted to M2
interp_convert = interp1d(times,mdot_convert_array,kind='cubic')
# set up our integrator function
def integrator(t,y):
print('Working on t=',t/3.15e16) # to check status of integration in billions of years
# unpack state variables
M1, M2 = y
# get the interpolated value of new mass flowing in at this time
mdot_grow_now = interp_grow(t)
mdot_convert_now = interp_convert(t)
# assume some fraction of the mass gets converted to another form
mdot_convert = mdot_convert_now * M1
# return the derivatives
M1dot = mdot_grow_now - mdot_convert
M2dot = mdot_convert
return M1dot, M2dot
# set up initial conditions and run solve_ivp for the whole time range
# should start with M1=M2=0 initially but then solve_ivp does not work at all, so just use [1,1] instead
initial_conditions = [1.0,1.0]
# note how the integrator gets stuck at very small timesteps early on
sol = solve_ivp(integrator,(times[0],times[-1]),initial_conditions,dense_output=True,method='RK23')
And here is the same example but now log-transformed following the Stack Overflow post referenced above (since dlogx/dt = 1/x * dx/dt, we simply replace the LHS with x*dlogx/dt and divide both sides by x to isolate dlogx/dt on the LHS; and we make sure to use np.exp() on the state variables – now logx instead of x – within the integrator function):
import numpy as np
from scipy.interpolate import interp1d
from scipy.integrate import solve_ivp
# initialize times at which we are given certain input quantities/parameters
# this is seconds corresponding to the age of the universe in billions of years
times = np.linspace(0.1,10,500) * 3.15e16
# assume we are given the amount of new mass flowing into the system in units of g/sec
# for this toy example we will assume a log-normal distribution and then interpolate it for our integrator function
mdot_grow_array = np.random.lognormal(mean=0,sigma=1,size=len(times))*1.989e33 / 3.15e7
interp_grow = interp1d(times,mdot_grow_array,kind='cubic')
# assume there is also a conversion efficiency for some fraction of mass to be converted to another form
# for this example we'll assume the fractions are drawn from a uniform random distribution and again interpolate
mdot_convert_array = np.random.uniform(0,0.1,len(times)) / 3.15e16 # fraction of M1 per second converted to M2
interp_convert = interp1d(times,mdot_convert_array,kind='cubic')
# set up our integrator function
def integrator(t,logy):
print('Working on t=',t/3.15e16) # to check status of integration in billions of years
# unpack state variables
M1, M2 = np.exp(logy)
# get the interpolated value of new mass flowing in at this time
mdot_grow_now = interp_grow(t)
mdot_convert_now = interp_convert(t)
# assume some fraction of the mass gets converted to another form
mdot_convert = mdot_convert_now * M1
# return the derivatives
M1dot = (mdot_grow_now - mdot_convert) / M1
M2dot = (mdot_convert) / M2
return M1dot, M2dot
# set up initial conditions and run solve_ivp for the whole time range
# should start with M1=M2=0 initially but then solve_ivp does not work at all, so just use [1,1] instead
initial_conditions = [1.0,1.0]
# note how the integrator gets stuck at very small timesteps early on
sol = solve_ivp(integrator,(times[0],times[-1]),initial_conditions,dense_output=True,method='RK23')
[…] is log-transform just not applicable in my case?
I don’t know where your transform went wrong, but it will certainly not achieve what you think it does. Log-transforming as a means to avoid negative values makes sense and works if and only if the following two conditions hold:
If the value of a dynamical variable approaches zero (from above), its derivative also approaches zero (from above) in your model.
Due to numerical noise, your derivative may turn negative though it actually isn’t.
Conversely, it is not necessary or doesn’t work in the following cases:
If Condition 1 fails because your derivative never approaches zero in your model, but is strictly positive, you have no problem to begin with, as your derivative should not become negative in any reasonable implementation of your model. (You might make it happen by implementing some spectacular numerical annihilation, but that’s quite a difficult feat to achieve and not what I would consider a reasonable implementation.)
If Condition 1 fails because your derivative becomes truly negative in your model, logarithms won’t save you, because the dynamics wants to push the derivative below zero and the logarithms cannot represent this. You usually get an overflow error due to the logarithms becoming extremely negative or the adaptive integration fails.
Even if Condition 1 applies, Condition 2 can usually be handled by avoiding numerical annihilations and similar when implementing your model.
Unless I am mistaken, your model falls into the first category. If M1 goes to zero, mdot_convert goes towards zero and thus M1dot = mdot_grow_now - mdot_convert is strictly positive, because mdot_grow_now is. M2dot is strictly positive anyway. Thus, you gain nothing from log-transforming. In fact, in the vast majority of cases, your dynamical variables will quickly increase.
With all that being said, some things you might want to look into are:
Normalising your variables to be in the order of magnitude of 1.
Stochastic differential equations.
As the title mentions, I am having trouble fitting data points to a function with 3 domains whose boundaries are a parameter of my function. Here is the function I am dealing with:
global sigma_m
sigma_m=2*10**(-12)
global sigma_f
sigma_f=10**3
def Conductivity (phi,phi_c,t,s):
sigma=[0]*(len(phi))
for i in range (0,len(phi)):
if phi[i]<phi_c:
sigma[i]=sigma_m*(phi_c-phi[i])**(-s)
elif phi[i]==phi_c:
sigma[i]=sigma_f*(sigma_m/sigma_f)**(t/(t+s))
else:
sigma[i]=sigma_f*(phi[i]-phi_c)**t
return sigma
And my data points are:
phi_data=[0,0.005,0.007,0.008,0.017,0.05,0.085,0.10]
sigma_data=[2.00E-12,2.50E-12,3.00E-12,9.00E-04,1.00E-01,1.00E+00,2.00E+00,3.00E+00]
My constraints are that phi_c, s, and t must be strictly greater than zero (in practice, phi_c is rarely higher than 0.1 but higher than 0.001, s is usually between 0.5 and 1.5, and t is usually anywhere between 1.5 and 6).
My goal is to fit my data points and have my fit give me values of phi_c, s, and t. s and t can be estimated to help the code (in the specific set of data points that I showed, t should be around 2, and s should be around 0.5). phi_c is completely unknown, except for the range of values that I mentioned just above.
I have used both curve_fit from scipy and Model from lmfit but both provide ridiculously small phi_c values (like 10**(-16) or similarly small values that make me believe the programme wants phi_c to be negative).
Here is my code for when I used curve_fit:
popt, pcov = curve_fit(Conductivity, phi_data, sigma_data, p0=[0.01,2,0.5], bounds=(0,[0.5,10,3]))
Here is my code for when I used Model from lmfit:
t_estimate=0.5
s_estimate=2
phi_c_estimate=0.005
condmodel = Model(Conductivity)
params = condmodel.make_params(phi_c=phi_c_estimate,t=t_estimate,s=s_estimate)
result = condmodel.fit(sigma_data, params, phi=phi_data)
params['phi_c'].min = 0
params['phi_c'].max = 0.1
Both options give an okay fit when plotted, but the estimated value of phi_c is nowhere near plausible.
If you have any idea what I could do to have a better fit, please let me know!
PS: I have a read a promising post about using the package symfit to fit the data on the different regions separately, unfortunately the package symfit does not work for me. It keeps uninstalling my version of scipy then reinstalling an older version, and then it tells me it needs a newer version of scipy to function.
EDIT: I managed to make the symfit package work. Here is my entire code:
from symfit import parameters, variables, Fit, Piecewise, exp, Eq
import numpy as np
import matplotlib.pyplot as plt
global sigma_m
sigma_m=2*10**(-12)
global sigma_f
sigma_f=10**3
phi, sigma = variables ('phi, sigma')
t, s, phi_c = parameters('t, s, phi_c')
phi_c.min = 0.001
phi_c.max = 0.1
sigma1 = sigma_m*(phi_c-phi)**(-s)
sigma2 = sigma_f*(phi-phi_c)**t
model = {sigma: Piecewise ((sigma1, phi <= phi_c), (sigma2, phi > phi_c))}
constraints = [Eq(sigma1.subs({phi: phi_c}), sigma2.subs({phi: phi_c}))]
phi_data=np.array([0,0.005,0.007,0.008,0.017,0.05,0.085,0.10])
sigma_data=np.array([2.00E-12,2.50E-12,3.00E-12,9.00E-04,1.00E-01,1.00E+00,2.00E+00,3.00E+00])
fit = Fit(model, phi=phi_data, sigma=sigma_data, constraints=constraints)
fit_result = fit.execute()
print(fit_result)
Unfortunately I get the following error:
File "D:\Programs\Anaconda\lib\site-packages\sympy\printing\pycode.py", line 236, in _print_ComplexInfinity
return self._print_NaN(expr)
File "D:\Programs\Anaconda\lib\site-packages\sympy\printing\pycode.py", line 74, in _print_known_const
known = self.known_constants[expr.__class__.__name__]
KeyError: 'ComplexInfinity'
My knowledge of coding is very limited, I have no idea what this means and what I should do to not have this error anymore. Please let me know if you have an idea.
I'm not certain that I have a single answer for you, but this will be too long to fit into a comment.
First, a model that switches functional form is especially challenging. But, what's more is that your form has
elif phi[i]==phi_c:
For floating point numbers that are variables, this is going to basically never be true. You might not mean "exactly equal" but "pretty close", which might be
elif abs(phi[i] - phi_c) < 1.0e-5:
or something...
But also, converting that from a for loop to using numpy.where() is probably worth looking into.
Second, it is not at all clear that your different forms actually evaluate to the same values at the boundaries to ensure a continuous function. You might want to check that.
Third, models with powers and exponentials are especially challenging to fit as a small change in power can have a huge impact on the resulting value. It's also very easy to get "negative value raised to non-integer value", which is of course, complex.
Fourth, those sigma_m and sigma_f constants look like they could easily cause trouble. You should definitely evaluate your model with your starting parameter values and see if you can sort of reproduce your data with your model and reasonable starting values. I suspect that you'll need to change your starting values.
There are two methods in scipy.optimize which are root and fixed_point.
I am very surprised to find that root offers many methods, whereas fixed_point has just one. Mathematically the two are identical. They relate the following fixed points of g(x) with the roots of f(x):
[ g(x) = f(x) - x ]
How do I determine which function to use?
Also, none of the two methods allow me to specify the regions where the functions are defined. Is there a way to limit the range of x?
Summary: if you don't know what to use, use root. The method fixed_point merits consideration if your problem is naturally a fixed-point problem g(x) = x where it's reasonable to expect that iterating g will help in solving the problem (i.e., g has some non-expanding behavior). Otherwise, use root or something else.
Although every root-finding problem is mathematically equivalent to a fixed-point problem, it's not always beneficial to restate it as such from the numerical methods point of view. Sometimes it is, as in Newton's method. But the trivial restatement, replacing f(x) = 0 as g(x) = x with g(x) = f(x) + x is not likely to help.
The method fixed_point iterates the provided function, optionally with adjustments that make convergence faster / more likely. This is going to be problematic if the iterated values move away from the fixed point (a repelling fixed point), which can happen despite the adjustments. An example: solving exp(x) = 1 directly and as a fixed point problem for exp(x) - 1 + x, with the same starting point:
import numpy as np
from scipy.optimize import fixed_point, root
root(lambda x: np.exp(x) - 1, 3) # converges to 0 in 14 steps
fixed_point(lambda x: np.exp(x) - 1 + x, 3) # RuntimeError: Failed to converge after 500 iterations, value is 2.9999533400931266
To directly answer the question: the difference is in the methods being used. Fixed point solver is quite simple, it's the iteration of a given function boosted by some acceleration of convergence. When that doesn't work (and often it doesn't), too bad. The root finding methods are more sophisticated and more robust, they should be preferred.
I'm having trouble solving this integral in python. The function being integrated is not defined on the boundaries of integration.
I've found a few more questions similar to this, but all were very specific replies to the issue in particular.
I don't want to approximate the integral too much, if possible not at all, as the reason I'm doing this integral in the first place is to avoid an approximation.
Is there any way to solve this integral?
import numpy as np
from pylab import *
import scipy
from math import *
from scipy import integrate
m_Earth_air = (28.0134*0.78084)+(31.9988*0.209476)+(39.948*0.00934)+(44.00995*0.000314)+(20.183*0.00001818)+(4.0026*0.00000524)+(83.80*0.00000114)+(131.30*0.000000087)+(16.04303*0.000002)+(2.01594*0.0000005)
Tb0 = 288.15
Lb0 = -6.5
Hb0 = 0.0
def Tm_0(z):
return Tb0+Lb0*(z-Hb0)
k = 1.38*10**-19 #cm^2.kg/s^2.K #Boltzmann cst
mp = 1.67262177*10**-27 #kg
Rad= 637100000.0 #radius planet #cm
g0 = 980.665 #cm/s^2
def g(z):
return (g0*((Rad/(Rad+z))**2.0))
def scale_height0(z):
return k*Tm_0(z*10**-5)/(m_Earth_air*mp*g(z))
def functionz(z,zvar):
return np.exp(-zvar/scale_height0(z))*((Rad+zvar)/(Rad+z))/((np.sqrt(((Rad+zvar)/(Rad+z))**2.0-1.0)))
def chapman0(z):
return (1.0/(scale_height0(z)))*((integrate.quad(lambda zvar: functionz(z,zvar), z, np.inf))[0])
print chapman0(1000000)
print chapman0(5000000)
The first block of variables and definitions are fine. The issue is in the "functionz(z,zvar)" and its integration.
Any help very much appreciated !
Unless you can solve the integral analytically there is no way to solve it without an approximation over its bounds. This isn't a Python problem, but a calculus problem in general, thus why math classes take such great pains to show you the numeric approximations.
If you don't want it to differ too much, choose a small epsilon with a method that converges fast.
Edit- Clarity on last statement:
Epsilon - ɛ - refers to the step size through the bounds of integration- the delta x- remember that the numeric approximation methods all slice the integral into slivers and add them back up, think of it as the width of each sliver, the smaller the sliver the better the approximation. You can specify these in numerical packages.
A method that converges fast implies the method approaches the true value of the integral quickly and the error of approximation is small for each sliver. For example, the Riemann sum is a naive method which assumes each sliver is a rectangle, while a trapezoid connects the beginning and the end of the sliver with a line to make a trapezoid. Of these 2, trapezoid typically converges faster as it tries to account for the change within the shape. (Neither is typically used as there are better guesses for most functions)
Both of these variables change the computational expense of the calculation. Typically epsilon is the most expensive to change, thus why it is important you choose a good method of approximation (some can differ by an order of magnitude in error for the same epsilon).
All of this will depend on how much error your calculation can tolerate.
It often helps to eliminate possible numerical instabilities by rescaling variables. In your case zvar starts from 1e6, which is probably causing problems due to some implementation details in quad(). If you scale it as y = zvar / z, so that the integration starts from 1 it seems to converge pretty well for z = 1e6:
def functiony(z, y):
return np.exp(-y*z/scale_height0(z))*(Rad+y*z)/(Rad+z) / np.sqrt(((Rad+y*z)/(Rad+z))**2.0-1.0)
def chapman0y(z):
return (1.0/(scale_height0(z)))*((integrate.quad(lambda y: functiony(z,y), 1, np.inf))[0])
>>> print(chapman0y(1000000))
1.6217257661844094e-06
(I set m_Earth_air = 28.8e-3 — this constant is missing in your code, I assumed it is the molar mass of air in (edit) kg/mole).
As for z = 5e6, scale_height0(z) is negative, which gives a huge positive value under the exponent, making the integral divergent on the infinity.
I had a similar issue and found that SciPy quad needs you to specify another parameter, epsabs=1e-1000, limit=1000 (stepsize limit), epsrel=1e1 works for everything I've tried. I.e. in this case:
def chapman0(z):
return (1.0/(scale_height0(z)))*((integrate.quad(lambda zvar: functionz(z,zvar), z, np.inf, limit=1000, epsabs=1e-1000, epsrel=1e1))[0])[0])
#results:
0.48529410529321887
-1.276589093231806e+21
Seems to be a high absolute error tolerance but for integrals that don't rapidly converge it seems to fix the issue. Just posting for others with similar problems as this post is quite dated. There are algorithms in other packages that converge faster but none that I've found in SciPy. The results are based on the posted code (not the selected answer).
I want to solve this kind of problem:
dy/dt = 0.01*y*(1-y), find t when y = 0.8 (0<t<3000)
I've tried the ode function in Python, but it can only calculate y when t is given.
So are there any simple ways to solve this problem in Python?
PS: This function is just a simple example. My real problem is so complex that can't be solve analytically. So I want to know how to solve it numerically. And I think this problem is more like an optimization problem:
Objective function y(t) = 0.8, Subject to dy/dt = 0.01*y*(1-y), and 0<t<3000
PPS: My real problem is:
objective function: F(t) = 0.85,
subject to: F(t) = sqrt(x(t)^2+y(t)^2+z(t)^2),
x''(t) = (1/F(t)-1)*250*x(t),
y''(t) = (1/F(t)-1)*250*y(t),
z''(t) = (1/F(t)-1)*250*z(t)-10,
x(0) = 0, y(0) = 0, z(0) = 0.7,
x'(0) = 0.1, y'(0) = 1.5, z'(0) = 0,
0<t<5
This differential equation can be solved analytically quite easily:
dy/dt = 0.01 * y * (1-y)
rearrange to gather y and t terms on opposite sides
100 dt = 1/(y * (1-y)) dy
The lhs integrates trivially to 100 * t, rhs is slightly more complicated. We can always write a product of two quotients as a sum of the two quotients * some constants:
1/(y * (1-y)) = A/y + B/(1-y)
The values for A and B can be worked out by putting the rhs on the same denominator and comparing constant and first order y terms on both sides. In this case it is simple, A=B=1. Thus we have to integrate
1/y + 1/(1-y) dy
The first term integrates to ln(y), the second term can be integrated with a change of variables u = 1-y to -ln(1-y). Our integrated equation therefor looks like:
100 * t + C = ln(y) - ln(1-y)
not forgetting the constant of integration (it is convenient to write it on the lhs here). We can combine the two logarithm terms:
100 * t + C = ln( y / (1-y) )
In order to solve t for an exact value of y, we first need to work out the value of C. We do this using the initial conditions. It is clear that if y starts at 1, dy/dt = 0 and the value of y never changes. Thus plug in the values for y and t at the beginning
100 * 0 + C = ln( y(0) / (1 - y(0) )
This will give a value for C (assuming y is not 0 or 1) and then use y=0.8 to get a value for t. Note that because of the logarithm and the factor 100 multiplying t y will reach 0.8 within a relatively short range of t values, unless the initial value of y is incredibly small. It is of course also straightforward to rearrange the equation above to express y in terms of t, then you can plot the function as well.
Edit: Numerical integration
For a more complexed ODE which cannot be solved analytically, you will have to try numerically. Initially we only know the value of the function at zero time y(0) (we have to know at least that in order to uniquely define the trajectory of the function), and how to evaluate the gradient. The idea of numerical integration is that we can use our knowledge of the gradient (which tells us how the function is changing) to work out what the value of the function will be in the vicinity of our starting point. The simplest way to do this is Euler integration:
y(dt) = y(0) + dy/dt * dt
Euler integration assumes that the gradient is constant between t=0 and t=dt. Once y(dt) is known, the gradient can be calculated there also and in turn used to calculate y(2 * dt) and so on, gradually building up the complete trajectory of the function. If you are looking for a particular target value, just wait until the trajectory goes past that value, then interpolate between the last two positions to get the precise t.
The problem with Euler integration (and with all other numerical integration methods) is that its results are only accurate when its assumptions are valid. Because the gradient is not constant between pairs of time points, a certain amount of error will arise for each integration step, which over time will build up until the answer is completely inaccurate. In order to improve the quality of the integration, it is necessary to use more sophisticated approximations to the gradient. Check out for example the Runge-Kutta methods, which are a family of integrators which remove progressive orders of error term at the cost of increased computation time. If your function is differentiable, knowing the second or even third derivatives can also be used to reduce the integration error.
Fortunately of course, somebody else has done the hard work here, and you don't have to worry too much about solving problems like numerical stability or have an in depth understanding of all the details (although understanding roughly what is going on helps a lot). Check out http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode for an example of an integrator class which you should be able to use straightaway. For instance
from scipy.integrate import ode
def deriv(t, y):
return 0.01 * y * (1 - y)
my_integrator = ode(deriv)
my_integrator.set_initial_value(0.5)
t = 0.1 # start with a small value of time
while t < 3000:
y = my_integrator.integrate(t)
if y > 0.8:
print "y(%f) = %f" % (t, y)
break
t += 0.1
This code will print out the first t value when y passes 0.8 (or nothing if it never reaches 0.8). If you want a more accurate value of t, keep the y of the previous t as well and interpolate between them.
As an addition to Krastanov`s answer:
Aside of PyDSTool there are other packages, like Pysundials and Assimulo which provide bindings to the solver IDA from Sundials. This solver has root finding capabilites.
Use scipy.integrate.odeint to handle your integration, and analyse the results afterward.
import numpy as np
from scipy.integrate import odeint
ts = np.arange(0,3000,1) # time series - start, stop, step
def rhs(y,t):
return 0.01*y*(1-y)
y0 = np.array([1]) # initial value
ys = odeint(rhs,y0,ts)
Then analyse the numpy array ys to find your answer (dimensions of array ts matches ys). (This may not work first time because I am constructing from memory).
This might involve using the scipy interpolate function for the ys array, such that you get a result at time t.
EDIT: I see that you wish to solve a spring in 3D. This should be fine with the above method; Odeint on the scipy website has examples for systems such as coupled springs that can be solved for, and these could be extended.
What you are asking for is a ODE integrator with root finding capabilities. They exist and the low-level code for such integrators is supplied with scipy, but they have not yet been wrapped in python bindings.
For more information see this mailing list post that provides a few alternatives: http://mail.scipy.org/pipermail/scipy-user/2010-March/024890.html
You can use the following example implementation which uses backtracking (hence it is not optimal as it is a bolt-on addition to an integrator that does not have root finding on its own): https://github.com/scipy/scipy/pull/4904/files