Im trying to store the method in a package in a variable as it might change and I dont want to manually update in multiple places in the code.
import hashlib as hashy
foo='hello world'
bar='hello world'
algo='md5'
hfoo=hashy.algo(foo.encode())
hbar=hashy.algo(bar.encode())
In this particular case you can use hashlib.new() to create a hasher by its name.
import hashlib # don't randomly rename standard libraries
ALGORITHM = 'md5'
h = hashlib.new(ALGORITHM)
h.update('hello world'.encode('utf-8'))
print(h.hexdigest())
If you think you might want to change which function in a module you're calling, you can wrap it in your own function, which is right generic answer to the question you're asking.
import hashlib
def hash(s):
hashlib.md5(s.encode('utf-8'))
print hash('hello world')
You can use getattr() on a module to retrieve a function by name, but that's not the usual way to do things.
Related
I've run into a bit of a wall importing modules in a Python script. I'll do my best to describe the error, why I run into it, and why I'm tying this particular approach to solve my problem (which I will describe in a second):
Let's suppose I have a module in which I've defined some utility functions/classes, which refer to entities defined in the namespace into which this auxiliary module will be imported (let "a" be such an entity):
module1:
def f():
print a
And then I have the main program, where "a" is defined, into which I want to import those utilities:
import module1
a=3
module1.f()
Executing the program will trigger the following error:
Traceback (most recent call last):
File "Z:\Python\main.py", line 10, in <module>
module1.f()
File "Z:\Python\module1.py", line 3, in f
print a
NameError: global name 'a' is not defined
Similar questions have been asked in the past (two days ago, d'uh) and several solutions have been suggested, however I don't really think these fit my requirements. Here's my particular context:
I'm trying to make a Python program which connects to a MySQL database server and displays/modifies data with a GUI. For cleanliness sake, I've defined the bunch of auxiliary/utility MySQL-related functions in a separate file. However they all have a common variable, which I had originally defined inside the utilities module, and which is the cursor object from MySQLdb module.
I later realised that the cursor object (which is used to communicate with the db server) should be defined in the main module, so that both the main module and anything that is imported into it can access that object.
End result would be something like this:
utilities_module.py:
def utility_1(args):
code which references a variable named "cur"
def utility_n(args):
etcetera
And my main module:
program.py:
import MySQLdb, Tkinter
db=MySQLdb.connect(#blahblah) ; cur=db.cursor() #cur is defined!
from utilities_module import *
And then, as soon as I try to call any of the utilities functions, it triggers the aforementioned "global name not defined" error.
A particular suggestion was to have a "from program import cur" statement in the utilities file, such as this:
utilities_module.py:
from program import cur
#rest of function definitions
program.py:
import Tkinter, MySQLdb
db=MySQLdb.connect(#blahblah) ; cur=db.cursor() #cur is defined!
from utilities_module import *
But that's cyclic import or something like that and, bottom line, it crashes too. So my question is:
How in hell can I make the "cur" object, defined in the main module, visible to those auxiliary functions which are imported into it?
Thanks for your time and my deepest apologies if the solution has been posted elsewhere. I just can't find the answer myself and I've got no more tricks in my book.
Globals in Python are global to a module, not across all modules. (Many people are confused by this, because in, say, C, a global is the same across all implementation files unless you explicitly make it static.)
There are different ways to solve this, depending on your actual use case.
Before even going down this path, ask yourself whether this really needs to be global. Maybe you really want a class, with f as an instance method, rather than just a free function? Then you could do something like this:
import module1
thingy1 = module1.Thingy(a=3)
thingy1.f()
If you really do want a global, but it's just there to be used by module1, set it in that module.
import module1
module1.a=3
module1.f()
On the other hand, if a is shared by a whole lot of modules, put it somewhere else, and have everyone import it:
import shared_stuff
import module1
shared_stuff.a = 3
module1.f()
… and, in module1.py:
import shared_stuff
def f():
print shared_stuff.a
Don't use a from import unless the variable is intended to be a constant. from shared_stuff import a would create a new a variable initialized to whatever shared_stuff.a referred to at the time of the import, and this new a variable would not be affected by assignments to shared_stuff.a.
Or, in the rare case that you really do need it to be truly global everywhere, like a builtin, add it to the builtin module. The exact details differ between Python 2.x and 3.x. In 3.x, it works like this:
import builtins
import module1
builtins.a = 3
module1.f()
As a workaround, you could consider setting environment variables in the outer layer, like this.
main.py:
import os
os.environ['MYVAL'] = str(myintvariable)
mymodule.py:
import os
myval = None
if 'MYVAL' in os.environ:
myval = os.environ['MYVAL']
As an extra precaution, handle the case when MYVAL is not defined inside the module.
This post is just an observation for Python behaviour I encountered. Maybe the advices you read above don't work for you if you made the same thing I did below.
Namely, I have a module which contains global/shared variables (as suggested above):
#sharedstuff.py
globaltimes_randomnode=[]
globalist_randomnode=[]
Then I had the main module which imports the shared stuff with:
import sharedstuff as shared
and some other modules that actually populated these arrays. These are called by the main module. When exiting these other modules I can clearly see that the arrays are populated. But when reading them back in the main module, they were empty. This was rather strange for me (well, I am new to Python). However, when I change the way I import the sharedstuff.py in the main module to:
from globals import *
it worked (the arrays were populated).
Just sayin'
A function uses the globals of the module it's defined in. Instead of setting a = 3, for example, you should be setting module1.a = 3. So, if you want cur available as a global in utilities_module, set utilities_module.cur.
A better solution: don't use globals. Pass the variables you need into the functions that need it, or create a class to bundle all the data together, and pass it when initializing the instance.
The easiest solution to this particular problem would have been to add another function within the module that would have stored the cursor in a variable global to the module. Then all the other functions could use it as well.
module1:
cursor = None
def setCursor(cur):
global cursor
cursor = cur
def method(some, args):
global cursor
do_stuff(cursor, some, args)
main program:
import module1
cursor = get_a_cursor()
module1.setCursor(cursor)
module1.method()
Since globals are module specific, you can add the following function to all imported modules, and then use it to:
Add singular variables (in dictionary format) as globals for those
Transfer your main module globals to it
.
addglobals = lambda x: globals().update(x)
Then all you need to pass on current globals is:
import module
module.addglobals(globals())
Since I haven't seen it in the answers above, I thought I would add my simple workaround, which is just to add a global_dict argument to the function requiring the calling module's globals, and then pass the dict into the function when calling; e.g:
# external_module
def imported_function(global_dict=None):
print(global_dict["a"])
# calling_module
a = 12
from external_module import imported_function
imported_function(global_dict=globals())
>>> 12
The OOP way of doing this would be to make your module a class instead of a set of unbound methods. Then you could use __init__ or a setter method to set the variables from the caller for use in the module methods.
Update
To test the theory, I created a module and put it on pypi. It all worked perfectly.
pip install superglobals
Short answer
This works fine in Python 2 or 3:
import inspect
def superglobals():
_globals = dict(inspect.getmembers(
inspect.stack()[len(inspect.stack()) - 1][0]))["f_globals"]
return _globals
save as superglobals.py and employ in another module thusly:
from superglobals import *
superglobals()['var'] = value
Extended Answer
You can add some extra functions to make things more attractive.
def superglobals():
_globals = dict(inspect.getmembers(
inspect.stack()[len(inspect.stack()) - 1][0]))["f_globals"]
return _globals
def getglobal(key, default=None):
"""
getglobal(key[, default]) -> value
Return the value for key if key is in the global dictionary, else default.
"""
_globals = dict(inspect.getmembers(
inspect.stack()[len(inspect.stack()) - 1][0]))["f_globals"]
return _globals.get(key, default)
def setglobal(key, value):
_globals = superglobals()
_globals[key] = value
def defaultglobal(key, value):
"""
defaultglobal(key, value)
Set the value of global variable `key` if it is not otherwise st
"""
_globals = superglobals()
if key not in _globals:
_globals[key] = value
Then use thusly:
from superglobals import *
setglobal('test', 123)
defaultglobal('test', 456)
assert(getglobal('test') == 123)
Justification
The "python purity league" answers that litter this question are perfectly correct, but in some environments (such as IDAPython) which is basically single threaded with a large globally instantiated API, it just doesn't matter as much.
It's still bad form and a bad practice to encourage, but sometimes it's just easier. Especially when the code you are writing isn't going to have a very long life.
I know that from module import * will import all the functions in current namespace but it is a bad practice. I want to use two functions directly and use module.function when I have to use any other function from the module. What I am doing currently is:
import module
from module import func1, func2
# DO REST OF MY STUFF
Is it a good practice? Does the order of first two statements matter?
Is there a better way using which I can use these two functions directly and use rest of the functions as usual with the module's name prepended to them?
Using just import module results in very long statements with a lot of repetition if I use the same function from the given module five times in a single statement. That's what I want to avoid.
The order doesn't matter and it's not a pythonic way. When you import the module there is no need to import some of its functions separately again. If you are not sure how many of the functions you might need to use just import the module and access to the functions on demand with a simple reference.
# The only import you need
import module
# Use module.funcX when you need any of its functions
After all, if you want to use some of your functions (much) more than the others, as the cost of attribute access is greater than importing the functions separately, you better to import them as you've done.
And still, the order doesn't matter. You can do:
import module
from module import func1, func2
For more info read the documentation https://www.python.org/dev/peps/pep-0008/#imports
It is not good to do (may be opinion based):
import module
from module import func1, func2 # `func1` and `func2` are already part of module
Because you already hold a reference to module.
If I were you, I would import it in the form of import module. Since your issue is that module.func1() becomes too long. I may import the module and use as for creating a alias for the name. For example:
import module as mo
# ^ for illustration purpose. Even the name of
# your actual module wont be `module`.
# Alias should also be self-explanatory
# For example:
import database_manager as db_manager
Now I may access the functions as:
mo.func1()
mo.func2()
Edit: Based on the edit in actual question
If your are calling same function in the same line, there is possibility that your are already doing some thing wrong. It will be great if you can share what your that function does.
For example: Want to the rertun value of those functions to be passed as argument to another function? as:
test_func(mo.func1(x), mo.func1(y). mo.func1(z))
could be done as:
params_list = [x, y, z]
func_list = [mo.func1(param) for param in params_list]
test_func(*func_list)
I'm building a Python module for a fairly specific purpose. What I'd like to do with this is get more functionality behind importing things from it.
I'd like to have a setup by which saying from my_module import foo would run a function and pass the string "foo". This function would return the object that should be imported.
For example, maybe I want to make a cloud-based import system. I'd like to store community scripts in the cloud, and then download them when a user tries to import them.
Maybe I use the code from cloud import test_module. This would check a cache to decide whether test_module had been downloaded. If so, it would return that module. If not, it would download the module before importing it.
How can I accomplish something like this in Python, by which a dynamic range of submodules could be seamlessly imported from the cloud?
Full featured support for what you ask probably requires a bunch of complicated code using importlib and hooking into various parts of the import machinery. However, a more limited solution can be implemented with just a single custom class that pretends to be a module.
When you import a module, Python first checks in the sys.modules dictionary to see if the module is a key. If so, it returns the value associated with the key. It does this regardless of what the value is, so you can put any kind of object in sys.modules and Python will treat it like a module. A module's code can even replace its own entry in sys.modules, and the replacement will be used even the first time it is imported!
So, to implement your fancy module that downloads other modules on demand, replace the module itself with an instance of a custom class, and write that class a __getattr__ or __getattribute__ method that does the work you want.
Here's a trivial example module that returns a string for any attribute you look for in it. The string will always be the same as the requested attribute name. In your code, you'd want to do your fancy web-cache lookups and downloading, and then return the fetched module object instead of just returning a string.
class FakeModule(object):
def __getattribute__(self, name):
return name
import sys
sys.modules[__name__] = FakeModule()
On my system I've saved that as fakemodule.py. Now if I do from fakemodule import foo, I get foo with the value 'foo' in my local namespace.
Note that this only works for one level deep imports. If you do from fakemodule.subpackage import name it will not work because there's no fakemodule.subpackage entry in sys.modules.
Ive searched the web and this site and cant find an answer to this problem. Im sure its right in front of me somewhere but cant find it.
I need to be able to import a module based on a string. Then execute a function within that module while passing arguments.
I can import based on the string and then execute using eval() but I know this is not the best way to handle this. I also cant seem to pass arguments that way.
My current module that would be set based on a string is named TestAction.py and lives in a folder called Tasks.
This is the content of TestAction.py:
def doSomething(var):
print var
This is the code I am executing to import TestAction and execute.
module = "Tasks.TestAction"
import Tasks
mymod = __import__(module)
eval(module + ".doSomething()")
How can I make this code #1 not use eval() and #2 pass the var argument to doSomething()?
Thanks in advance!
Thanks everyone for the help. it looks like importlib combined with getattr was what I needed. For future reference here is the exact code that is working for me.
module = "FarmTasks.TestAction"
mymod = importlib.import_module(module)
ds = getattr(mymod, "doSomething")
ds("stuff")
Is the function name also variable? If not, just use your imported module:
mymod.doSomething('the var argument')
if it is, use getattr:
fun = 'doSomething'
getattr(mymod, fun)('the var argument')
According to the documentation
it is better to use importlib.import_module() to programmatically import a module.
Using this you can retrieve your module like this:
import importlib
TestAction = importlib.import_module("TestAction", package="Tasks")
After that you can simply call functions normally or by name:
TestAction.some_known_function(arg1, arg2)
getattr(TestAction, "some_other_function_name")(arg1, arg2)
I hope this answered your question, feel free to elaborate if you are still missing something.
If you use Python 2.7 or 3.1+ the easiest way to go is to use the importlib module in combination with getattr. Your code would look like that then:
import importlib
module = "Tasks.TestAction"
mymod = importlib.import_module(module)
myfunc = getattr(mymod, "doSomething")
myfunc()
I recently wrote a simple function that imports a given function, it seems to work for me:
def import_function(name):
"""Import a function by name: module.function or
module.submodule.function, etc. Return the function object."""
mod, f = name.rsplit('.', 1)
return getattr(__import__(mod, fromlist=[f]), f)
You can use it as:
f = import_function('Tasks.TestAction.doSometing')
f()
or just
import_function('Tasks.TestAction.doSometing')()
I'm writing an interpreter for an old in-game scripting language, and so need to compile dictionary that has the name of the command from the language matched up against the symbol for that function.
Now, I've already figured out here: How to call a function based on list entry?
...That you can call functions this way, and I know that you can use dir to get a list of strings of all functions in a module. I've been able to get this list, and using a regex, removed the built-in commands and anything else I don't actually want the script to be able to call. The goal is to sandbox here. :)
Now that I have the list of items that are defined in the module, I need to get the symbol for each definition.
For a more visual representation, this is the test module I want to get the symbol for:
def notify(stack,mufenv):
print stack[-1]
It's pulled in via an init script, and I am able to get the notify function's name in a list using:
import mufprims
import re
moddefs=dir(mufprims)
primsfilter=re.compile('__.+__')
primslist=[ 'mufprims.' + x for x in dir(mufprims) if not primsfilter.match(x) ]
print primslist
This returns:
['mufprims.notify']
...which is the exact name of the function I wish to find the symbol for.
I read over http://docs.python.org/library/symtable.html here, but I'm not sure I understand it. I think this is the key to what I want, but I didn't see an example that I could understand. Any ideas how I would get the symbol for the functions I've pulled from the list?
You want to get the function from the mufprims module by using getattr and the function name. Like so:
primslist=[getattr(mufprims, x) for x in dir(mufprims) if not primsfilter.match(x) ]
I thought I might add another possible suggestion for retrieving the functions of an object:
import inspect
# example using os.path
import os.path
results = inspect.getmembers(os.path, inspect.isroutine)
print results
# truncated result
[...,
('splitdrive', <function splitdrive at 0x1002bcb18>),
('splitext', <function splitext at 0x1002bcb90>),
('walk', <function walk at 0x1002bda28>)]
Using dir on the object would essentially give you every member of that object, including non-callable attributes, etc. You could use the inspect module to get a more controlled return type.