I am aware that SGD has been asked before on SO but I wanted to have an opinion on my code as below:
import numpy as np
import matplotlib.pyplot as plt
# Generating data
m,n = 10000,4
x = np.random.normal(loc=0,scale=1,size=(m,4))
theta_0 = 2
theta = np.append([],[1,0.5,0.25,0.125]).reshape(n,1)
y = np.matmul(x,theta) + theta_0*np.ones(m).reshape((m,1)) + np.random.normal(loc=0,scale=0.25,size=(m,1))
# input features
x0 = np.ones([m,1])
X = np.append(x0,x,axis=1)
# defining the cost function
def compute_cost(X,y,theta_GD):
return np.sum(np.power(y-np.matmul(np.transpose(theta_GD),X),2))/2
# initializations
theta_GD = np.append([theta_0],[theta]).reshape(n+1,1)
alp = 1e-5
num_iterations = 10000
# Batch Sum
def batch(i,j,theta_GD):
batch_sum = 0
for k in range(i,i+9):
batch_sum += float((y[k]-np.transpose(theta_GD).dot(X[k]))*X[k][j])
return batch_sum
# Gradient Step
def gradient_step(theta_current, X, y, alp,i):
for j in range(0,n):
theta_current[j]-= alp*batch(i,j,theta_current)/10
theta_updated = theta_current
return theta_updated
# gradient descent
cost_vec = []
for i in range(num_iterations):
cost_vec.append(compute_cost(X[i], y[i], theta_GD))
theta_GD = gradient_step(theta_GD, X, y, alp,i)
plt.plot(cost_vec)
plt.xlabel('iterations')
plt.ylabel('cost')
I was trying a mini-batch GD with a batch size of 10. I am getting extremely oscillatory behavior for the MSE. Where's the issue? Thanks.
P.S. I was following NG's https://www.coursera.org/learn/machine-learning/lecture/9zJUs/mini-batch-gradient-descent
This is a description of the underlying mathematical principle, not a code based solution...
The cost function is highly nonlinear (np.power()) and recursive and recursive and nonlinear systems can oscillate ( self-oscillation https://en.wikipedia.org/wiki/Self-oscillation ). In mathematics this is subject to chaos theory / theory of nonlinear dynamical systems ( https://pdfs.semanticscholar.org/8e0d/ee3c433b1806bfa0d98286836096f8c2681d.pdf ), cf the Logistic Map
( https://en.wikipedia.org/wiki/Logistic_map ). The logistic map oscillates if the growth factor r exceeds a threshold. The growth factor is a measure for how much energy is in the system.
In your code the critical parts are the cost function, the cost vector, that is the history of the system and the time steps :
def compute_cost(X,y,theta_GD):
return np.sum(np.power(y-np.matmul(np.transpose(theta_GD),X),2))/2
cost_vec = []
for i in range(num_iterations):
cost_vec.append(compute_cost(X[i], y[i], theta_GD))
theta_GD = gradient_step(theta_GD, X, y, alp,i)
# Gradient Step
def gradient_step(theta_current, X, y, alp,i):
for j in range(0,n):
theta_current[j]-= alp*batch(i,j,theta_current)/10
theta_updated = theta_current
return theta_updated
If you compare this to an implementation of the logistic map you see the similarities
from pylab import show, scatter, xlim, ylim
from random import randint
iter = 1000 # Number of iterations per point
seed = 0.5 # Seed value for x in (0, 1)
spacing = .0001 # Spacing between points on domain (r-axis)
res = 8 # Largest n-cycle visible
# Initialize r and x lists
rlist = []
xlist = []
def logisticmap(x, r): <------------------ nonlinear function
return x * r * (1 - x)
# Return nth iteration of logisticmap(x. r)
def iterate(n, x, r):
for i in range(1,n):
x = logisticmap(x, r)
return x
# Generate list values -- iterate for each value of r
for r in [i * spacing for i in range(int(1/spacing),int(4/spacing))]:
rlist.append(r)
xlist.append(iterate(randint(iter-res/2,iter+res/2), seed, r)) <--------- similar to cost_vector, the history of the system
scatter(rlist, xlist, s = .01)
xlim(0.9, 4.1)
ylim(-0.1,1.1)
show()
source of code : https://www.reddit.com/r/learnpython/comments/zzh28/a_simple_python_implementation_of_the_logistic_map/
Basing on this you can try to modify your cost function by introducing a factor similar to the growth factor in the logistic map to reduce the intensity of oscillation of the system
def gradient_step(theta_current, X, y, alp,i):
for j in range(0,n):
theta_current[j]-= alp*batch(i,j,theta_current)/10 <--- introduce a factor somewhere to keep the system under the oscillation threshold
theta_updated = theta_current
return theta_updated
or
def compute_cost(X,y,theta_GD):
return np.sum(np.power(y-np.matmul(np.transpose(theta_GD),X),2))/2 <--- introduce a factor somewhere to keep the system under the oscillation threshold
If this is not working maybe follow the suggestions in https://www.reddit.com/r/MachineLearning/comments/3y9gkj/how_can_i_avoid_oscillations_in_gradient_descent/ ( timesteps,... )
Related
I am trying to minimize this multivariate
where αi are constants (could be both positive or negative) and n is fixed,
using the scipy.optimize.fmin_bfgs function.
Conditions:
Test the code for a random natural number n between 5 and 10
A random starting point (all of the form m.dddd)
Do the iterations till the successive iterates are less than 2% in
absolute value, in the l∞ norm.
The coefficients αi (of the form m.dddd) should be chosen randomly so
that at least 40% of them are negative and at least 25% of them are
positive.
This is what I have tried (for custom callback refered to https://stackoverflow.com/a/30365576/7906671),
import numpy as np
from scipy.optimize import minimize
from scipy.optimize import fmin_bfgs
#Generate a list of random positive and negative integers
random_list = np.random.uniform(-1, 1, size=(1, 10))[0].tolist()
p = []
n, npr = [], []
for r in range(len(random_list)):
if random_list[r] < 0:
n.append(random_list[r])
npr.append((str(random_list[r]), 0.4))
else:
p.append(random_list[r])
npr.append((str(random_list[r]), 0.25))
#Function to pick negative number with 40% probability and positive numbers with 25% probability
def w_choice(seq):
total_prob = sum(item[1] for item in seq)
chosen = np.random.uniform(0, total_prob)
cumulative = 0
for item, probality in seq:
cumulative += probality
if cumulative > chosen:
return item
#Random start value with m.dddd and size of the input array is between 5 and 10
n = np.random.randint(5, 10)
x0 = np.round(np.random.randn(n,1), 4)
alpha = []
for i in range(n):
alpha.append(np.round(float(w_choice(npr)), 4))
print("alpha: ", alpha)
def func(x):
return sum(alpha*(x**2.0))
class StopOptimizingException(Exception):
pass
class CallbackCollector:
def __init__(self, f, thresh):
self._f = f
self._thresh = thresh
def __call__(self, xk):
if self._f(xk) < self._thresh:
self.x_opt = xk
cb = CallbackCollector(func, thresh=0.02)
x, _, _ = fmin_bfgs(func, x0, callback=cb)
But this does not converge and gives the following :
Warning: Desired error not necessarily achieved due to precision loss.
I am not able to figure out why this fails. Any help is appreciated!
could somebody please explain how to do a gradient descent problem WITHOUT the context of the cost function? I have seen countless tutorials that explain gradient descent using the cost function, but I really don't understand how it works in a more general sense.
I am given a 3D function:
z = 3*((1-xx)2) * np.exp(-(xx2) - (yy+1)2) \
- 10*(xx/5 - xx3 - yy5) * np.exp(-xx2 - yy2)- (1/3)* np.exp(-(xx+1)**2 - yy2)
And I am asked to:
Code a simple gradient algorithm. Set the parameters as follows:
learning rate = step size: 0.1
Max number of iterations: 20
Stopping criterion: 0.0001 (Your iterations should stop when your gradient is smaller than the threshold)
Then start your algorithm at
(x0 = 0.5, y0 = -0.5)
(x0 = -0.3, y0 = -0.3)
I have seen this piece of code floating around wherever gradient descent is talked about:
def update_weights(m, b, X, Y, learning_rate):
m_deriv = 0
b_deriv = 0
N = len(X)
for i in range(N):
# Calculate partial derivatives
# -2x(y - (mx + b))
m_deriv += -2*X[i] * (Y[i] - (m*X[i] + b))
# -2(y - (mx + b))
b_deriv += -2*(Y[i] - (m*X[i] + b))
# We subtract because the derivatives point in direction of steepest ascent
m -= (m_deriv / float(N)) * learning_rate
b -= (b_deriv / float(N)) * learning_rate
return m, b
enter code here
But I don't understand how to use it for my problem. How does my function fit in there? What do I adjust instead of m and b? I'm very very confused.
Thank you.
Gradient Descent is optimization algorithm for finding the minimum of a function.
Very simplified view
Lets start with a 1D function y = f(x)
Lets start at an arbitrary value of x and find the gradient (slope) of f(x).
If the slope is decreasing at x then it means we have to go further toward (right of number line) x (for reaching the minimum)
If the slope is increasing at x then it means we have to go away from (left of number line) x
We can get the slope by taking the derivative of the function. The derivative is -ve if the slop is decreasing and +ve if the slope is increasing
So we can start at some arbitrary value of x and slowly move toward the minimum using the derivatives at that value of x. How slowly we are moving is determined by the learning rate or step size. so we have the update rule
x = x - df_dx*lr
We can see that if the slope is decreasing the derivative (df_dx) is -ve and x is increasing and so x is moving to further right. On the other hand if slope is increasing the df_dx is +ve which decreases x and so we are moving toward left.
We continue this either for some large number of times or until the derivative is very small
Multivariate function z = f(x,y)
The same logic as above applies except now we take the partial derivatives instead of derivative.
Update rule is
x = x - dpf_dx*lr
y = y - dpf_dy*lr
Where dpf_dx is the partial derivative of f with respect to x
The above algorithm is called the gradient decent algorithm. In Machine learning the f(x,y) is a cost/loss function whose minimum we are interested in.
Example
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D
from pylab import meshgrid
from scipy.optimize import fmin
import math
def z_func(a):
x, y = a
return ((x-1)**2+(y-2)**2)
x = np.arange(-3.0,3.0,0.1)
y = np.arange(-3.0,3.0,0.1)
X,Y = meshgrid(x, y) # grid of point
Z = z_func((X, Y)) # evaluation of the function on the grid
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,linewidth=0, antialiased=False)
plt.show()
The min of z_func is at (1,2). This can be verified using the fmin function of scipy
fmin(z_func,np.array([10,10]))
Now lets write our own gradient decent algorithm to find the min of z_func
def gradient_decent(x,y,lr):
while True:
d_x = 2*(x-1)
d_y = 2*(y-2)
x -= d_x*lr
y -= d_y*lr
if d_x < 0.0001 and d_y < 0.0001:
break
return x,y
print (gradient_decent(10,10,0.1)
We are starting at some arbitrary value x=10 and y=10 and a learning rate of 0.1. The above code prints 1.000033672997724 2.0000299315535326 which is correct.
So if you have a continuous differentiable convex function, to find its optimal (which is minimal for a convex) all you have to do is find the partial derivatives of the function with respect to each variable and use the update rule mentioned above. Repeat the steps until the gradients are small which mean we have reached the minima for a convex function.
If the function is not convex, we might get stuck in a local optima.
I'm trying to implement emcee MCMC sampling in Python with a predefined likelihood function to find the best boundary between two populations of data.
For emcee see: http://dfm.io/emcee/current/user/line/
The likelihood function calculates the true positive and true negative classifications, given some linear boundary line, and is used to minimise the difference between the two values whilst maximising their sum.
This way you can imagine a TP and TN rate of 1 respectively will give a likelihood value of 1 while TP and TN rates of 0 will return a likelihood value of 0.
But when I attempt to sample the parameter space for m and b, the gradient and offset (or bias), for the boundary line, I get some wildly big and/or small values for the walks.
I have put an example code below which generates some nicely divided populations and then MCMCs around the initial guesses of the parameter values. I'm unsure as to why the MCMC chains don't converge nicely to an appropriate value here so any help would be greatly appreciated.
The following code should run out-of-the-box.
import emcee
import numpy as np
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
#generate some test x and y data
folded_xy_train = np.random.uniform(0,1,10000) #test x data
folded_z_train = np.random.uniform(0,1,10000) #test y data
#define the true gradient and offset for the boundary line
m_true, b_true = 5,-2.5
#generate labels for the test data
rounded_labels_train = np.ones(len(folded_z_train))
model = (m_true*folded_xy_train) + b_true
difference = model - folded_z_train
rounded_labels_train[difference<0] = 0
#show the test data
plt.figure()
plt.scatter(folded_xy_train,folded_z_train,c=rounded_labels_train,s=1.0)
#define a likelihood function for the boundary line
def lnlike(theta, x, y, labels):
m, b = theta
model = (m*x) + b
difference = model - y
classifications = np.ones(len(y))
classifications[difference<0]=0
cfm = confusion_matrix(labels,classifications)
cm = cfm.astype('float') / cfm.sum(axis=1)[:, np.newaxis]
tn, fp, fn, tp = cm.ravel()
likelihood_val = (0.5*(tp+tn))/(1+np.abs(tp-tn))
ln_like = -np.log(likelihood_val)
return ln_like
#define a wide flat prior
def lnprior(theta):
m, b, = theta
if 0 < m < 10 and -20 < b < 5:
return 0.0
return -np.inf
#define the posterior
def lnprob(p, x, y, labels):
lp = lnprior(p)
if not np.isfinite(lp):
return 0
return lp + lnlike(p, x, y, labels)
#setup the MCMC sampling
nwalkers = 4
ndim = 2
p0 = np.array([4.2,-2]) + [np.random.rand(ndim) for i in range(nwalkers)]
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(folded_xy_train, folded_z_train, rounded_labels_train))
sampler.run_mcmc(p0, 500)
#extract the MCMC paramater value chains
samples = sampler.chain[:, 50:, :].reshape((-1, ndim))
#view the parameter chains
plt.figure()
plt.subplot(211)
plt.plot(samples[:,0])
plt.subplot(212)
plt.plot(samples[:,1])
The initial test data, showing an obvious boundary line for given x y data (coloured by binary class label):
The sample walks, showing strange sampling for the gradient parameter (top) and offset parameter (bottom). The x-axis denotes the MCMC walk step number and the y-axis denotes the MCMC parameter values at a given step:
I'm working through my Matlab code for the Andrew NG Coursera course and turning it into python. I am working on non-regularized logistic regression and after writing my gradient and cost functions I needed something similar to fminunc and after some googling, I found a couple options. They are both returning the same results, but they do not match what is in Andrew NG's expected results code. Others seem to be getting this to work correctly, but I'm wondering why my specific code does not seem to return the desired result when using scipy.optimize functions, but does for the cost and gradient pieces earlier in the code.
The data I'm using can be found at the link below;
ex2data1
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as op
#Machine Learning Online Class - Exercise 2: Logistic Regression
#Load Data
#The first two columns contains the exam scores and the third column contains the label.
data = pd.read_csv('ex2data1.txt', header = None)
X = np.array(data.iloc[:, 0:2]) #100 x 3
y = np.array(data.iloc[:,2]) #100 x 1
y.shape = (len(y), 1)
#Creating sub-dataframes for plotting
pos_plot = data[data[2] == 1]
neg_plot = data[data[2] == 0]
#==================== Part 1: Plotting ====================
#We start the exercise by first plotting the data to understand the
#the problem we are working with.
print('Plotting data with + indicating (y = 1) examples and o indicating (y = 0) examples.')
plt.plot(pos_plot[0], pos_plot[1], "+", label = "Admitted")
plt.plot(neg_plot[0], neg_plot[1], "o", label = "Not Admitted")
plt.xlabel('Exam 1 score')
plt.ylabel('Exam 2 score')
plt.legend()
plt.show()
def sigmoid(z):
'''
SIGMOID Compute sigmoid function
g = SIGMOID(z) computes the sigmoid of z.
Instructions: Compute the sigmoid of each value of z (z can be a matrix,
vector or scalar).
'''
g = 1 / (1 + np.exp(-z))
return g
def costFunction(theta, X, y):
'''
COSTFUNCTION Compute cost and gradient for logistic regression
J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
parameter for logistic regression and the gradient of the cost
w.r.t. to the parameters.
'''
m = len(y) #number of training examples
h = sigmoid(X.dot(theta)) #logisitic regression hypothesis
J = (1/m) * np.sum((-y*np.log(h)) - ((1-y)*np.log(1-h)))
#h is 100x1, y is %100x1, these end up as 2 vector we subtract from each other
#then we sum the values by rows
#cost function for logisitic regression
return J
def gradient(theta, X, y):
m = len(y)
grad = np.zeros((theta.shape))
h = sigmoid(X.dot(theta))
for i in range(len(theta)): #number of rows in theta
XT = X[:,i]
XT.shape = (len(X),1)
grad[i] = (1/m) * np.sum((h-y)*XT) #updating each row of the gradient
return grad
#============ Part 2: Compute Cost and Gradient ============
#In this part of the exercise, you will implement the cost and gradient
#for logistic regression. You neeed to complete the code in costFunction.m
#Add intercept term to x and X_test
Bias = np.ones((len(X), 1))
X = np.column_stack((Bias, X))
#Initialize fitting parameters
initial_theta = np.zeros((len(X[0]), 1))
#Compute and display initial cost and gradient
(cost, grad) = costFunction(initial_theta, X, y), gradient(initial_theta, X, y)
print('Cost at initial theta (zeros): %f' % cost)
print('Expected cost (approx): 0.693\n')
print('Gradient at initial theta (zeros):')
print(grad)
print('Expected gradients (approx):\n -0.1000\n -12.0092\n -11.2628')
#Compute and display cost and gradient with non-zero theta
test_theta = np.array([[-24], [0.2], [0.2]]);
(cost, grad) = costFunction(test_theta, X, y), gradient(test_theta, X, y)
print('\nCost at test theta: %f' % cost)
print('Expected cost (approx): 0.218\n')
print('Gradient at test theta:')
print(grad)
print('Expected gradients (approx):\n 0.043\n 2.566\n 2.647\n')
result = op.fmin_tnc(func = costFunction, x0 = initial_theta, fprime = gradient, args = (X,y))
result[1]
Result = op.minimize(fun = costFunction,
x0 = initial_theta,
args = (X, y),
method = 'TNC',
jac = gradient, options={'gtol': 1e-3, 'disp': True, 'maxiter': 1000})
theta = Result.x
theta
test = np.array([[1, 45, 85]])
prob = sigmoid(test.dot(theta))
print('For a student with scores 45 and 85, we predict an admission probability of %f,' % prob)
print('Expected value: 0.775 +/- 0.002\n')
This was a very difficult problem to debug, and illustrates a poorly documented aspect of the scipy.optimize interface. The documentation vaguely indicates that theta will be passed around as a vector:
Minimization of scalar function of one or more variables.
In general, the optimization problems are of the form:
minimize f(x) subject to
g_i(x) >= 0, i = 1,...,m
h_j(x) = 0, j = 1,...,p
where x is a vector of one or more variables.
What's important is that they really mean vector in the most primitive sense, a 1-dimensional array. So you have to expect that whenever theta is passed into one of your callbacks, it will be passed in as a 1-d array. But in numpy, 1-d arrays sometimes behave differently from 2-d row arrays (and, obviously, from 2-d column arrays).
I don't know exactly why it's causing a problem in your case, but it's easily fixed regardless. You just have to add the following at the top of both your cost function and your gradient function:
theta = theta.reshape(-1, 1)
This guarantees that theta will be a 2-d column array, as expected. Once you've done this, the results are correct.
I have had similar issues with Scipy dealing with the same problem as you. As senderle points out the interface is not the easiest to deal with, especially combined with the numpy array interface... Here is my implementation which works as expected.
Defining the cost and gradient functions
Note that initial_theta is passed as a simple array of shape (3,) and converted to a column vector of shape (3,1) within the function. The gradient function then returns the grad.ravel() which has shape (3,) again. This is important as doing otherwise caused an error message with various optimization methods in Scipy.optimize.
Note that different methods have different behaviours but returning .ravel() seems to fix most issues...
import pandas as pd
import numpy as np
import scipy.optimize as opt
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def CostFunc(theta,X,y):
#Initializing variables
m = len(y)
J = 0
grad = np.zeros(theta.shape)
#Vectorized computations
z = X # theta
h = sigmoid(z)
J = (1/m) * ( (-y.T # np.log(h)) - (1 - y).T # np.log(1-h));
return J
def Gradient(theta,X,y):
#Initializing variables
m = len(y)
theta = theta[:,np.newaxis]
grad = np.zeros(theta.shape)
#Vectorized computations
z = X # theta
h = sigmoid(z)
grad = (1/m)*(X.T # ( h - y));
return grad.ravel() #<-- This is the trick
Initializing variables and parameters
Note that initial_theta.shape returns (3,)
X = data1.iloc[:,0:2].values
m,n = X.shape
X = np.concatenate((np.ones(m)[:,np.newaxis],X),1)
y = data1.iloc[:,-1].values[:,np.newaxis]
initial_theta = np.zeros((n+1))
Calling Scipy.optimize
model = opt.minimize(fun = CostFunc, x0 = initial_theta, args = (X, y), method = 'TNC', jac = Gradient)
Any comments from more knowledgeable people are welcome, this Scipy interface is a mystery to me, thanks
I'm working on programming a MLE for the Polya distribution using scipy. The Nelder-Mead method is working, however I get a "Desired error not necessarily achieved due to precision loss." error when running BFGS. The Nelder-Mead method seems like it's too slow for my needs (I have a lot of fairly big data, say 1000 tables in some cases as big as 10x10000). I've tried using the check_grad function and the result is smallish on the example below (order 10^-2), so I'm not sure if that means there's a bug in the gradient of the log likelihood or the likelihood is just very strongly peaked. For what it's worth, I've stared quite hard at my code and I can't see the issue. Here's some example code to recreate the problem
#setup some data
from numpy.random import dirichlet, multinomial
from scipy.optimize import check_grad
alpha = [10,30,50]
p = pd.DataFrame(dirichlet(alpha,200))
data = p.apply(lambda x: multinomial(500,x),1)
a = np.array(data.mean(0))
#optimize
result = minimize(lambda a: -1*llike(data,exp(a)),
x0=np.log(a),
method='Nelder-Mead')
x0=result.x
result = minimize(lambda a: -1*llike(data,exp(a)),
x0=x0,
jac=lambda a: -1*gradient_llike(data,np.exp(a)),
method='BFGS')
exp(result.x) #should be close to alpha
#uhoh, let's check that this is right.
check_grad(func=lambda a: -1*llike(data,a),grad=lambda a: -1*gradient_llike(data,a),x0=alpha)
Here's the code for my functions
def log_polya(Z,alpha):
"""
Z is a vector of counts
https://en.wikipedia.org/wiki/Dirichlet-multinomial_distribution
http://mimno.infosci.cornell.edu/info6150/exercises/polya.pdf
"""
if not isinstance(alpha,np.ndarray):
alpha = np.array(alpha)
if not isinstance(Z,np.ndarray):
Z = np.array(Z)
#Concentration Parameter
A = sum(alpha)
#Number of Datapoints
N = sum(Z)
return gammaln(A) - gammaln(N+A) + sum(gammaln(Z+alpha) - gammaln(alpha))
def llike(data,alpha):
return sum(data.apply(log_polya,1,alpha=alpha))
def log_polya_derivative(Z,alpha):
if not isinstance(alpha,np.ndarray):
alpha = np.array(alpha)
if not isinstance(Z,np.ndarray):
Z = np.array(Z)
if 0. in Z+alpha:
Warning("invalid prior parameter,nans should be produced")
#Concentration Parameter
A = sum(alpha)
#Number of Datapoints
N = sum(Z)
K = len(Z)
return np.array([psi(A) - psi(N+A) + psi(Z[i]+alpha[i]) - psi(alpha[i]) for i in xrange(K)])
def gradient_llike(data,alpha):
return np.array(data.apply(log_polya_derivative,1,alpha=alpha).sum(0))
UPDATE: Still curious about this, but for those interested in a working implementation for this problem, the following code for implementing the Minka Fixed Point Algorithm seems to work well (i.e. recovers quickly values that are close to the true dirichlet parameter).
def minka_mle_polya(data):
"""
http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf
"""
data = np.array(data)
K = np.shape(data)[1]
alpha = np.array(data.mean(0))
alpha_new = np.ndarray((K))
precision = 10
while precision > 10**-5:
for k in range(K):
A = sum(alpha)
N = data.sum(1)
numerator = sum(
psi(data[:,k]+alpha[k])-psi(alpha[k])
)
denominator = sum(
psi(N+A)-psi(A)
)
alpha_new[k] = alpha[k]*numerator/denominator
precision = sum(abs(alpha_new - alpha))
alpha_old = np.array(alpha)
alpha = np.array(alpha_new)
print "Gap", precision