nested if condition and break - python

All,
I have a code that looks like this:
if condition
if condition:
do something
elif condition:
do something
else:
break
else:
do something
I have a nested if condition and I introduced a break in the inner "if condition" with the intention to break from that inner if condition if conditions are not met and move on to the "else" of the outer if condition.
In your opinion, does it make sense to do that way? is there a simple way of writing the problem.

The simplest way would be to just repeat your first condition. Then there is no nesting and the else of the inner if is the same as the else of the outer if.
if conditionA and conditionB:
do X
elif conditionA and conditionC:
do Y
else:
do Z
If conditionA is costly, then store the result in some temporary variable.
Another option, you could move your inner if to a function (including any computations and preparations to be performed in between conditionA and conditionB) and have it return False in the else case, then check both conditionA and the result of that function in the outer if. However, IMHO this variant might be much harder to understand.
def inner():
preparation stuff
if conditionB:
do X
elif conditionC:
do Y
else:
return False
return True
if not (conditionA and inner()):
do Z
Or, of course, you could just repeat the do Z part, or put it in a function and call that function in two places:
if conditionA:
preparation stuff
if conditionB:
do X
elif conditionC:
do Y
else:
do Z # should be a function call
else:
do Z # same here

The break command is for loops only, not for if-elif-else construction.
I. e. you may break only from for or while loops.
From Python documentation:
The break statement, like in C, breaks out of the innermost enclosing for or while loop.

Break is used to jump or exit from a loop not an if condition.
You can just do
if condition
{
if condition:
do something
elseif condition:
do something
}
else:{
do something
}

Related

how can else follow a for loop in python [duplicate]

I understand how this construct works:
for i in range(10):
print(i)
if i == 9:
print("Too big - I'm giving up!")
break
else:
print("Completed successfully")
But I don't understand why else is used as the keyword here, since it suggests the code in question only runs if the for block does not complete, which is the opposite of what it does! No matter how I think about it, my brain can't progress seamlessly from the for statement to the else block. To me, continue or continuewith would make more sense (and I'm trying to train myself to read it as such).
I'm wondering how Python coders read this construct in their head (or aloud, if you like). Perhaps I'm missing something that would make such code blocks more easily decipherable?
This question is about the underlying design decision, i.e. why it is useful to be able to write this code. See also Else clause on Python while statement for the specific question about what the syntax means.
A common construct is to run a loop until something is found and then to break out of the loop. The problem is that if I break out of the loop or the loop ends I need to determine which case happened. One method is to create a flag or store variable that will let me do a second test to see how the loop was exited.
For example assume that I need to search through a list and process each item until a flag item is found and then stop processing. If the flag item is missing then an exception needs to be raised.
Using the Python for...else construct you have
for i in mylist:
if i == theflag:
break
process(i)
else:
raise ValueError("List argument missing terminal flag.")
Compare this to a method that does not use this syntactic sugar:
flagfound = False
for i in mylist:
if i == theflag:
flagfound = True
break
process(i)
if not flagfound:
raise ValueError("List argument missing terminal flag.")
In the first case the raise is bound tightly to the for loop it works with. In the second the binding is not as strong and errors may be introduced during maintenance.
It's a strange construct even to seasoned Python coders. When used in conjunction with for-loops it basically means "find some item in the iterable, else if none was found do ...". As in:
found_obj = None
for obj in objects:
if obj.key == search_key:
found_obj = obj
break
else:
print('No object found.')
But anytime you see this construct, a better alternative is to either encapsulate the search in a function:
def find_obj(search_key):
for obj in objects:
if obj.key == search_key:
return obj
Or use a list comprehension:
matching_objs = [o for o in objects if o.key == search_key]
if matching_objs:
print('Found {}'.format(matching_objs[0]))
else:
print('No object found.')
It is not semantically equivalent to the other two versions, but works good enough in non-performance critical code where it doesn't matter whether you iterate the whole list or not. Others may disagree, but I personally would avoid ever using the for-else or while-else blocks in production code.
See also [Python-ideas] Summary of for...else threads
There's an excellent presentation by Raymond Hettinger, titled Transforming Code into Beautiful, Idiomatic Python, in which he briefly addresses the history of the for ... else construct. The relevant section is "Distinguishing multiple exit points in loops" starting at 15:50 and continuing for about three minutes. Here are the high points:
The for ... else construct was devised by Donald Knuth as a replacement for certain GOTO use cases;
Reusing the else keyword made sense because "it's what Knuth used, and people knew, at that time, all [for statements] had embedded an if and GOTO underneath, and they expected the else;"
In hindsight, it should have been called "no break" (or possibly "nobreak"), and then it wouldn't be confusing.*
So, if the question is, "Why don't they change this keyword?" then Cat Plus Plus probably gave the most accurate answer – at this point, it would be too destructive to existing code to be practical. But if the question you're really asking is why else was reused in the first place, well, apparently it seemed like a good idea at the time.
Personally, I like the compromise of commenting # no break in-line wherever the else could be mistaken, at a glance, as belonging inside the loop. It's reasonably clear and concise. This option gets a brief mention in the summary that Bjorn linked at the end of his answer:
For completeness, I should mention that with a slight change in
syntax, programmers who want this syntax can have it right now:
for item in sequence:
process(item)
else: # no break
suite
* Bonus quote from that part of the video: "Just like if we called lambda makefunction, nobody would ask, 'What does lambda do?'"
To make it simple, you can think of it like that;
If it encounters the break command in the for loop, the else part will not be called.
If it does not encounter the break command in the for loop, the else part will be called.
In other words, if for loop iteration is not "broken" with break, the else part will be called.
Because they didn't want to introduce a new keyword to the language. Each one steals an identifier and causes backwards compatibility problems, so it's usually a last resort.
I think documentation has a great explanation of else, continue
[...] it is executed when the loop terminates through exhaustion of the list (with for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement."
Source: Python 2 docs: Tutorial on control flow
The easiest way I found to 'get' what the for/else did, and more importantly, when to use it, was to concentrate on where the break statement jumps to. The For/else construct is a single block. The break jumps out of the block, and so jumps 'over' the else clause. If the contents of the else clause simply followed the for clause, it would never be jumped over, and so the equivalent logic would have to be provided by putting it in an if. This has been said before, but not quite in these words, so it may help somebody else. Try running the following code fragment. I'm wholeheartedly in favour of the 'no break' comment for clarity.
for a in range(3):
print(a)
if a==4: # change value to force break or not
break
else: #no break +10 for whoever thought of this decoration
print('for completed OK')
print('statement after for loop')
EDIT - I notice this question is still running
Second better thoughts ...
The 'no break' comment is a negative. It's so much easier to understand a positive assertion, and that is that the for iterable was exhausted.
for a in range(3):
print(a)
if a==4: # change value to force break or not
print('ending for loop with a break')
break
else: # for iterable exhausted
print('ending for loop as iterable exhausted')
print('for loop ended one way or another')
That also reinforces this interpretation
if iterable_supplies_a_value:
run_the_for_with_that_value
else:
do_something_else
I read it something like:
If still on the conditions to run the loop, do stuff, else do something else.
Since the technical part has been pretty much answered, my comment is just in relation with the confusion that produce this recycled keyword.
Being Python a very eloquent programming language, the misuse of a keyword is more notorious. The else keyword perfectly describes part of the flow of a decision tree, "if you can't do this, (else) do that". It's implied in our own language.
Instead, using this keyword with while and for statements creates confusion. The reason, our career as programmers has taught us that the else statement resides within a decision tree; its logical scope, a wrapper that conditionally return a path to follow. Meanwhile, loop statements have a figurative explicit goal to reach something. The goal is met after continuous iterations of a process.
if / else indicate a path to follow. Loops follow a path until the "goal" is completed.
The issue is that else is a word that clearly define the last option in a condition. The semantics of the word are both shared by Python and Human Language. But the else word in Human Language is never used to indicate the actions someone or something will take after something is completed. It will be used if, in the process of completing it, an issue rises (more like a break statement).
At the end, the keyword will remain in Python. It's clear it was mistake, clearer when every programmer tries to come up with a story to understand its usage like some mnemonic device. I'd have loved if they have chosen instead the keyword then. I believe that this keyword fits perfectly in that iterative flow, the payoff after the loop.
It resembles that situation that some child has after following every step in assembling a toy: And THEN what Dad?
Great answers are:
this which explain the history, and
this gives the right
citation to ease yours translation/understanding.
My note here comes from what Donald Knuth once said (sorry can't find reference) that there is a construct where while-else is indistinguishable from if-else, namely (in Python):
x = 2
while x > 3:
print("foo")
break
else:
print("boo")
has the same flow (excluding low level differences) as:
x = 2
if x > 3:
print("foo")
else:
print("boo")
The point is that if-else can be considered as syntactic sugar for while-else which has implicit break at the end of its if block. The opposite implication, that while loop is extension to if, is more common (it's just repeated/looped conditional check), because if is often taught before while. However that isn't true because that would mean else block in while-else would be executed each time when condition is false.
To ease your understanding think of it that way:
Without break, return, etc., loop ends only when condition is no longer true and in such case else block will also execute once. In case of Python for you must consider C-style for loops (with conditions) or translate them to while.
Another note:
Premature break, return, etc. inside loop makes impossible for condition to become false because execution jumped out of the loop while condition was true and it would never come back to check it again.
I'm wondering how Python coders read this construct in their head (or aloud, if you like).
I simply think in my head:
"else no break was encountered..."
That's it!
This is because the else clause executes only if a break statement was NOT encountered in the for loop.
Reference:
See here: https://book.pythontips.com/en/latest/for_-_else.html#else-clause (emphasis added, and "not" changed to "NOT"):
for loops also have an else clause which most of us are unfamiliar with. The else clause executes after the loop completes normally. This means that the loop did NOT encounter a break statement.
That being said, I recommend against using this unusual feature of the language. Don't use the else clause after a for loop. It's confusing to most people, and just slows down their ability to read and understand the code.
I read it like "When the iterable is exhausted completely, and the execution is about to proceed to the next statement after finishing the for, the else clause will be executed." Thus, when the iteration is broken by break, this will not be executed.
I agree, it's more like an 'elif not [condition(s) raising break]'.
I know this is an old thread, but I am looking into the same question right now, and I'm not sure anyone has captured the answer to this question in the way I understand it.
For me, there are three ways of "reading" the else in For... else or While... else statements, all of which are equivalent, are:
else == if the loop completes normally (without a break or error)
else == if the loop does not encounter a break
else == else not (condition raising break) (presumably there is such a condition, or you wouldn't have a loop)
So, essentially, the "else" in a loop is really an "elif ..." where '...' is (1) no break, which is equivalent to (2) NOT [condition(s) raising break].
I think the key is that the else is pointless without the 'break', so a for...else includes:
for:
do stuff
conditional break # implied by else
else not break:
do more stuff
So, essential elements of a for...else loop are as follows, and you would read them in plainer English as:
for:
do stuff
condition:
break
else: # read as "else not break" or "else not condition"
do more stuff
As the other posters have said, a break is generally raised when you are able to locate what your loop is looking for, so the else: becomes "what to do if target item not located".
Example
You can also use exception handling, breaks, and for loops all together.
for x in range(0,3):
print("x: {}".format(x))
if x == 2:
try:
raise AssertionError("ASSERTION ERROR: x is {}".format(x))
except:
print(AssertionError("ASSERTION ERROR: x is {}".format(x)))
break
else:
print("X loop complete without error")
Result
x: 0
x: 1
x: 2
ASSERTION ERROR: x is 2
----------
# loop not completed (hit break), so else didn't run
Example
Simple example with a break being hit.
for y in range(0,3):
print("y: {}".format(y))
if y == 2: # will be executed
print("BREAK: y is {}\n----------".format(y))
break
else: # not executed because break is hit
print("y_loop completed without break----------\n")
Result
y: 0
y: 1
y: 2
BREAK: y is 2
----------
# loop not completed (hit break), so else didn't run
Example
Simple example where there no break, no condition raising a break, and no error are encountered.
for z in range(0,3):
print("z: {}".format(z))
if z == 4: # will not be executed
print("BREAK: z is {}\n".format(y))
break
if z == 4: # will not be executed
raise AssertionError("ASSERTION ERROR: x is {}".format(x))
else:
print("z_loop complete without break or error\n----------\n")
Result
z: 0
z: 1
z: 2
z_loop complete without break or error
----------
The else keyword can be confusing here, and as many people have pointed out, something like nobreak, notbreak is more appropriate.
In order to understand for ... else ... logically, compare it with try...except...else, not if...else..., most of python programmers are familiar with the following code:
try:
do_something()
except:
print("Error happened.") # The try block threw an exception
else:
print("Everything is find.") # The try block does things just find.
Similarly, think of break as a special kind of Exception:
for x in iterable:
do_something(x)
except break:
pass # Implied by Python's loop semantics
else:
print('no break encountered') # No break statement was encountered
The difference is python implies except break and you can not write it out, so it becomes:
for x in iterable:
do_something(x)
else:
print('no break encountered') # No break statement was encountered
Yes, I know this comparison can be difficult and tiresome, but it does clarify the confusion.
Codes in else statement block will be executed when the for loop was not be broke.
for x in xrange(1,5):
if x == 5:
print 'find 5'
break
else:
print 'can not find 5!'
#can not find 5!
From the docs: break and continue Statements, and else Clauses on Loops
Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of the list (with for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement. This is exemplified by the following loop, which searches for prime numbers:
>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print(n, 'equals', x, '*', n//x)
... break
... else:
... # loop fell through without finding a factor
... print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3
(Yes, this is the correct code. Look closely: the else clause belongs to the for loop, not the if statement.)
When used with a loop, the else clause has more in common with the else clause of a try statement than it does that of if statements: a try statement’s else clause runs when no exception occurs, and a loop’s else clause runs when no break occurs. For more on the try statement and exceptions, see Handling Exceptions.
The continue statement, also borrowed from C, continues with the next iteration of the loop:
>>> for num in range(2, 10):
... if num % 2 == 0:
... print("Found an even number", num)
... continue
... print("Found a number", num)
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9
Here's a way to think about it that I haven't seen anyone else mention above:
First, remember that for-loops are basically just syntactic sugar around while-loops. For example, the loop
for item in sequence:
do_something(item)
can be rewritten (approximately) as
item = None
while sequence.hasnext():
item = sequence.next()
do_something(item)
Second, remember that while-loops are basically just repeated if-blocks! You can always read a while-loop as "if this condition is true, execute the body, then come back and check again".
So while/else makes perfect sense: It's the exact same structure as if/else, with the added functionality of looping until the condition becomes false instead of just checking the condition once.
And then for/else makes perfect sense too: because all for-loops are just syntactic sugar on top of while-loops, you just need to figure out what the underlying while-loop's implicit conditional is, and then the else corresponds to when that condition becomes False.
for i in range(3):
print(i)
if i == 2:
print("Too big - I'm giving up!")
break;
else:
print("Completed successfully")
"else" here is crazily simple, just mean
1, "if for clause is completed"
for i in range(3):
print(i)
if i == 2:
print("Too big - I'm giving up!")
break;
if "for clause is completed":
print("Completed successfully")
It's wielding to write such long statements as "for clause is completed", so they introduce "else".
else here is a if in its nature.
2, However, How about for clause is not run at all
In [331]: for i in range(0):
...: print(i)
...:
...: if i == 9:
...: print("Too big - I'm giving up!")
...: break
...: else:
...: print("Completed successfully")
...:
Completed successfully
So it's completely statement is logic combination:
if "for clause is completed" or "not run at all":
do else stuff
or put it this way:
if "for clause is not partially run":
do else stuff
or this way:
if "for clause not encounter a break":
do else stuff
Here's another idiomatic use case besides searching. Let's say you wanted to wait for a condition to be true, e.g. a port to be open on a remote server, along with some timeout. Then you could utilize a while...else construct like so:
import socket
import time
sock = socket.socket()
timeout = time.time() + 15
while time.time() < timeout:
if sock.connect_ex(('127.0.0.1', 80)) is 0:
print('Port is open now!')
break
print('Still waiting...')
else:
raise TimeoutError()
I was just trying to make sense of it again myself. I found that the following helps!
• Think of the else as being paired with the if inside the loop (instead of with the for) - if condition is met then break the loop, else do this - except it's one else paired with multiple ifs!
• If no ifs were satisfied at all, then do the else.
• The multiple ifs can also actually be thought of as if-elifs!
for i in range(10):
print(i)
if i == 9:
print("Too big - I'm giving up!")
break;
else:
print("Completed successfully")
break keyword is used to end the loop. if the i = 9 then the loop will end. while any if conditions did not much the satisfaction, then the else will do the rest part.
The else clause executes after the loop completes normally. This means The :==>
else block just after for/while is executed only when the loop is NOT terminated by a break statement
for item in lista:
if(obj == item ):
print("if True then break will run and else not run")
break;
else:
print("in else => obj not fount ")
You could think of it like,
else as in the rest of the stuff, or the other stuff, that wasn't done in the loop.
A loop's else branch executes once, regardless of whether the loop enters its body or not, unless the loop body is entered but does not finish. That is, inside the loop a break or return statement is encountered.
my_list = []
for i in my_list:
print(i, end=',')
else:
print('loop did not enter')
##################################
for i in range(1,6,1):
print(i, end=',')
else:
print('loop completed successfully:', i)
##################################
for i in range(1,6,1):
if i == 3:
print('loop did not finish:', i)
break
print(i, end=',')
else:
print('else:', i)
Output:
loop did not enter
1,2,3,4,5,loop completed successfully: 5
1,2,loop did not finish: 3
It's the same for while-else.
import random
random.seed(8)
i = 100
while i < 90:
print(i, end=',')
i = random.randint(0,100)
else:
print('loop did not enter:', i)
##################################
i = 25
while i < 90:
print(i, end=',')
i = random.randint(0,100)
else:
print('loop completed successfully:', i)
##################################
i = 25
while i < 90:
if i % 10 == 0:
print('loop did not finish:', i)
break
print(i, end=',')
i = random.randint(0,100)
else:
print('else:', i)
Output:
loop did not enter: 100
25,29,47,48,16,24,loop completed successfully: 90
25,5,loop did not finish: 10
I consider the structure as for (if) A else B, and for(if)-else is a special if-else, roughly. It may help to understand else.
A and B is executed at most once, which is the same as if-else structure.
for(if) can be considered as a special if, which does a loop to try to meet the if condition. Once the if condition is met, A and break; Else, B.

How to break a condition statement and go to elif/else once reached inside the condition block?

I have an if/elif/else block in my code, however, I figured out that there is a time my code goes through the elif statement but by the end of the elif block I realized that my inputs are not being applied to the code inside. So that means I needed to check the next elif/else. Is there a way I can break the current "condition" block and consider it as if it was not visited?
I won't be able to share my code but I can try to give you an example:
group = [A, B, C]
if condition:
pass
elif len(group) >= 3:
for each in group:
if not processed(each):
process(each)
else:
# do something else
There is a lot going through the if block, but there is a time everything in the group is processed, and I would like to still visit the else block if that happens as if I never went through the elif block.
You could change the else to an if and use a boolean. It is a bit hackish though...
do_else_block = True
if condition:
do_else_block = False
pass
elif len(group) >= 3:
for each in group:
if not processed(each):
do_else_block = False
process(each)
if do_else_block:
# do something else
Not all of your code needs to be in an if or else block. If you want something to happen regardless of the if condition, just unindent it.
group = [A,B,C]
if not condition and len(group) >=3: # combine the two checks into one "if"
for each in group:
if not processed(each):
process(each)
do something else # this happens regardless because it's not in an "else"
Going off the interpretation in Solomon's answer, I'd express that same logic as:
if len(group) >= 3 and not condition:
to_process = [e for e in group if not processed(e)]
else:
to_process = []
for each in to_process:
process(each)
if not condition and not to_process:
# do something else

Is there an “elif” equivalent in for/else statements

In if/elif/else statements, elifs are checked if the if is false, and if both the if and elifs are false then the else is run.
For loops have something similar with the else keyword - if the loop doesn’t encounter a break, then the code inside else is run.
So, for loops have an else equivalent to if/elif/else statements. My question is however, is there an equivalent to elif.
I’m thinking that it would be something along the lines of:
Run for loop. If no break is encountered, go onto the next
specified loop
Run the specified for loop, if no break is encountered, go onto the
next.
Repeat until no more loops are left, and if no breaks have been
encountered up to this point, run the else.
I’m aware you can emulate this effect. Just as you can do this with if/else statements to emulate the elif:
if condition:
do_something()
else:
if another_condition:
do_something_else()
else:
default()
you can do this with for loops:
for x in y:
if condition:
break
else:
for n in m:
if another_condition:
break
else:
default()
While the above code is valid, like with if/else statements, it’s faily ugly and I was hoping to find a better alternative.
No. If you look at the grammar of the for statement:
for_stmt:
| 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_block]
. . .
It ends in an optional else_block, but nothing else. Your emulation is as good as you'll get I believe.
What if you make the variable that determins whether you should continue global? Since if any of the conditions are met, you don't want to continue with any of the following loops this should work:
def do_something():
for i in range(3):
condition = i < 3
if not condition:
return False
return True
def do_something_else():
for i in range(3):
condition = i < 2
if not condition:
return False
return True
condition_met = True
if condition_met:
print('we start here')
condition_met = do_something()
if condition_met:
print('and should get here')
condition_met = do_something_else()
if condition_met:
print('but not here')
It may not be amazing, but at least it's not nested, and sort of looks like the syntax you're looking for.
You could also use a while loop:
operations = [do_something, do_something_else]
i = 0
while condition_met and i < len(operations):
condition_met = operations[i]()
While the for-loop syntax doesn't allow this (as shown by #Carcigenicate), you can keep nesting levels down by using a try-else:
try:
for x in y:
if z:
raise SomeException
for m in n:
if o:
raise SomeException
except SomeException:
pass
else:
default()
A cleaner way, however, might wrap the loops in functions:
# these can be more complex non-anonymous functions
f1 = lambda: any(1 for x in y if z)
f2 = lambda: any(1 for m in n if o)
f3 = ...
if not any(f() for f in (f1, f2, f3)):
default()
I'm not sure, but maybe while will be ok for you
i = 0
while i < 10:
if condition:
break
i += 1

Python does not allow multiple return() statements in ternary; possible alternative that is also aesthetically pleasing?

I am developing a text based RPG (graphics will be implemented later) and I am writing a method to determine whether a room a player is trying to go to exists or not. In this method I have multiple logic statements that determine what room the player is trying to get to based on the direction they enter and whether that "room" == 0 (my place holder for an empty space in the world/dungeon array). Although I can write a conventional logic statement for this:
if condition:
if otherCondition:
return(True)
else:
return(False)
a ternary is much more aestheticaly pleasing:
if condition:
return(True) if otherCondition else return(False)
But of course, that does not work. I am looking for something that functions as the conventional logic statement but is also "pleasing to the eye", like a ternary. In my code the logic statement is repeated four times, and the conventional logic statement would be displeasing to read.
I am using Python 3.5.1 on Windows 7.
The issue with your statement isn't the ternary part, it's the repeated return. Instead use:
if condition:
return True if otherCondition else False
Here, the result of the expression True if otherCondition else False is returned.
This could be written more concisely as:
if condition:
return bool(otherCondition)
Use just a single return with ternary statement:
return 'something' if someCondition else 'something else'
For you case is enough just :
if condition:
return otherCondition
# or if "otherCondition is not bool you can use: return bool(condition)
z = x if success else y
# this tallies z = success ? x : y, where success is a bool. Either True or False
Here the expression on the right returns x or y depending on if success evaluates to True or False respectively. As this is an expression it can be used with a return statement
return x if success else y
if condition:
return othercondition
Perhaps you should illustrate with an example, because it can be simplified to return the result of the other condition.
if condition:
return otherCondition
What ever happened to just:
if condition:
# tis very simple; if room is equal to 0, the operation is true, thus `True` will be returned
# otherwise `False`.. no mystery
return room == 0

Why does python use 'else' after for and while loops?

I understand how this construct works:
for i in range(10):
print(i)
if i == 9:
print("Too big - I'm giving up!")
break
else:
print("Completed successfully")
But I don't understand why else is used as the keyword here, since it suggests the code in question only runs if the for block does not complete, which is the opposite of what it does! No matter how I think about it, my brain can't progress seamlessly from the for statement to the else block. To me, continue or continuewith would make more sense (and I'm trying to train myself to read it as such).
I'm wondering how Python coders read this construct in their head (or aloud, if you like). Perhaps I'm missing something that would make such code blocks more easily decipherable?
This question is about the underlying design decision, i.e. why it is useful to be able to write this code. See also Else clause on Python while statement for the specific question about what the syntax means.
A common construct is to run a loop until something is found and then to break out of the loop. The problem is that if I break out of the loop or the loop ends I need to determine which case happened. One method is to create a flag or store variable that will let me do a second test to see how the loop was exited.
For example assume that I need to search through a list and process each item until a flag item is found and then stop processing. If the flag item is missing then an exception needs to be raised.
Using the Python for...else construct you have
for i in mylist:
if i == theflag:
break
process(i)
else:
raise ValueError("List argument missing terminal flag.")
Compare this to a method that does not use this syntactic sugar:
flagfound = False
for i in mylist:
if i == theflag:
flagfound = True
break
process(i)
if not flagfound:
raise ValueError("List argument missing terminal flag.")
In the first case the raise is bound tightly to the for loop it works with. In the second the binding is not as strong and errors may be introduced during maintenance.
It's a strange construct even to seasoned Python coders. When used in conjunction with for-loops it basically means "find some item in the iterable, else if none was found do ...". As in:
found_obj = None
for obj in objects:
if obj.key == search_key:
found_obj = obj
break
else:
print('No object found.')
But anytime you see this construct, a better alternative is to either encapsulate the search in a function:
def find_obj(search_key):
for obj in objects:
if obj.key == search_key:
return obj
Or use a list comprehension:
matching_objs = [o for o in objects if o.key == search_key]
if matching_objs:
print('Found {}'.format(matching_objs[0]))
else:
print('No object found.')
It is not semantically equivalent to the other two versions, but works good enough in non-performance critical code where it doesn't matter whether you iterate the whole list or not. Others may disagree, but I personally would avoid ever using the for-else or while-else blocks in production code.
See also [Python-ideas] Summary of for...else threads
There's an excellent presentation by Raymond Hettinger, titled Transforming Code into Beautiful, Idiomatic Python, in which he briefly addresses the history of the for ... else construct. The relevant section is "Distinguishing multiple exit points in loops" starting at 15:50 and continuing for about three minutes. Here are the high points:
The for ... else construct was devised by Donald Knuth as a replacement for certain GOTO use cases;
Reusing the else keyword made sense because "it's what Knuth used, and people knew, at that time, all [for statements] had embedded an if and GOTO underneath, and they expected the else;"
In hindsight, it should have been called "no break" (or possibly "nobreak"), and then it wouldn't be confusing.*
So, if the question is, "Why don't they change this keyword?" then Cat Plus Plus probably gave the most accurate answer – at this point, it would be too destructive to existing code to be practical. But if the question you're really asking is why else was reused in the first place, well, apparently it seemed like a good idea at the time.
Personally, I like the compromise of commenting # no break in-line wherever the else could be mistaken, at a glance, as belonging inside the loop. It's reasonably clear and concise. This option gets a brief mention in the summary that Bjorn linked at the end of his answer:
For completeness, I should mention that with a slight change in
syntax, programmers who want this syntax can have it right now:
for item in sequence:
process(item)
else: # no break
suite
* Bonus quote from that part of the video: "Just like if we called lambda makefunction, nobody would ask, 'What does lambda do?'"
To make it simple, you can think of it like that;
If it encounters the break command in the for loop, the else part will not be called.
If it does not encounter the break command in the for loop, the else part will be called.
In other words, if for loop iteration is not "broken" with break, the else part will be called.
Because they didn't want to introduce a new keyword to the language. Each one steals an identifier and causes backwards compatibility problems, so it's usually a last resort.
I think documentation has a great explanation of else, continue
[...] it is executed when the loop terminates through exhaustion of the list (with for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement."
Source: Python 2 docs: Tutorial on control flow
The easiest way I found to 'get' what the for/else did, and more importantly, when to use it, was to concentrate on where the break statement jumps to. The For/else construct is a single block. The break jumps out of the block, and so jumps 'over' the else clause. If the contents of the else clause simply followed the for clause, it would never be jumped over, and so the equivalent logic would have to be provided by putting it in an if. This has been said before, but not quite in these words, so it may help somebody else. Try running the following code fragment. I'm wholeheartedly in favour of the 'no break' comment for clarity.
for a in range(3):
print(a)
if a==4: # change value to force break or not
break
else: #no break +10 for whoever thought of this decoration
print('for completed OK')
print('statement after for loop')
EDIT - I notice this question is still running
Second better thoughts ...
The 'no break' comment is a negative. It's so much easier to understand a positive assertion, and that is that the for iterable was exhausted.
for a in range(3):
print(a)
if a==4: # change value to force break or not
print('ending for loop with a break')
break
else: # for iterable exhausted
print('ending for loop as iterable exhausted')
print('for loop ended one way or another')
That also reinforces this interpretation
if iterable_supplies_a_value:
run_the_for_with_that_value
else:
do_something_else
I read it something like:
If still on the conditions to run the loop, do stuff, else do something else.
Since the technical part has been pretty much answered, my comment is just in relation with the confusion that produce this recycled keyword.
Being Python a very eloquent programming language, the misuse of a keyword is more notorious. The else keyword perfectly describes part of the flow of a decision tree, "if you can't do this, (else) do that". It's implied in our own language.
Instead, using this keyword with while and for statements creates confusion. The reason, our career as programmers has taught us that the else statement resides within a decision tree; its logical scope, a wrapper that conditionally return a path to follow. Meanwhile, loop statements have a figurative explicit goal to reach something. The goal is met after continuous iterations of a process.
if / else indicate a path to follow. Loops follow a path until the "goal" is completed.
The issue is that else is a word that clearly define the last option in a condition. The semantics of the word are both shared by Python and Human Language. But the else word in Human Language is never used to indicate the actions someone or something will take after something is completed. It will be used if, in the process of completing it, an issue rises (more like a break statement).
At the end, the keyword will remain in Python. It's clear it was mistake, clearer when every programmer tries to come up with a story to understand its usage like some mnemonic device. I'd have loved if they have chosen instead the keyword then. I believe that this keyword fits perfectly in that iterative flow, the payoff after the loop.
It resembles that situation that some child has after following every step in assembling a toy: And THEN what Dad?
Great answers are:
this which explain the history, and
this gives the right
citation to ease yours translation/understanding.
My note here comes from what Donald Knuth once said (sorry can't find reference) that there is a construct where while-else is indistinguishable from if-else, namely (in Python):
x = 2
while x > 3:
print("foo")
break
else:
print("boo")
has the same flow (excluding low level differences) as:
x = 2
if x > 3:
print("foo")
else:
print("boo")
The point is that if-else can be considered as syntactic sugar for while-else which has implicit break at the end of its if block. The opposite implication, that while loop is extension to if, is more common (it's just repeated/looped conditional check), because if is often taught before while. However that isn't true because that would mean else block in while-else would be executed each time when condition is false.
To ease your understanding think of it that way:
Without break, return, etc., loop ends only when condition is no longer true and in such case else block will also execute once. In case of Python for you must consider C-style for loops (with conditions) or translate them to while.
Another note:
Premature break, return, etc. inside loop makes impossible for condition to become false because execution jumped out of the loop while condition was true and it would never come back to check it again.
I'm wondering how Python coders read this construct in their head (or aloud, if you like).
I simply think in my head:
"else no break was encountered..."
That's it!
This is because the else clause executes only if a break statement was NOT encountered in the for loop.
Reference:
See here: https://book.pythontips.com/en/latest/for_-_else.html#else-clause (emphasis added, and "not" changed to "NOT"):
for loops also have an else clause which most of us are unfamiliar with. The else clause executes after the loop completes normally. This means that the loop did NOT encounter a break statement.
That being said, I recommend against using this unusual feature of the language. Don't use the else clause after a for loop. It's confusing to most people, and just slows down their ability to read and understand the code.
I read it like "When the iterable is exhausted completely, and the execution is about to proceed to the next statement after finishing the for, the else clause will be executed." Thus, when the iteration is broken by break, this will not be executed.
I agree, it's more like an 'elif not [condition(s) raising break]'.
I know this is an old thread, but I am looking into the same question right now, and I'm not sure anyone has captured the answer to this question in the way I understand it.
For me, there are three ways of "reading" the else in For... else or While... else statements, all of which are equivalent, are:
else == if the loop completes normally (without a break or error)
else == if the loop does not encounter a break
else == else not (condition raising break) (presumably there is such a condition, or you wouldn't have a loop)
So, essentially, the "else" in a loop is really an "elif ..." where '...' is (1) no break, which is equivalent to (2) NOT [condition(s) raising break].
I think the key is that the else is pointless without the 'break', so a for...else includes:
for:
do stuff
conditional break # implied by else
else not break:
do more stuff
So, essential elements of a for...else loop are as follows, and you would read them in plainer English as:
for:
do stuff
condition:
break
else: # read as "else not break" or "else not condition"
do more stuff
As the other posters have said, a break is generally raised when you are able to locate what your loop is looking for, so the else: becomes "what to do if target item not located".
Example
You can also use exception handling, breaks, and for loops all together.
for x in range(0,3):
print("x: {}".format(x))
if x == 2:
try:
raise AssertionError("ASSERTION ERROR: x is {}".format(x))
except:
print(AssertionError("ASSERTION ERROR: x is {}".format(x)))
break
else:
print("X loop complete without error")
Result
x: 0
x: 1
x: 2
ASSERTION ERROR: x is 2
----------
# loop not completed (hit break), so else didn't run
Example
Simple example with a break being hit.
for y in range(0,3):
print("y: {}".format(y))
if y == 2: # will be executed
print("BREAK: y is {}\n----------".format(y))
break
else: # not executed because break is hit
print("y_loop completed without break----------\n")
Result
y: 0
y: 1
y: 2
BREAK: y is 2
----------
# loop not completed (hit break), so else didn't run
Example
Simple example where there no break, no condition raising a break, and no error are encountered.
for z in range(0,3):
print("z: {}".format(z))
if z == 4: # will not be executed
print("BREAK: z is {}\n".format(y))
break
if z == 4: # will not be executed
raise AssertionError("ASSERTION ERROR: x is {}".format(x))
else:
print("z_loop complete without break or error\n----------\n")
Result
z: 0
z: 1
z: 2
z_loop complete without break or error
----------
The else keyword can be confusing here, and as many people have pointed out, something like nobreak, notbreak is more appropriate.
In order to understand for ... else ... logically, compare it with try...except...else, not if...else..., most of python programmers are familiar with the following code:
try:
do_something()
except:
print("Error happened.") # The try block threw an exception
else:
print("Everything is find.") # The try block does things just find.
Similarly, think of break as a special kind of Exception:
for x in iterable:
do_something(x)
except break:
pass # Implied by Python's loop semantics
else:
print('no break encountered') # No break statement was encountered
The difference is python implies except break and you can not write it out, so it becomes:
for x in iterable:
do_something(x)
else:
print('no break encountered') # No break statement was encountered
Yes, I know this comparison can be difficult and tiresome, but it does clarify the confusion.
Codes in else statement block will be executed when the for loop was not be broke.
for x in xrange(1,5):
if x == 5:
print 'find 5'
break
else:
print 'can not find 5!'
#can not find 5!
From the docs: break and continue Statements, and else Clauses on Loops
Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of the list (with for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement. This is exemplified by the following loop, which searches for prime numbers:
>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print(n, 'equals', x, '*', n//x)
... break
... else:
... # loop fell through without finding a factor
... print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3
(Yes, this is the correct code. Look closely: the else clause belongs to the for loop, not the if statement.)
When used with a loop, the else clause has more in common with the else clause of a try statement than it does that of if statements: a try statement’s else clause runs when no exception occurs, and a loop’s else clause runs when no break occurs. For more on the try statement and exceptions, see Handling Exceptions.
The continue statement, also borrowed from C, continues with the next iteration of the loop:
>>> for num in range(2, 10):
... if num % 2 == 0:
... print("Found an even number", num)
... continue
... print("Found a number", num)
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9
Here's a way to think about it that I haven't seen anyone else mention above:
First, remember that for-loops are basically just syntactic sugar around while-loops. For example, the loop
for item in sequence:
do_something(item)
can be rewritten (approximately) as
item = None
while sequence.hasnext():
item = sequence.next()
do_something(item)
Second, remember that while-loops are basically just repeated if-blocks! You can always read a while-loop as "if this condition is true, execute the body, then come back and check again".
So while/else makes perfect sense: It's the exact same structure as if/else, with the added functionality of looping until the condition becomes false instead of just checking the condition once.
And then for/else makes perfect sense too: because all for-loops are just syntactic sugar on top of while-loops, you just need to figure out what the underlying while-loop's implicit conditional is, and then the else corresponds to when that condition becomes False.
for i in range(3):
print(i)
if i == 2:
print("Too big - I'm giving up!")
break;
else:
print("Completed successfully")
"else" here is crazily simple, just mean
1, "if for clause is completed"
for i in range(3):
print(i)
if i == 2:
print("Too big - I'm giving up!")
break;
if "for clause is completed":
print("Completed successfully")
It's wielding to write such long statements as "for clause is completed", so they introduce "else".
else here is a if in its nature.
2, However, How about for clause is not run at all
In [331]: for i in range(0):
...: print(i)
...:
...: if i == 9:
...: print("Too big - I'm giving up!")
...: break
...: else:
...: print("Completed successfully")
...:
Completed successfully
So it's completely statement is logic combination:
if "for clause is completed" or "not run at all":
do else stuff
or put it this way:
if "for clause is not partially run":
do else stuff
or this way:
if "for clause not encounter a break":
do else stuff
Here's another idiomatic use case besides searching. Let's say you wanted to wait for a condition to be true, e.g. a port to be open on a remote server, along with some timeout. Then you could utilize a while...else construct like so:
import socket
import time
sock = socket.socket()
timeout = time.time() + 15
while time.time() < timeout:
if sock.connect_ex(('127.0.0.1', 80)) is 0:
print('Port is open now!')
break
print('Still waiting...')
else:
raise TimeoutError()
I was just trying to make sense of it again myself. I found that the following helps!
• Think of the else as being paired with the if inside the loop (instead of with the for) - if condition is met then break the loop, else do this - except it's one else paired with multiple ifs!
• If no ifs were satisfied at all, then do the else.
• The multiple ifs can also actually be thought of as if-elifs!
for i in range(10):
print(i)
if i == 9:
print("Too big - I'm giving up!")
break;
else:
print("Completed successfully")
break keyword is used to end the loop. if the i = 9 then the loop will end. while any if conditions did not much the satisfaction, then the else will do the rest part.
The else clause executes after the loop completes normally. This means The :==>
else block just after for/while is executed only when the loop is NOT terminated by a break statement
for item in lista:
if(obj == item ):
print("if True then break will run and else not run")
break;
else:
print("in else => obj not fount ")
You could think of it like,
else as in the rest of the stuff, or the other stuff, that wasn't done in the loop.
A loop's else branch executes once, regardless of whether the loop enters its body or not, unless the loop body is entered but does not finish. That is, inside the loop a break or return statement is encountered.
my_list = []
for i in my_list:
print(i, end=',')
else:
print('loop did not enter')
##################################
for i in range(1,6,1):
print(i, end=',')
else:
print('loop completed successfully:', i)
##################################
for i in range(1,6,1):
if i == 3:
print('loop did not finish:', i)
break
print(i, end=',')
else:
print('else:', i)
Output:
loop did not enter
1,2,3,4,5,loop completed successfully: 5
1,2,loop did not finish: 3
It's the same for while-else.
import random
random.seed(8)
i = 100
while i < 90:
print(i, end=',')
i = random.randint(0,100)
else:
print('loop did not enter:', i)
##################################
i = 25
while i < 90:
print(i, end=',')
i = random.randint(0,100)
else:
print('loop completed successfully:', i)
##################################
i = 25
while i < 90:
if i % 10 == 0:
print('loop did not finish:', i)
break
print(i, end=',')
i = random.randint(0,100)
else:
print('else:', i)
Output:
loop did not enter: 100
25,29,47,48,16,24,loop completed successfully: 90
25,5,loop did not finish: 10
I consider the structure as for (if) A else B, and for(if)-else is a special if-else, roughly. It may help to understand else.
A and B is executed at most once, which is the same as if-else structure.
for(if) can be considered as a special if, which does a loop to try to meet the if condition. Once the if condition is met, A and break; Else, B.

Categories