In a module, I would like to ask an instance of a class to update a class attribute if needed. Here's an example of the code:
class ExampleClass:
def __init__(self):
self.data1 = None
self.data2 = None
self.data3 = None
def updateData1(self, withInfo):
self.dataUpdater(self.data1, withInfo)
def updateData2(self, withInfo):
self.dataUpdater(self.data2, withInfo)
def updateData3(self, withInfo):
self.dataUpdater(self.data3, withInfo)
def dataUpdater(self, data, withInfo):
# Very long and complex class function.
# I would like to keep this logic in one function instead of making copies of it.
data = 'new data'
But when that data is updated and I try to get that particular data in another module it's still None. Now I understand what is going on. I am basically rewriting and making a new variable in the dataUpdater called data. And my particular class attribute is never being updated. My question is how can I update the data (the particular class attribute) that I passed in?
I have spent half the day trying to figure this out and I can not seem to find anything like what I am trying.
You could try setting the attribute you want to update with setattr. ie
class ExampleClass:
def __init__(self):
self.data1 = None
self.data2 = None
self.data3 = None
def updateData1(self, withInfo):
self.dataUpdater('data1', withInfo)
def updateData2(self, withInfo):
self.dataUpdater('data2', withInfo)
def updateData3(self, withInfo):
self.dataUpdater('data3', withInfo)
def dataUpdater(self, attr_name, withInfo):
# Very long and complex class function.
# I would like to keep this logic in one function instead of making copies of it.
setattr(self, attr_name, 'new_data')
You are attempting to pass the self.data# variables by reference, which is not something you can control easily in Python as in languages like C. If you would like to keep a similar implementation, consider using an array for your object, and passing an index for the value to update to the dataUpdater method.
Related
In order not to extend myself too much I will give a basic and hypothetical example of what I am trying to do.
Suppose the following class:
class foo():
def __init__(self):
self.keywords = []
## this method returns the entire list
def get_keywords(self):
return self.keywords
def set_keywords(self, value):
self.keywords.append(value)
But I want to code this in a pythonic way using the #property decorator.
My (wrong) attempt to do this:
class foo:
def __init__(self):
self.key = []
#property
def key(self):
return self.__key
#key.setter
def key(self, value):
self.__key.append(value)
So, whats is wrong in my attempt ?
ps: English is not my native language and I hope my doubt is understandable.
In your original code, self.set_keywords only appends to an existing list; it does not let you initialize the value of keywords to an arbitrary list. This restriction is preserved in your property-based code, which means you cannot assign directly to self.key; you have to initialize the underlying list in __init__ directly.
class foo:
def __init__(self):
# self.key = [] is equivalent to `self.__key.append([])`, but
# self.__key doesn't exist yet. (And would be wrong even if it did.)
self.__key = []
#property
def key(self):
return self.__key
#key.setter
def key(self, value):
self.__key.append(value)
However, this means an assignment like self.key = 3 doesn't actually perform what most people would expect of an assignment. It doesn't overwrite the old value, it adds to it instead. Use the setter to provide a fixed list, but a different method to add to an existing one.
class foo:
def __init__(self):
self.__keys = []
#property
def keys(self):
return self.__keys
#keys.setter
def keys(self, values):
self.__keys = values
def add_key(self, value):
self.__key.append(value)
And finally, it's not necessarily more Pythonic to use a property if you don't actually do any sort of extra work or validation in the getter or setter. If all you are doing is wrapping access to an underlying value, just let the value be used directly.
class foo:
def __init__(self):
self.keys = []
self.keys = [1,2,3]
print(self.keys)
self.keys.append(4)
# etc
The nice thing about properties is that if you start by allowing direct access to keys, then nothing about how you use keys changes if you later decide to replace it with a property.
You can give this a try:
class Foo:
def __init__(self):
self._key = []
#property
def key(self):
return self._key
#key.setter
def key(self, value):
self._key = value
Here are my two cents:
Rename the class foo to Foo
You can't initialize self.key, as this is the property, so initialize the correct variable in the constructor (i.e. __init__)
Private vars are prefixed with one _ scope and not two (two __ are Python internals)
I suppose you rather want my_instance.key = ['spam', 'eggs'] to replace the foo._key value than extend it. Because this is kind of a "setter" and that would result in a weird behaviour, or at least another developer won't expect that behaviour from that setter/function
However, and that's important: As long as you're only doing this, you won't need properties. You can simply initialize self.keys in the constructor and froget about the property and setter function. Later on, when you want to change the behaviour, you can still add the property and setter. That's one reason why we've properties in Python, so that you won't have to refactor your whole code in case "a bit more logic" comes into place.
Btw. if you're really depending everything on those dict functions, you might also want to inherit your class from the dict class. Depends what you're up to.
I have the following problem and I need advice on how to solve it the best technically in Python. As I am new to programming I would like to have some advice.
So I will have the following object and they should store something. Here is an example:
object 1: cash dividends (they will have the following properties)
exdate (will store a list of dates)
recorddate (will store a list of dates)
paydate (will store a list of dates)
ISIN (will store a list of text)
object 2: stocksplits (they will have the following prpoerties)
stockplitratio (will be some ration)
exdate(list of dates)
...
I have tried to solve it like this:
class cashDividends(object):
def __init__(self, _gross,_net,_ISIN, _paydate, _exdate, _recorddate, _frequency, _type, _announceddate, _currency):
self.gross = _gross
self.net = _net
self.ISIN = _ISIN
self.paydate = _paydate
self.exdate = _exdate
self.recorddate = _recorddate
self.frequency = _frequency
self.type = _type
self.announceddate = _announceddate
self.currency = _currency
So if I have this I would have to create another class named stockplits and then define an __init__ function again.
However is there a way where I can have one class like "Corporate Actions" and then have stock splits and cashdividends in there ?
Sure you can! In python you can pass classes to other classes.
Here a simple example:
class A():
def __init__(self):
self.x = 0
class B():
def __init__(self):
self.x = 1
class Container():
def __init__(self, objects):
self.x = [obj.x for obj in objects]
a = A()
b = B()
c = Container([a,b])
c.x
[0,1]
If I understood correctly what you want is an object that has other objects from a class you created as property?
class CorporateActions(object):
def __init__(self, aCashDividend, aStockSplit):
self.cashDividend = aCashDividend
self.stockSplit = aStockSplit
myCashDividends = CashDividends(...) #corresponding parameters here
myStockSplit = StockSplit(...)
myCorporateActions = CorporateActions(myCashDividends, myStockSplit)
Strictly speaking this answer isn't an answer for the final question. However, it is a way to make your life slightly easier.
Consider creating a sort-of template class (I'm using this term loosely; there's no such thing in Python) that does the __init__ work for you. Like this:
class KwargAttrs():
def __init__(self, **kwargs):
for k,v in kwargs.items():
setattr(self, k, v)
def _update(self, **kwargs):
args_dict = {k:(kwargs[k] if k in kwargs else self.__dict__[k]) for k in self.__dict__}
self.__dict__.update(args_dict)
This class uses every supplied keyword argument as an object attribute. Use it this way:
class CashDividends(KwargAttrs):
def __init__(self, gross, net, ISIN, paydate, exdate, recorddate, frequency, type, announceddate, currency):
# save the namespace before it gets polluted
super().__init__(**locals())
# work that might pollute local namespace goes here
# OPTIONAL: update the argument values in case they were modified:
super()._update(**locals())
Using a method like this, you don't have to go through the argument list and assign every single object attribute; it happens automatically.
We bookend everything you need to accomplish in the __init__ method with method calls to the parent-class via super(). We do this because locals() returns a dict every variable in the function's current namespace, so you need to 1.) capture that namespace before any other work pollutes it and 2.) update the namespace in case any work changes the argument values.
The call to update is optional, but the values of the supplied arguments will not be updated if something is done to them after the call to super().__init__() (that is, unless you change the values using setattr(self, 'argname, value)`, which is not a bad idea).
You can continue using this class like so:
class StockSplits(KwargAttrs):
def __init__(self, stocksplitratio, gross, net, ISIN, paydate, exdate, recorddate, frequency, type, announceddate, currency):
super().__init__(**locals())
As mentioned in the other answers you can create a container for our other classes, but you can even do that using this same template class:
class CorporateActions(KwargAttrs):
def __init__(self, stock_splits , cash_dividends):
super().__init__(**locals())
ca = CorporateActions(stock_splits = StockSplits(<arguments>), cash_dividends = CashDividends(<arguments>) )
I'm trying to use a function of a class object to create a new class object and running into problems. Here's the code I have so far:
class Room(object):
def __init__(self, name):
self.name = name
self.N = None
self.E = None
self.S = None
self.W = None
'''relevant code'''
def north(self,room):
self.N = Room(room)
self.N.S = self
def south(self,room):
self.S = Room(room)
self.S.N = self
So I want at least one of these print statements
room1 = Room('room1')
room1.north('room2')
print(room2.S)
print(Room(room2).S)
print(Room('room2').S)
to spit out 'room1', but the first two don't work because room2 as a variable is yet to be defined, and the last one doesn't work because it seems to be creating a new object instead of referencing the existing one, so it just prints the default 'None'.
Does there actually exist a way to reference an existing object with no variable set to it? Or is my only option to do something like this?
def north(self,room):
roomDict[room] = Room(room)
self.N = roomDict[room]
self.N.S = self
Edit: I realize I should probably be calling the new Room's south() function instead of directly changing the S variable, but that seems intuitively like it would cause a loop so I haven't touched it yet.
* Edited based on OP's clarification *
If you have a large number of objects you want to refer to without binding them to variables, dict is the way to go.
You can use #Berci's solution. But note that with that solution, if you already have a room named foo, you can't overwrite it by simply calling Room('foo') again -- doing that will just return the original foo room. To overwrite an existing room you must first do del Room.roomDict['foo'], and then call Room('foo'). This may be something you want, but maybe not.
The implementation below is less fanciful and doesn't require __new__ (in fact, Berci's solution doesn't need __new__ either and can be all done in __init__):
class Room:
registry = {}
def __init__(self, name):
self.registry[name] = self
# the rest of your __init__ code
If you want rooms to be non-overwritable, as they are in Berci's solution, just add two lines:
class Room:
registry = {}
def __init__(self, name):
if name in self.registry:
raise ValueError('room named "{}" already exists'.format(name))
self.registry[name] = self
It's not necessary to nest registry inside Room. You can make it an external dict if you want. The advantage of having the registry as a class attribute is that your Room object can access it as self.registry without knowing its global name. The (slight) disadvantage is that you need to type Room.registry or someroom.registry instead of just, say, registry, every time you access it.
Your dict solution can be brought to work. Use a class level roomDict and a new constructor not to create an already existing object referred by its name:
class Room(object):
roomDict = {}
def __new__(cls, name):
if name in cls.roomDict:
return cls.roomDict[name]
self = object.__new__(cls, name) # here the object is created
cls.roomDict[name] = self
return self
def __init__(self, name):
...
So that you can refer to room2 as Room('room2') afterwards.
Question
How can you extend a python property?
A subclass can extend a super class's function by calling it in the overloaded version, and then operating on the result. Here's an example of what I mean when I say "extending a function":
# Extending a function (a tongue-in-cheek example)
class NormalMath(object):
def __init__(self, number):
self.number = number
def add_pi(self):
n = self.number
return n + 3.1415
class NewMath(object):
def add_pi(self):
# NewMath doesn't know how NormalMath added pi (and shouldn't need to).
# It just uses the result.
n = NormalMath.add_pi(self)
# In NewMath, fractions are considered too hard for our users.
# We therefore silently convert them to integers.
return int(n)
Is there an analogous operation to extending functions, but for functions that use the property decorator?
I want to do some additional calculations immediately after getting an expensive-to-compute attribute. I need to keep the attribute's access lazy. I don't want the user to have to invoke a special routine to make the calculations. basically, I don't want the user to ever know the calculations were made in the first place. However, the attribute must remain a property, since i've got legacy code I need to support.
Maybe this is a job for decorators? If I'm not mistaken, decorator is a function that wraps another function, and I'm looking to wrap a property with some more calculations, and then present it as a property again, which seems like a similar idea... but I can't quite figure it out.
My Specific Problem
I've got a base class LogFile with an expensive-to-construct attribute .dataframe. I've implemented it as a property (with the property decorator), so it won't actually parse the log file until I ask for the dataframe. So far, it works great. I can construct a bunch (100+) LogFile objects, and use cheaper methods to filter and select only the important ones to parse. And whenever I'm using the same LogFile over and over, i only have to parse it the first time I access the dataframe.
Now I need to write a LogFile subclass, SensorLog, that adds some extra columns to the base class's dataframe attribute, but I can't quite figure out the syntax to call the super class's dataframe construction routines (without knowing anything about their internal workings), then operate on the resulting dataframe, and then cache/return it.
# Base Class - rules for parsing/interacting with data.
class LogFile(object):
def __init__(self, file_name):
# file name to find the log file
self.file_name = file_name
# non-public variable to cache results of parse()
self._dataframe = None
def parse(self):
with open(self.file_name) as infile:
...
...
# Complex rules to interpret the file
...
...
self._dataframe = pandas.DataFrame(stuff)
#property
def dataframe(self):
"""
Returns the dataframe; parses file if necessary. This works great!
"""
if self._dataframe is None:
self.parse()
return self._dataframe
#dataframe.setter
def dataframe(self,value):
self._dataframe = value
# Sub class - adds more information to data, but does't parse
# must preserve established .dataframe interface
class SensorLog(LogFile):
def __init__(self, file_name):
# Call the super's constructor
LogFile.__init__(self, file_name)
# SensorLog doesn't actually know about (and doesn't rely on) the ._dataframe cache, so it overrides it just in case.
self._dataframe = None
# THIS IS THE PART I CAN'T FIGURE OUT
# Here's my best guess, but it doesn't quite work:
#property
def dataframe(self):
# use parent class's getter, invoking the hidden parse function and any other operations LogFile might do.
self._dataframe = LogFile.dataframe.getter()
# Add additional calculated columns
self._dataframe['extra_stuff'] = 'hello world!'
return self._dataframe
#dataframe.setter
def dataframe(self, value):
self._dataframe = value
Now, when these classes are used in an interactive session, the user should be able to interact with either in the same way.
>>> log = LogFile('data.csv')
>>> print log.dataframe
#### DataFrame with 10 columns goes here ####
>>> sensor = SensorLog('data.csv')
>>> print sensor.dataframe
#### DataFrame with 11 columns goes here ####
I have lots of existing code that takes a LogFile instance which provides a .dataframe attribute and dos something interesting (mostly plotting). I would LOVE to have SensorLog instances present the same interface so they can use the same code. Is it possible to extend the super-class's dataframe getter to take advantage of existing routines? How? Or am I better off doing this a different way?
Thanks for reading that huge wall of text. You are an internet super hero, dear reader. Got any ideas?
You should be calling the superclass properties, not bypassing them via self._dataframe. Here's a generic example:
class A(object):
def __init__(self):
self.__prop = None
#property
def prop(self):
return self.__prop
#prop.setter
def prop(self, value):
self.__prop = value
class B(A):
def __init__(self):
super(B, self).__init__()
#property
def prop(self):
value = A.prop.fget(self)
value['extra'] = 'stuff'
return value
#prop.setter
def prop(self, value):
A.prop.fset(self, value)
And using it:
b = B()
b.prop = dict((('a', 1), ('b', 2)))
print(b.prop)
Outputs:
{'a': 1, 'b': 2, 'extra': 'stuff'}
I would generally recommend placing side-effects in setters instead of getters, like this:
class A(object):
def __init__(self):
self.__prop = None
#property
def prop(self):
return self.__prop
#prop.setter
def prop(self, value):
self.__prop = value
class B(A):
def __init__(self):
super(B, self).__init__()
#property
def prop(self):
return A.prop.fget(self)
#prop.setter
def prop(self, value):
value['extra'] = 'stuff'
A.prop.fset(self, value)
Having costly operations within a getter is also generally to be avoided (such as your parse method).
If I understand correctly what you want to do is call the parent's method from the child instance. The usual way to do that is by using the super built-in.
I've taken your tongue-in-cheek example and modified it to use super in order to show you:
class NormalMath(object):
def __init__(self, number):
self.number = number
def add_pi(self):
n = self.number
return n + 3.1415
class NewMath(NormalMath):
def add_pi(self):
# this will call NormalMath's add_pi with
normal_maths_pi_plus_num = super(NewMath, self).add_pi()
return int(normal_maths_pi_plus_num)
In your Log example, instead of calling:
self._dataframe = LogFile.dataframe.getter()
you should call:
self._dataframe = super(SensorLog, self).dataframe
You can read more about super here
Edit: Even thought the example I gave you deals with methods, to do the same with #properties shouldn't be a problem.
You have some possibilities to consider:
1/ Inherit from logfile and override parse in your derived sensor class. It should be possible to modify your methods that work on dataframe to work regardless of the number of members that dataframe has - as you are using pandas a lot of it is done for you.
2/ Make sensor an instance of logfile then provide its own parse method.
3/ Generalise parse, and possibly some of your other methods, to use a list of data descriptors and possibly a dictionary of methods/rules either set in your class initialiser or set by a methods.
4/ Look at either making more use of the methods already in pandas, or possibly, extending pandas to provide the missing methods if you and others think that they would be accepted into pandas as useful extensions.
Personally I think that you would find the benefits of options 3 or 4 to be the most powerful.
The problem is that you're missing a self going into the parent class. If your parent is a singleton then a #staticmethod should work.
class X():
x=1
#staticmethod
def getx():
return X.x
class Y(X):
y=2
def getyx(self):
return X.getx()+self.y
wx = Y()
wx.getyx()
3
I am programming a simulations for single neurons. Therefore I have to handle a lot of Parameters. Now the Idea is that I have two classes, one for a SingleParameter and a Collection of parameters. I use property() to access the parameter value easy and to make the code more readable. This works perfect for a sinlge parameter but I don't know how to implement it for the collection as I want to name the property in Collection after the SingleParameter. Here an example:
class SingleParameter(object):
def __init__(self, name, default_value=0, unit='not specified'):
self.name = name
self.default_value = default_value
self.unit = unit
self.set(default_value)
def get(self):
return self._v
def set(self, value):
self._v = value
v = property(fget=get, fset=set, doc='value of parameter')
par1 = SingleParameter(name='par1', default_value=10, unit='mV')
par2 = SingleParameter(name='par2', default_value=20, unit='mA')
# par1 and par2 I can access perfectly via 'p1.v = ...'
# or get its value with 'p1.v'
class Collection(object):
def __init__(self):
self.dict = {}
def __getitem__(self, name):
return self.dict[name] # get the whole object
# to get the value instead:
# return self.dict[name].v
def add(self, parameter):
self.dict[parameter.name] = parameter
# now comes the part that I don't know how to implement with property():
# It shoule be something like
# self.__dict__[parameter.name] = property(...) ?
col = Collection()
col.add(par1)
col.add(par2)
col['par1'] # gives the whole object
# Now here is what I would like to get:
# col.par1 -> should result like col['par1'].v
# col.par1 = 5 -> should result like col['par1'].v = 5
Other questions that I put to understand property():
Why do managed attributes just work for class attributes and not for instance attributes in python?
How can I assign a new class attribute via __dict__ in python?
Look at built-in functions getattr and setattr. You'll probably be a lot happier.
Using the same get/set functions for both classes forces you into an ugly hack with the argument list. Very sketchy, this is how I would do it:
In class SingleParameter, define get and set as usual:
def get(self):
return self._s
def set(self, value):
self._s = value
In class Collection, you cannot know the information until you create the property, so you define the metaset/metaget function and particularize them only later with a lambda function:
def metaget(self, par):
return par.s
def metaset(self, value, par):
par.s = value
def add(self, par):
self[par.name] = par
setattr(Collection, par.name,
property(
fget=lambda x : Collection.metaget(x, par),
fset=lambda x, y : Collection.metaset(x,y, par))
Properties are meant to dynamically evaluate attributes or to make them read-only. What you need is customizing attribute access. __getattr__ and __setattr__ do that really fine, and there's also __getattribute__ if __getattr__ is not enough.
See Python docs on customizing attribute access for details.
Have you looked at the traits package? It seems that you are reinventing the wheel here with your parameter classes. Traits also have additional features that might be useful for your type of application (incidently I know a person that happily uses traits in neural simulations).
Now I implemented a solution with set-/getattr:
class Collection(object):
...
def __setattr__(self, name, value):
if 'dict' in self.__dict__:
if name in self.dict:
self[name].v = value
else:
self.__dict__[name] = value
def __getattr__(self, name):
return self[name].v
There is one thing I quite don't like that much: The attributes are not in the __dict__. And if I have them there as well I would have a copy of the value - which can be dangerous...
Finally I succeded to implement the classes with property(). Thanks a lot for the advice. It took me quite a bit to work it out - but I can promise you that this exercise helps you to understand better pythons OOP.
I implemented it also with __getattr__ and __setattr__ but still don't know the advantages and disadvantages to the property-solution. But this seems to be worth another question. The property-solutions seems to be quit clean.
So here is the code:
class SingleParameter(object):
def __init__(self, name, default_value=0, unit='not specified'):
self.name = name
self.default_value = default_value
self.unit = unit
self.set(default_value)
def get(*args):
self = args[0]
print "get(): "
print args
return self._v
def set(*args):
print "set(): "
print args
self = args[0]
value = args[-1]
self._v = value
v = property(fget=get, fset=set, doc='value of parameter')
class Collection(dict):
# inheriting from dict saves the methods: __getitem__ and __init__
def add(self, par):
self[par.name] = par
# Now here comes the tricky part.
# (Note: this property call the get() and set() methods with one
# more argument than the property of SingleParameter)
setattr(Collection, par.name,
property(fget=par.get, fset=par.set))
# Applying the classes:
par1 = SingleParameter(name='par1', default_value=10, unit='mV')
par2 = SingleParameter(name='par2', default_value=20, unit='mA')
col = Collection()
col.add(par1)
col.add(par2)
# Setting parameter values:
par1.v = 13
col.par1 = 14
# Getting parameter values:
par1.v
col.par1
# checking identity:
par1.v is col.par1
# to access the whole object:
col['par1']
As I am new I am not sure how to move on:
how to treat follow up questions (like this itself):
get() is seems to be called twice - why?
oop-design: property vs. "__getattr__ & __setattr__" - when should I use what?
is it rude to check the own answer to the own question as accepted?
is it recommended to rename the title in order to put correlated questions or questions elaborated with the same example into the same context?
Other questions that I put to understand property():
Why do managed attributes just work for class attributes and not for instance attributes in python?
How can I assign a new class attribute via __dict__ in python?
I have a class that does something similar, but I did the following in the collection object:
setattr(self, par.name, par.v)