Matplotlib multiple figures opening and saving - python

Hello I am having a problem plotting data from pandas dataframes. Within a few for loops I would like to create one large scatter plot (multiplots.png), to which new data is added in every loop, while also creating separate plots that are plotted and saved in every j loop (plot_i_j.png).
In my code the plots_i_j.png figures are produced correctly, but multiplots.png always ends up being the last plot_i_j.png figure. As you can see, I am trying to plot multiplots.png on axComb, while the plot_i_j.png figures are plotted on ax. Can anyone help me on this please?
import pandas as pd
import matplotlib.pyplot as plt
columnNames = ['a','b']
scatterColors = ['red','blue','green','black']
figComb, axComb = plt.subplots(figsize=(8,6))
for i in range(4): # this is turbine number
df1 = pd.DataFrame(np.random.randn(5, 2), columns=columnNames)
df2 = pd.DataFrame(np.random.randn(5, 2), columns=columnNames)
print(df1)
for j in range(2):
fig, ax = plt.subplots(figsize=(8,6))
fig.suptitle(str(i)+'_'+str(j), fontsize=16)
df1.plot(columnNames[j], ax=ax, color='blue', ls="--")
plt.savefig('plot_'+str(i)+'_'+str(j)+'.png')
df1.reset_index().plot.scatter('index',columnNames[j],3,ax=axComb,color=scatterColors[j])
df2.reset_index().plot.scatter('index',columnNames[j],100,ax=axComb,color=scatterColors[j])
plt.savefig('multiPlots.png')

Really a small error. When you do plt.savefig, matplotlib looks for the last called figure.
Replace the plt.savefig('plot_'+str(i)+'_'+str(j)+'.png') with fig.savefig('plot_'+str(i)+'_'+str(j)+'.png').
And replace plt.savefig('multiPlots.png') by figComb.savefig('multiPlots.png').

Related

Matrix of scatterplots by month-year

My data is in a dataframe of two columns: y and x. The data refers to the past few years. Dummy data is below:
np.random.seed(167)
rng = pd.date_range('2017-04-03', periods=365*3)
df = pd.DataFrame(
{"y": np.cumsum([np.random.uniform(-0.01, 0.01) for _ in range(365*3)]),
"x": np.cumsum([np.random.uniform(-0.01, 0.01) for _ in range(365*3)])
}, index=rng
)
In first attempt, I plotted a scatterplot with Seaborn using the following code:
import seaborn as sns
import matplotlib.pyplot as plt
def plot_scatter(data, title, figsize):
fig, ax = plt.subplots(figsize=figsize)
ax.set_title(title)
sns.scatterplot(data=data,
x=data['x'],
y=data['y'])
plot_scatter(data=df, title='dummy title', figsize=(10,7))
However, I would like to generate a 4x3 matrix including 12 scatterplots, one for each month with year as hue. I thought I could create a third column in my dataframe that tells me the year and I tried the following:
import seaborn as sns
import matplotlib.pyplot as plt
def plot_scatter(data, title, figsize):
fig, ax = plt.subplots(figsize=figsize)
ax.set_title(title)
sns.scatterplot(data=data,
x=data['x'],
y=data['y'],
hue=data.iloc[:, 2])
df['year'] = df.index.year
plot_scatter(data=df, title='dummy title', figsize=(10,7))
While this allows me to see the years, it still shows all the data in the same scatterplot instead of creating multiple scatterplots, one for each month, so it's not offering the level of detail I need.
I could slice the data by month and build a for loop that plots one scatterplot per month but I actually want a matrix where all the scatterplots use similar axis scales. Does anyone know an efficient way to achieve that?
To create multiple subplots at once, seaborn introduces figure-level functions. The col= argument indicates which column of the dataframe should be used to identify the subplots. col_wrap= can be used to tell how many subplots go next to each other before starting an additional row.
Note that you shouldn't create a figure, as the function creates its own new figure. It uses the height= and aspect= arguments to tell the size of the individual subplots.
The code below uses a sns.relplot() on the months. An extra column for the months is created; it is made categorical to fix an order.
To remove the month= in the title, you can loop through the generated axes (a recent seaborn version is needed for axes_dict). With sns.set(font_scale=...) you can change the default sizes of all texts.
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(167)
dates = pd.date_range('2017-04-03', periods=365 * 3, freq='D')
df = pd.DataFrame({"y": np.cumsum([np.random.uniform(-0.01, 0.01) for _ in range(365 * 3)]),
"x": np.cumsum([np.random.uniform(-0.01, 0.01) for _ in range(365 * 3)])
}, index=dates)
df['year'] = df.index.year
month_names = pd.date_range('2017-01-01', periods=12, freq='M').strftime('%B')
df['month'] = pd.Categorical.from_codes(df.index.month - 1, month_names)
sns.set(font_scale=1.7)
g = sns.relplot(kind='scatter', data=df, x='x', y='y', hue='year', col='month', col_wrap=4, height=4, aspect=1)
# optionally remove the `month=` in the title
for name, ax in g.axes_dict.items():
ax.set_title(name)
plt.setp(g.axes, xlabel='', ylabel='') # remove all x and y labels
g.axes[-2].set_xlabel('x', loc='left') # set an x label at the left of the second to last subplot
g.axes[4].set_ylabel('y') # set a y label to 5th subplot
plt.subplots_adjust(left=0.06, bottom=0.06) # set some more spacing at the left and bottom
plt.show()

Multiple boxplot in a single Graphic in Python

I'm a beginner in Python.
In my internship project I am trying to plot bloxplots from data contained in a csv
I need to plot bloxplots for each of the 4 (four) variables showed above (AAG, DENS, SRG e RCG). Since each variable presents values ​​in the range from [001] to [100], there will be 100 boxplots for each variable, which need to be plotted in a single graph as shown in the image.
This is the graph I need to plot, but for each variable there will be 100 bloxplots as each one has 100 columns of values:
The x-axis is the "Year", which ranges from 2025 to 2030, so I need a graph like the one shown in figure 2 for each year and the y-axis is the sets of values ​​for each variable.
Using Pandas-melt function and seaborn library I was able to plot only the boxplots of a column. But that's not what I need:
import pandas as pd
import seaborn as sns
df = pd.read_csv("2DBM_50x50_Central_Aug21_Sim.cliped.csv")
mdf= df.melt(id_vars=['Year'], value_vars='AAG[001]')
print(mdf)
ax=sns.boxplot(x='Year', y='value',width = 0.2, data=mdf)
Result of the code above:
What can I try to resolve this?
The following code gives you five subplots, where each subplot only contains the data of one variable. Then a boxplot is generated for each year. To change the range of columns used for each variable, change the upper limit in var_range = range(1, 101), and to see the outliers change showfliers to True.
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv("2DBM_50x50_Central_Aug21_Sim.cliped.csv")
variables = ["AAG", "DENS", "SRG", "RCG", "Thick"]
period = range(2025, 2031)
var_range = range(1, 101)
fig, axes = plt.subplots(2, 3)
flattened_axes = fig.axes
flattened_axes[-1].set_visible(False)
for i, var in enumerate(variables):
var_columns = [f"TB_acc_{var}[{j:05}]" for j in var_range]
data = df.melt(id_vars=["Period"], value_vars=var_columns, value_name=var)
ax = flattened_axes[i]
sns.boxplot(x="Period", y=var, width=0.2, data=data, ax=ax, showfliers=False)
plt.tight_layout()
plt.show()
output:

Plotting two subplots in one figure

I have two PCA plots: one for training data and testing test. Using seaborn, I'd like to combine those two and plot like subplots.
sns.FacetGrid(finalDf_test, hue="L", height=6).map(plt.scatter, 'PC1_test', 'PC2_test').add_legend()
sns.FacetGrid(finalDf_train, hue="L", height=6).map(plt.scatter, 'PC1_train', 'PC2_train').add_legend()
Can someone help on that?
FacetGrid is a figure-level function that creates one or more subplots, depending on its col= and row= parameters. In this case, only one subplot is created.
As FacetGrid works on only one dataframe, you could concatenate your dataframes, introducing a new column to diferentiate test and train. Also, the "PC1" and "PC2" columns of both dataframes should get the same name.
An easier approach is to use matplotlib to create the figure and then call sns.scatterplot(...., ax=...) for each of the subplots.
It would look like:
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
# create some dummy data
l = np.random.randint(0,2,500)
p1 = np.random.rand(500)*10
p2 = p1 + np.random.randn(500) + l
finalDf_test = pd.DataFrame({'PC1_test': p1[:100], 'PC2_test': p2[:100], 'L':l[:100] })
finalDf_train = pd.DataFrame({'PC1_train': p1[100:], 'PC2_train': p2[100:], 'L':l[100:] })
sns.set()
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 6), sharex=True, sharey=True)
sns.scatterplot(data=finalDf_test, x='PC1_test', y='PC2_test', hue='L', ax=ax1)
sns.scatterplot(data=finalDf_train, x='PC1_train', y='PC2_train', hue='L', ax=ax2)
plt.show()
Concatenating the dataframes could look as follows:
sns.set()
finalDf_total = pd.concat({'test': finalDf_test.rename(columns={'PC1_test': 'PC1', 'PC2_test': 'PC2' }),
'train':finalDf_train.rename(columns={'PC1_train': 'PC1', 'PC2_train': 'PC2' })})
finalDf_total.index.rename(['origin', None], inplace=True) # rename the first index column to "origin"
finalDf_total.reset_index(level=0, inplace=True) # convert the first index to a regular column
sns.FacetGrid(finalDf_total, hue='L', height=6, col='origin').map(plt.scatter, 'PC1', 'PC2').add_legend()
plt.show()
The same combined dataframe could also be used for example in lmplot:
sns.lmplot(data=finalDf_total, x='PC1', y='PC2', hue='L', height=6, col='origin')

Plot legend shows unknown item/ same legend item shown twice with line different style

I am plotting some routes on a black and white png. Now it appears that there is a item in the legend that should not be there. I am iterating a pandas dataframe and identify the different routes by there unique id. I also have a start and a end point that i have right at the beginning of the dataframe, so at i=0, and i=1, I plot marker='o' instead, so I can see that single points on my plot/rows in my dataframe. All working fine so far, but as you can see in the legend for i=0, there are 2 entries. Once the starting point, but in the second line it adds an orange line. How can that be? In the dataframe it is definitely only 1 row with id=0.
Here my code with an example dataframe:
import pandas as pd
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
df = pd.DataFrame({'x':[100,60,1,1,1,5,4,4], 'y':[100,125,1,2,3,10,10,9],'id':[0,1,2,2,2,3,3,3]})
for i, g in df.groupby('id'):
if(i==0):
g.plot(x='x',y='y',ax=ax,marker='o',title="Alternative Routes",label="Start Punkt")
if(i==1):
g.plot(x='x',y='y',ax=ax,marker='o',title="Alternative Routes",label="End Punkt")
else:
g.plot(x='x',y='y',ax=ax, title="Alternative Routes",label=i)
plt.show()
Here the resulting plot:
Found the answer by myself: Should be an elif instead of a an if for i==1
import pandas as pd
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
df = pd.DataFrame({'x':[100,60,1,1,1,5,4,4], 'y':[100,125,1,2,3,10,10,9],'id':[0,1,2,2,2,3,3,3]})
for i, g in df.groupby('id'):
if(i==0):
g.plot(x='x',y='y',ax=ax,marker='o',title="Alternative Routes",label="Start Punkt")
elif(i==1):
g.plot(x='x',y='y',ax=ax,marker='o',title="Alternative Routes",label="End Punkt")
else:
g.plot(x='x',y='y',ax=ax, title="Alternative Routes",label=i)
plt.show()

Matplotlib Axes legend shows only one label in barh

I have 15 barh subplots that looks like this:
I can't seem to get the legend working, so I'll see [2,3,4] as separate labels in the graph and in the legend.
I'm having trouble with making this work for subgraphs. My code:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def plot_bars_by_data(data, title):
fig, axs = plt.subplots(8,2, figsize=(20,40))
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=0.95)
plt.rcParams.update({'font.size': 13})
axs[7,1].remove()
column_index = 0
for ax_line in axs:
for ax in ax_line:
if column_index < len(data.columns):
column_name = data.columns[column_index]
current_column_values = data[column_name].value_counts().sort_index()
ax.barh([str(i) for i in current_column_values.index], current_column_values.values)
ax.legend([str(i) for i in current_column_values.index])
ax.set_title(column_name)
column_index +=1
plt.show()
# random data
df_test = pd.DataFrame([np.random.randint(2,5,size=15) for i in range(15)], columns=list('abcdefghijlmnop'))
plot_bars_by_data(df_test, "testing")
I just get a 8x2 bars that looks like the above graph. How can I fix this?
I'm using Python 3.6 and Jupyter Python notebook.
Use the following lines in your code. I can't put the whole output here as its a large figure with lots of subplots and hence showing a particular subplot. It turns out that first you have to create a handle for your subplot and then pass the legend values and the handle to produce the desired legends.
colors = ['r', 'g', 'b']
axx = ax.barh([str(i) for i in current_column_values.index], current_column_values.values, color=colors)
ax.legend(axx, [str(i) for i in current_column_values.index])
Sample Output

Categories