Euclidian distance for two multidimentionnal array - python

I would like to find the euclidian distance between two numpy.ndarray.
lower_boundary = 0
upper_boundary = 1
n = 4 # dimension
sample_size = 3
np.random.seed(9001) # set the seed to yield reproducible results
X2 = np.random.uniform( low=lower_boundary, high=upper_boundary, size=(sample_size, n) )
Y2 = np.random.uniform( low=lower_boundary, high=upper_boundary, size=(sample_size, n) )
print( 'X2: ', X2 )
print( 'Y2: ', Y2 )
How can i implement this calculation from scratch, by using np.sum and np.sqrt instead of importing euclidean_distances from sklearn.metrics.pairwise
Thanks for all

Eucledian Distance be D(i,j). Then D(i,j) corresponds to the pairwise distance between row i in X and row j in Y. In this case, the size of distance matrix will be 3 by 3.
final_sum=np.zeros([sample_size,sample_size])
for row_inX in range(0, sample_size):
for row_inY in range(0, sample_size):
final_sum[row_inX][row_inY]= np.sqrt(np.sum((X2[row_inX]- Y2[row_inY])**2))
print(final_sum)

Related

Efficient Matrix construction for a weighted Euclidean distance

I have M points in 2-dimensional Euclidean space, and have stored them in an array X of size M x 2.
I have constructed a cost matrix whereby element ij is the distance d(X[i, :], X[j, :]). The distance function I am using is the standard Euclidean distance weighted by an inverse of the matrix D. i.e d(x,y)= < D^{-1}(x-y) , x-y >. I would like to know if there is a more efficient way of doing this, note I have practically avoided for loops.
import numpy as np
Dinv = np.linalg.inv(D)
def cost(X, Dinv):
Msq = len(X) ** 2
mesh = []
for i in range(2): # separate each coordinate axis
xmesh = np.meshgrid(X[:, i], X[:, i]) # meshgrid each axis
xmesh = xmesh[1] - xmesh[0] # create the difference matrix
xmesh = xmesh.reshape(Msq) # reshape into vector
mesh.append(xmesh) # save/append into list
meshv = np.vstack((mesh[0], mesh[1])).T # recombined coordinate axis
# apply D^{-1}
Dx = np.einsum("ij,kj->ki", Dinv, meshv)
return np.sum(Dx * meshv, axis=1) # dot the elements
I ll try something like this, mostly optimizing your meshv calculation:
meshv = (X[:,None]-X).reshape(-1,2)
((meshv # Dinv.T)*meshv).sum(1)

Heuristic algorithm in subarrays

ORIGINAL PROBLEM:
Given a set A={a1, . . . , an} and the matrix D of distances between the elements of A, we want to select the subset A*⊂ A of cardinal p with minimum diameter δ(A∗
) with δ(A∗) =max{d(a, a0) : a, a0 ∈ A∗}.
Write a python code that solve heuristically the particular case of n=8, p=4.
WHAT I HAVE UNDERSTOOD:
Given a matrix mxn (in this case 8x8) I am trying to look through a heuristic algorithm the max value of each sub-array of size 4x4, and store these values in a final matrix
For example:
Given the C matrix of euclidean distances 8x8:
What is the max value of a each possible sub-array 4x4?
and then store this max value in the final matrix mxn..
I have tried this but only returns one max value in the matrix.
# Python 3 Program to find the maximum
# value in a matrix which contain
# intersecting concentric submatrix
MAXN = 64
# Return the maximum value in intersecting
# concentric submatrix.
def maxValue( n, m, x, y, a):
c = [[0 for x in range(MAXN)]
for y in range(MAXN)]
# For each center of concentric sub-matrix.
for i in range( m):
# for each row
for p in range(n) :
# for each column
for q in range( n) :
# finding x distance.
dx = abs(p - x[i])
# finding y distance.
dy = abs(q - y[i])
# maximum of x distance and y distance
d = max(dx, dy)
# assigning the value.
c[p][q] += max(0, a[i] - d)
# Finding the maximum value in
# the formed matrix.
res = 0
for i in range(n) :
for j in range(n) :
res = max(res, c[i][j])
return res
# Driver Code
if __name__ == "__main__":
n = 10
m = 2
x = [ 3, 7 ]
y = [ 3, 7 ]
a = [ 4, 3 ]
print(maxValue(n, m, x, y, a))

np.where() to eliminate data, where coordinates are too close to each other

I'm doing aperture photometry on a cluster of stars, and to get easier detection of background signal, I want to only look at stars further apart than n pixels (n=16 in my case).
I have 2 arrays, xs and ys, with the x- and y-values of all the stars' coordinates:
Using np.where I'm supposed to find the indexes of all stars, where the distance to all other stars is >= n
So far, my method has been a for-loop
import numpy as np
# Lists of coordinates w. values between 0 and 2000 for 5000 stars
xs = np.random.rand(5000)*2000
ys = np.random.rand(5000)*2000
# for-loop, wherein the np.where statement in question is situated
n = 16
for i in range(len(xs)):
index = np.where( np.sqrt( pow(xs[i] - xs,2) + pow(ys[i] - ys,2)) >= n)
Due to the stars being clustered pretty closely together, I expected a severe reduction in data, though even when I tried n=1000 I still had around 4000 datapoints left
Using just numpy (and part of the answer here)
X = np.random.rand(5000,2) * 2000
XX = np.einsum('ij, ij ->i', X, X)
D_squared = XX[:, None] + XX - 2 * X.dot(X.T)
out = np.where(D_squared.min(axis = 0) > n**2)
Using scipy.spatial.pdist
from scipy.spatial import pdist, squareform
D_squared = squareform(pdist(x, metric = 'sqeuclidean'))
out = np.where(D_squared.min(axis = 0) > n**2)
Using a KDTree for maximum fast:
from scipy.spatial import KDTree
X_tree = KDTree(X)
in_radius = np.array(list(X_tree.query_pairs(n))).flatten()
out = np.where(~np.in1d(np.arange(X.shape[0]), in_radius))
np.random.seed(seed=1)
xs = np.random.rand(5000,1)*2000
ys = np.random.rand(5000,1)*2000
n = 16
mask = (xs>=0)
for i in range(len(xs)):
if mask[i]:
index = np.where( np.sqrt( pow(xs[i] - x,2) + pow(ys[i] - y,2)) <= n)
mask[index] = False
mask[i] = True
x = xs[mask]
y = ys[mask]
print(len(x))
4220
You can use np.subtract.outer for creating the pairwise comparisons. Then you check for each row whether the distance is below 16 for exactly one item (which is the comparison with the particular start itself):
distances = np.sqrt(
np.subtract.outer(xs, xs)**2
+ np.subtract.outer(ys, ys)**2
)
indices = np.nonzero(np.sum(distances < 16, axis=1) == 1)

Python: Covariance matrix by hand

I have two vectors X0 and X1 (mx0 and mx1 are the means of each vector) and I am trying to find the covariance matrix between them. I have managed to find each element in the matrix through doing:
b1=numpy.zeros(N*1).reshape((N,1))
b2=numpy.zeros(N*1).reshape((N,1))
for i in range(0,N):
b1[i]=X0[i]-mX0
for j in range(0,N):
b2[j]=X1[j]-mX1
bii=sum(p*q for p,q in zip(b1,b1))/(N-1)
bij=sum(p*q for p,q in zip(b1,b2))/(N-1)
bji=sum(p*q for p,q in zip(b2,b1))/(N-1)
bjj=sum(p*q for p,q in zip(b2,b2))/(N-1)
but I want a nicer way of doing this through a loop, rather than doing each element separately.
If you want to compute the covariance matrix by hand, study/mimick how numpy.cov does it, or if you just want the result, use np.cov(b1, b2) directly.
import numpy as np
np.random.seed(1)
N = 10
b1 = np.random.rand(N)
b2 = np.random.rand(N)
X = np.column_stack([b1, b2])
X -= X.mean(axis=0)
fact = N - 1
by_hand = np.dot(X.T, X.conj()) / fact
print(by_hand)
# [[ 0.04735338 0.01242557]
# [ 0.01242557 0.07669083]]
using_cov = np.cov(b1, b2)
assert np.allclose(by_hand, using_cov)

Minimum Euclidean distance between points in two different Numpy arrays, not within

I have two arrays of x-y coordinates, and I would like to find the minimum Euclidean distance between each point in one array with all the points in the other array. The arrays are not necessarily the same size. For example:
xy1=numpy.array(
[[ 243, 3173],
[ 525, 2997]])
xy2=numpy.array(
[[ 682, 2644],
[ 277, 2651],
[ 396, 2640]])
My current method loops through each coordinate xy in xy1 and calculates the distances between that coordinate and the other coordinates.
mindist=numpy.zeros(len(xy1))
minid=numpy.zeros(len(xy1))
for i,xy in enumerate(xy1):
dists=numpy.sqrt(numpy.sum((xy-xy2)**2,axis=1))
mindist[i],minid[i]=dists.min(),dists.argmin()
Is there a way to eliminate the for loop and somehow do element-by-element calculations between the two arrays? I envision generating a distance matrix for which I could find the minimum element in each row or column.
Another way to look at the problem. Say I concatenate xy1 (length m) and xy2 (length p) into xy (length n), and I store the lengths of the original arrays. Theoretically, I should then be able to generate a n x n distance matrix from those coordinates from which I can grab an m x p submatrix. Is there a way to efficiently generate this submatrix?
(Months later)
scipy.spatial.distance.cdist( X, Y )
gives all pairs of distances,
for X and Y 2 dim, 3 dim ...
It also does 22 different norms, detailed
here .
# cdist example: (nx,dim) (ny,dim) -> (nx,ny)
from __future__ import division
import sys
import numpy as np
from scipy.spatial.distance import cdist
#...............................................................................
dim = 10
nx = 1000
ny = 100
metric = "euclidean"
seed = 1
# change these params in sh or ipython: run this.py dim=3 ...
for arg in sys.argv[1:]:
exec( arg )
np.random.seed(seed)
np.set_printoptions( 2, threshold=100, edgeitems=10, suppress=True )
title = "%s dim %d nx %d ny %d metric %s" % (
__file__, dim, nx, ny, metric )
print "\n", title
#...............................................................................
X = np.random.uniform( 0, 1, size=(nx,dim) )
Y = np.random.uniform( 0, 1, size=(ny,dim) )
dist = cdist( X, Y, metric=metric ) # -> (nx, ny) distances
#...............................................................................
print "scipy.spatial.distance.cdist: X %s Y %s -> %s" % (
X.shape, Y.shape, dist.shape )
print "dist average %.3g +- %.2g" % (dist.mean(), dist.std())
print "check: dist[0,3] %.3g == cdist( [X[0]], [Y[3]] ) %.3g" % (
dist[0,3], cdist( [X[0]], [Y[3]] ))
# (trivia: how do pairwise distances between uniform-random points in the unit cube
# depend on the metric ? With the right scaling, not much at all:
# L1 / dim ~ .33 +- .2/sqrt dim
# L2 / sqrt dim ~ .4 +- .2/sqrt dim
# Lmax / 2 ~ .4 +- .2/sqrt dim
To compute the m by p matrix of distances, this should work:
>>> def distances(xy1, xy2):
... d0 = numpy.subtract.outer(xy1[:,0], xy2[:,0])
... d1 = numpy.subtract.outer(xy1[:,1], xy2[:,1])
... return numpy.hypot(d0, d1)
the .outer calls make two such matrices (of scalar differences along the two axes), the .hypot calls turns those into a same-shape matrix (of scalar euclidean distances).
The accepted answer does not fully address the question, which requests to find the minimum distance between the two sets of points, not the distance between every point in the two sets.
Although a straightforward solution to the original question indeed consists of computing the distance between every pair and subsequently finding the minimum one, this is not necessary if one is only interested in the minimum distances. A much faster solution exists for the latter problem.
All the proposed solutions have a running time that scales as m*p = len(xy1)*len(xy2). This is OK for small datasets, but an optimal solution can be written that scales as m*log(p), producing huge savings for large xy2 datasets.
This optimal execution time scaling can be achieved using scipy.spatial.KDTree as follows
import numpy as np
from scipy import spatial
xy1 = np.array(
[[243, 3173],
[525, 2997]])
xy2 = np.array(
[[682, 2644],
[277, 2651],
[396, 2640]])
# This solution is optimal when xy2 is very large
tree = spatial.KDTree(xy2)
mindist, minid = tree.query(xy1)
print(mindist)
# This solution by #denis is OK for small xy2
mindist = np.min(spatial.distance.cdist(xy1, xy2), axis=1)
print(mindist)
where mindist is the minimum distance between each point in xy1 and the set of points in xy2
For what you're trying to do:
dists = numpy.sqrt((xy1[:, 0, numpy.newaxis] - xy2[:, 0])**2 + (xy1[:, 1, numpy.newaxis - xy2[:, 1])**2)
mindist = numpy.min(dists, axis=1)
minid = numpy.argmin(dists, axis=1)
Edit: Instead of calling sqrt, doing squares, etc., you can use numpy.hypot:
dists = numpy.hypot(xy1[:, 0, numpy.newaxis]-xy2[:, 0], xy1[:, 1, numpy.newaxis]-xy2[:, 1])
import numpy as np
P = np.add.outer(np.sum(xy1**2, axis=1), np.sum(xy2**2, axis=1))
N = np.dot(xy1, xy2.T)
dists = np.sqrt(P - 2*N)
I think the following function also works.
import numpy as np
from typing import Optional
def pairwise_dist(X: np.ndarray, Y: Optional[np.ndarray] = None) -> np.ndarray:
Y = X if Y is None else Y
xx = (X ** 2).sum(axis = 1)[:, None]
yy = (Y ** 2).sum(axis = 1)[:, None]
return xx + yy.T - 2 * (X # Y.T)
Explanation
Suppose each row of X and Y are coordinates of the two sets of points.
Let their sizes be m X p and p X n respectively.
The result will produce a numpy array of size m X n with the (i, j)-th entry being the distance between the i-th row and the j-th row of X and Y respectively.
I highly recommend using some inbuilt method for calculating squares, and roots for they are customized for optimized way to calculate and very safe against overflows.
#alex answer below is the most safest in terms of overflow and should also be very fast. Also for single points you can use math.hypot which now supports more than 2 dimensions.
>>> def distances(xy1, xy2):
... d0 = numpy.subtract.outer(xy1[:,0], xy2[:,0])
... d1 = numpy.subtract.outer(xy1[:,1], xy2[:,1])
... return numpy.hypot(d0, d1)
Safety concerns
i, j, k = 1e+200, 1e+200, 1e+200
math.hypot(i, j, k)
# np.hypot for 2d points
# 1.7320508075688773e+200
np.sqrt(np.sum((np.array([i, j, k])) ** 2))
# RuntimeWarning: overflow encountered in square
overflow/underflow/speeds
I think that the most straightforward and efficient solution is to do it like this:
distances = np.linalg.norm(xy1, xy2) # calculate the euclidean distances between the test point and the training features.
min_dist = numpy.min(dists, axis=1) # get the minimum distance
min_id = np.argmi(distances) # get the index of the class with the minimum distance, i.e., the minimum difference.
Although many answers here are great, there is another way which has not been mentioned here, using numpy's vectorization / broadcasting properties to compute the distance between each points of two different arrays of different length (and, if wanted, the closest matches). I publish it here because it can be very handy to master broadcasting, and it also solves this problem elengantly while remaining very efficient.
Assuming you have two arrays like so:
# two arrays of different length, but with the same dimension
a = np.random.randn(6,2)
b = np.random.randn(4,2)
You can't do the operation a-b: numpy complains with operands could not be broadcast together with shapes (6,2) (4,2). The trick to allow broadcasting is to manually add a dimension for numpy to broadcast along to. By leaving the dimension 2 in both reshaped arrays, numpy knows that it must perform the operation over this dimension.
deltas = a.reshape(6, 1, 2) - b.reshape(1, 4, 2)
# contains the distance between each points
distance_matrix = (deltas ** 2).sum(axis=2)
The distance_matrix has a shape (6,4): for each point in a, the distances to all points in b are computed. Then, if you want the "minimum Euclidean distance between each point in one array with all the points in the other array", you would do :
distance_matrix.argmin(axis=1)
This returns the index of the point in b that is closest to each point of a.

Categories