How to pause a thread until data received in Python - python

I do not have much experience with threads (and networking in general). I am creating a script which receives data from a client (1, 2 or 3). All these have a meaning:
1 = NEW Apache Benchmark ITERATION - we must run new top command and append every second
2 = END Apache Benchmark ITERATION - we must end top command
3 = STOP ENTIRE PROGRAM
The top command on Linux just records the CPU and memory usage.
I have created an initial thread which listens for data from the client and targets the get_data() function.
The run() function waits for data to be returned from get_data() but if it isn't getting any data then both the run() and get_data() function will halt.
Is there a way to pause the thread targeting the get_data function until data is sent from the client side so that the run() function doesn't halt?
My Current Code:
import socket
import sys
import threading
import subprocess
import sched
import time
import os
import signal
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server_socket = ('xxx.xxx.x.xx', 5000)
sock.bind(server_socket)
process = None
def run_command(i):
global process
print("Running top")
process = subprocess.Popen('top -b -n 1 | head -n 5 >> htop-' + str(i) + '.txt', shell=True)
print("Finished running top")
return process
def get_data():
while True:
# data = ''
data, address = sock.recvfrom(1024)
print("waiting?")
data = data.split(",")
iteration = data[1]
data = data[0]
print("Data: " + data + " and iteration: " + iteration)
time.sleep(1.0)
# run(data, iteration)
return data, iteration
'''
1 = NEW AB ITERATION - we must run new top command and append every second
2 = END OF AB - we must end top command
3 = STOP ENTIRE PROGRAM
'''
def run():
while True:
print("New")
data = get_data()
# data = data.split(",")
iteration = data[1]
data = data[0]
print("Data: " + data + " and iteration: " + iteration)
if data == '1' or data == '':
run_command(iteration)
print("We ran the command")
time.sleep(1.0)
print("Terminating")
process.kill()
print("We terminated the process")
if data == '2':
print("We got 2")
process.kill()
if data == '3':
print("Closing program")
exit()
runThread = threading.Thread(target = run)
runThread.start()
run()
print("Starting the listening thread...")

You need to make your socket non-blocking (see setblocking()) and rewrite your run() procedure to handle cases when data in socket is not received yet.

Related

How to read the thread buffer only when a new sample is available?

The following code should read the serial interface into log file. The code can log with significantly high sampling rates (yes, serial synchronization is missing). But since the code is faster than the data rate of the serial device (which should be the case), it reads duplicate points.
Clarification edit: As we can see from the source code, thread is reading the serial port and writing it to the buffer rawData. Another function getSerialData() should unpack the rawData into 4 variables and write to the log file. But as it is faster than data rate of serial device, it reads rawData even when no new reading available. I would like to make the function getSerialData() unpack rawData only when thread writes new data to rawData.
I want to make sure that the code only gets last sample from serial device. This could be done by comparing the new sample with the previous sample, but it is too slow.
There are many examples of how it is done, but not for a raw connection.
#!/usr/bin/env python
from threading import Thread
import serial
import time
import collections
import struct
import copy
import pandas as pd
import numpy as np
import sys
import os
import h5py
class serialPlot:
def __init__(self, serialPort, serialBaud, bufferLength, dataNumBytes, numVal):
self.port = serialPort
self.baud = serialBaud
#self.plotMaxLength = bufferLength
self.dataNumBytes = dataNumBytes # number of bytes for single value
self.numVal = numVal
self.rawData = bytearray(numVal * dataNumBytes)
self.data = []
for i in range(numVal): # give an array for each type of data and store them in a list
self.data.append(collections.deque(
[0] * bufferLength, maxlen=bufferLength))
self.isRun = True
self.isReceiving = False
self.thread = None
self.plotTimer = 0
self.previousTimer = 0
print('Trying to connect to: ' + str(serialPort) +
' at ' + str(serialBaud) + ' BAUD.')
try:
self.serialConnection = serial.Serial(
serialPort, serialBaud, timeout=4)
print('Connected to ' + str(serialPort) +
' at ' + str(serialBaud) + ' BAUD.')
except:
print("Failed to connect with " + str(serialPort) +
' at ' + str(serialBaud) + ' BAUD.')
def readSerialStart(self):
# start thread if not started yet
if self.thread == None:
self.thread = Thread(target=self.retrieveData)
self.thread.start()
# Block till we start receiving values
while self.isReceiving != True:
time.sleep(0.01)
def getSerialData(self, bufferLength):
hdf5Buffer = [[0 for x in range(self.numVal)] for y in range(
bufferLength)] # Create array to hold data
# Calculate time delta between data points
currentTimer = time.perf_counter_ns()
# the first reading will be erroneous
self.plotTimer = int((currentTimer - self.previousTimer) / 1000)
self.previousTimer = currentTimer
for e in range(bufferLength):
privateCopy = copy.deepcopy(self.rawData[:])
for i in range(self.numVal):
bytedata = privateCopy[(i * self.dataNumBytes):
(self.dataNumBytes + i * self.dataNumBytes)]
value, = struct.unpack('f', bytedata)
# get the latest data point and append it to our array
self.data[i] = value
for f in range(self.numVal):
hdf5Buffer[e][f] = self.data[f]
hdf5Buffer[e].insert(0, self.plotTimer)
return hdf5Buffer
def retrieveData(self): # retrieve data
time.sleep(0.1) # give some buffer time for retrieving data
self.serialConnection.reset_input_buffer() # flush input buffer
while (self.isRun):
# read n bytes into array (rawData) and return num of bytes read
self.serialConnection.readinto(self.rawData)
self.isReceiving = True
def close(self):
self.isRun = False
self.thread.join()
self.serialConnection.close()
print('Disconnected...')
def main():
time.sleep(0.1)
portName = 'COM15'
baudRate = 230400
bufferLength = 10 # number of samples buffered before saving it to HDF5
dataNumBytes = 4 # number of bytes for single data point
numData = 4 # number of data points in single sample
rawData = bytearray(numData * dataNumBytes)
s = serialPlot(portName, baudRate, bufferLength,
dataNumBytes, numData) # initializes all required variables
# Starts background thread
s.readSerialStart()
dataArray = s.getSerialData(bufferLength)
while(True):
# Prepare data to write
dataArray = s.getSerialData(bufferLength)
'''
PROCEDURE FOR WRITING LATEST DATA INTO HDF5
'''
# TESTING
print(str(dataArray[-1]), end=' \r')
s.close()
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('Interrupted')
try:
sys.exit(0)
except SystemExit:
os._exit(0)

Python subprocess with real-time input and multiple consoles

The main issue
In a nutshell: I want two consoles for my programm. One for active user input. And the other one for pure log output. (Working code including the accepted answer is in the question's text below, under section "Edit-3". And under section "Edit-1" and section "Edit-2" are functioning workarounds.)
For this I have a main command line Python script, which is supposed to open an additional console for log output only. For this I intend to redirect the log output, which would be printed on the main script's console, to the stdin of the second console, which I start as a subprocess. (I use subprocess, because I didn't find any other way to open a second console.)
The problem is, that it seems that I'm able to send to the stdin of this second console - however, nothing gets printed on this second console.
Following is the code I used for experimenting (with Python 3.4 on PyDev under Windows 10). The function writing(input, pipe, process) contains the part, where the generated string is copied to the as pipe passed stdin, of the via subprocess opened console. The function writing(...) is run via the class writetest(Thread). (I left some code, which I commented out.)
import os
import sys
import io
import time
import threading
from cmd import Cmd
from queue import Queue
from subprocess import Popen, PIPE, CREATE_NEW_CONSOLE
REPETITIONS = 3
# Position of "The class" (Edit-2)
# Position of "The class" (Edit-1)
class generatetest(threading.Thread):
def __init__(self, queue):
self.output = queue
threading.Thread.__init__(self)
def run(self):
print('run generatetest')
generating(REPETITIONS, self.output)
print('generatetest done')
def getout(self):
return self.output
class writetest(threading.Thread):
def __init__(self, input=None, pipe=None, process=None):
if (input == None): # just in case
self.input = Queue()
else:
self.input = input
if (pipe == None): # just in case
self.pipe = PIPE
else:
self.pipe = pipe
if (process == None): # just in case
self.process = subprocess.Popen('C:\Windows\System32\cmd.exe', universal_newlines=True, creationflags=CREATE_NEW_CONSOLE)
else:
self.process = proc
threading.Thread.__init__(self)
def run(self):
print('run writetest')
writing(self.input, self.pipe, self.process)
print('writetest done')
# Position of "The function" (Edit-2)
# Position of "The function" (Edit-1)
def generating(maxint, outline):
print('def generating')
for i in range(maxint):
time.sleep(1)
outline.put_nowait(i)
def writing(input, pipe, process):
print('def writing')
while(True):
try:
print('try')
string = str(input.get(True, REPETITIONS)) + "\n"
pipe = io.StringIO(string)
pipe.flush()
time.sleep(1)
# print(pipe.readline())
except:
print('except')
break
finally:
print('finally')
pass
data_queue = Queue()
data_pipe = sys.stdin
# printer = sys.stdout
# data_pipe = os.pipe()[1]
# The code of 'C:\\Users\\Public\\Documents\\test\\test-cmd.py'
# can be found in the question's text further below under "More code"
exe = 'C:\Python34\python.exe'
# exe = 'C:\Windows\System32\cmd.exe'
arg = 'C:\\Users\\Public\\Documents\\test\\test-cmd.py'
arguments = [exe, arg]
# proc = Popen(arguments, universal_newlines=True, creationflags=CREATE_NEW_CONSOLE)
proc = Popen(arguments, stdin=data_pipe, stdout=PIPE, stderr=PIPE,
universal_newlines=True, creationflags=CREATE_NEW_CONSOLE)
# Position of "The call" (Edit-2 & Edit-1) - file init (proxyfile)
# Position of "The call" (Edit-2) - thread = sockettest()
# Position of "The call" (Edit-1) - thread0 = logtest()
thread1 = generatetest(data_queue)
thread2 = writetest(data_queue, data_pipe, proc)
# time.sleep(5)
# Position of "The call" (Edit-2) - thread.start()
# Position of "The call" (Edit-1) - thread0.start()
thread1.start()
thread2.start()
# Position of "The call" (Edit-2) - thread.join()
# Position of "The call" (Edit-1) - thread.join()
thread1.join(REPETITIONS * REPETITIONS)
thread2.join(REPETITIONS * REPETITIONS)
# data_queue.join()
# receiver = proc.communicate(stdin, 5)
# print('OUT:' + receiver[0])
# print('ERR:' + receiver[1])
print("1st part finished")
A slightly different approach
The following additional code snippet works in regard to extracting the stdout from the subprocess. However, the previously sent stdin still isn't print on the second console. Also, the second console is closed immediately.
proc2 = Popen(['C:\Python34\python.exe', '-i'],
stdin=PIPE,
stdout=PIPE,
stderr=PIPE,
creationflags=CREATE_NEW_CONSOLE)
proc2.stdin.write(b'2+2\n')
proc2.stdin.flush()
print(proc2.stdout.readline())
proc2.stdin.write(b'len("foobar")\n')
proc2.stdin.flush()
print(proc2.stdout.readline())
time.sleep(1)
proc2.stdin.close()
proc2.terminate()
proc2.wait(timeout=0.2)
print("Exiting Main Thread")
More info
As soon as I use one of the paramaters stdin=data_pipe, stdout=PIPE, stderr=PIPE for starting the subprocess, the resulting second console isn't active and doesn't accept keyboard input (which isn't desired, though might be helpful information here).
The subprocess method communicate() can't be used for this as it waits for the process to end.
More code
Finally the code for the file, which is for the second console.
C:\Users\Public\Documents\test\test-cmd.py
from cmd import Cmd
from time import sleep
from datetime import datetime
INTRO = 'command line'
PROMPT = '> '
class CommandLine(Cmd):
"""Custom console"""
def __init__(self, intro=INTRO, prompt=PROMPT):
Cmd.__init__(self)
self.intro = intro
self.prompt = prompt
self.doc_header = intro
self.running = False
def do_dummy(self, args):
"""Runs a dummy method."""
print("Do the dummy.")
self.running = True
while(self.running == True):
print(datetime.now())
sleep(5)
def do_stop(self, args):
"""Stops the dummy method."""
print("Stop the dummy, if you can.")
self.running = False
def do_exit(self, args):
"""Exits this console."""
print("Do console exit.")
exit()
if __name__ == '__main__':
cl = CommandLine()
cl.prompt = PROMPT
cl.cmdloop(INTRO)
Thoughts
So far I'm even not certain if the Windows command line interface offers the capability to accept other input than the one from the keyboard (instead of the desired stdin pipe or similar). Though, with it having some sort of passive mode, I expect it.
Why is this not working?
Edit-1: Workaround via file (proof of concept)
Using a file as workaround in order display it's new content, as suggested in the answer of Working multiple consoles in python, is working in general. However, since the log file will grow up to many GB, it isn't a practical solution in this case. It would at least require file splitting and the proper handling of it.
The class:
class logtest(threading.Thread):
def __init__(self, file):
self.file = file
threading.Thread.__init__(self)
def run(self):
print('run logtest')
logging(self.file)
print('logtest done')
The function:
def logging(file):
pexe = 'C:\Python34\python.exe '
script = 'C:\\Users\\Public\\Documents\\test\\test-004.py'
filek = '--file'
filev = file
file = open(file, 'a')
file.close()
time.sleep(1)
print('LOG START (outer): ' + script + ' ' + filek + ' ' + filev)
proc = Popen([pexe, script, filek, filev], universal_newlines=True, creationflags=CREATE_NEW_CONSOLE)
print('LOG FINISH (outer): ' + script + ' ' + filek + ' ' + filev)
time.sleep(2)
The call:
# The file tempdata is filled with several strings of "0\n1\n2\n"
# Looking like this:
# 0
# 1
# 2
# 0
# 1
# 2
proxyfile = 'C:\\Users\\Public\\Documents\\test\\tempdata'
f = open(proxyfile, 'a')
f.close()
time.sleep(1)
thread0 = logtest(proxyfile)
thread0.start()
thread0.join(REPETITIONS * REPETITIONS)
The tail script ("test-004.py"):
As Windows doesn't offer the tail command, I used the following script instead (base on the answer for How to implement a pythonic equivalent of tail -F?), which worked for this. The additional, yet kind of unnecessary class CommandLine(Cmd) was initially an attempt to keep the second console open (because the script file argument was missing). Though, it also proved itself as useful for keeping the console fluently printing the new log file content. Otherwise the output wasn't deterministic/predictable.
import time
import sys
import os
import threading
from cmd import Cmd
from argparse import ArgumentParser
def main(args):
parser = ArgumentParser(description="Parse arguments.")
parser.add_argument("-f", "--file", type=str, default='', required=False)
arguments = parser.parse_args(args)
if not arguments.file:
print('LOG PRE-START (inner): file argument not found. Creating new default entry.')
arguments.file = 'C:\\Users\\Public\\Documents\\test\\tempdata'
print('LOG START (inner): ' + os.path.abspath(os.path.dirname(__file__)) + ' ' + arguments.file)
f = open(arguments.file, 'a')
f.close()
time.sleep(1)
words = ['word']
console = CommandLine(arguments.file, words)
console.prompt = ''
thread = threading.Thread(target=console.cmdloop, args=('', ))
thread.start()
print("\n")
for hit_word, hit_sentence in console.watch():
print("Found %r in line: %r" % (hit_word, hit_sentence))
print('LOG FINISH (inner): ' + os.path.abspath(os.path.dirname(__file__)) + ' ' + arguments.file)
class CommandLine(Cmd):
"""Custom console"""
def __init__(self, fn, words):
Cmd.__init__(self)
self.fn = fn
self.words = words
def watch(self):
fp = open(self.fn, 'r')
while True:
time.sleep(0.05)
new = fp.readline()
print(new)
# Once all lines are read this just returns ''
# until the file changes and a new line appears
if new:
for word in self.words:
if word in new:
yield (word, new)
else:
time.sleep(0.5)
if __name__ == '__main__':
print('LOG START (inner - as main).')
main(sys.argv[1:])
Edit-1: More thoughts
Three workarounds, which I didn't try yet and might work are sockets (also suggested in this answer Working multiple consoles in python), getting a process object via the process ID for more control, and using the ctypes library for directly accessing the Windows console API, allowing to set the screen buffer, as the console can have multiple buffers, but only one active buffer (stated in the remarks of the documentation for the CreateConsoleScreenBuffer function).
However, using sockets might be the easiest one. And at least the size of the log doesn't matter this way. Though, connection problems might be a problem here.
Edit-2: Workaround via sockets (proof of concept)
Using sockets as workaround in order display new log enties, as it also was suggested in the answer of Working multiple consoles in python, is working in general, too. Though, this seems to be too much effort for something, which should be simply sent to the process of the receiving console.
The class:
class sockettest(threading.Thread):
def __init__(self, host, port, file):
self.host = host
self.port = port
self.file = file
threading.Thread.__init__(self)
def run(self):
print('run sockettest')
socketing(self.host, self.port, self.file)
print('sockettest done')
The function:
def socketing(host, port, file):
pexe = 'C:\Python34\python.exe '
script = 'C:\\Users\\Public\\Documents\\test\test-005.py'
hostk = '--address'
hostv = str(host)
portk = '--port'
portv = str(port)
filek = '--file'
filev = file
file = open(file, 'a')
file.close()
time.sleep(1)
print('HOST START (outer): ' + pexe + script + ' ' + hostk + ' ' + hostv + ' ' + portk + ' ' + portv + ' ' + filek + ' ' + filev)
proc = Popen([pexe, script, hostk, hostv, portk, portv, filek, filev], universal_newlines=True, creationflags=CREATE_NEW_CONSOLE)
print('HOST FINISH (outer): ' + pexe + script + ' ' + hostk + ' ' + hostv + ' ' + portk + ' ' + portv + ' ' + filek + ' ' + filev)
time.sleep(2)
The call:
# The file tempdata is filled with several strings of "0\n1\n2\n"
# Looking like this:
# 0
# 1
# 2
# 0
# 1
# 2
proxyfile = 'C:\\Users\\Public\\Documents\\test\\tempdata'
f = open(proxyfile, 'a')
f.close()
time.sleep(1)
thread = sockettest('127.0.0.1', 8888, proxyfile)
thread.start()
thread.join(REPETITIONS * REPETITIONS)
The socket script ("test-005.py"):
The following script is based on Python: Socket programming server-client application using threads. Here I just keept the class CommandLine(Cmd) as log entry generator. At this point it should't be a problem, to put client into the main script, which calls the second console and then feed the queue with real log enties instead of (new) file lines. (The server is the printer.)
import socket
import sys
import threading
import time
from cmd import Cmd
from argparse import ArgumentParser
from queue import Queue
BUFFER_SIZE = 5120
class CommandLine(Cmd):
"""Custom console"""
def __init__(self, fn, words, queue):
Cmd.__init__(self)
self.fn = fn
self.words = words
self.queue = queue
def watch(self):
fp = open(self.fn, 'r')
while True:
time.sleep(0.05)
new = fp.readline()
# Once all lines are read this just returns ''
# until the file changes and a new line appears
self.queue.put_nowait(new)
def main(args):
parser = ArgumentParser(description="Parse arguments.")
parser.add_argument("-a", "--address", type=str, default='127.0.0.1', required=False)
parser.add_argument("-p", "--port", type=str, default='8888', required=False)
parser.add_argument("-f", "--file", type=str, default='', required=False)
arguments = parser.parse_args(args)
if not arguments.address:
print('HOST PRE-START (inner): host argument not found. Creating new default entry.')
arguments.host = '127.0.0.1'
if not arguments.port:
print('HOST PRE-START (inner): port argument not found. Creating new default entry.')
arguments.port = '8888'
if not arguments.file:
print('HOST PRE-START (inner): file argument not found. Creating new default entry.')
arguments.file = 'C:\\Users\\Public\\Documents\\test\\tempdata'
file_queue = Queue()
print('HOST START (inner): ' + ' ' + arguments.address + ':' + arguments.port + ' --file ' + arguments.file)
# Start server
thread = threading.Thread(target=start_server, args=(arguments.address, arguments.port, ))
thread.start()
time.sleep(1)
# Start client
thread = threading.Thread(target=start_client, args=(arguments.address, arguments.port, file_queue, ))
thread.start()
# Start file reader
f = open(arguments.file, 'a')
f.close()
time.sleep(1)
words = ['word']
console = CommandLine(arguments.file, words, file_queue)
console.prompt = ''
thread = threading.Thread(target=console.cmdloop, args=('', ))
thread.start()
print("\n")
for hit_word, hit_sentence in console.watch():
print("Found %r in line: %r" % (hit_word, hit_sentence))
print('HOST FINISH (inner): ' + ' ' + arguments.address + ':' + arguments.port)
def start_client(host, port, queue):
host = host
port = int(port) # arbitrary non-privileged port
queue = queue
soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
soc.connect((host, port))
except:
print("Client connection error" + str(sys.exc_info()))
sys.exit()
print("Enter 'quit' to exit")
message = ""
while message != 'quit':
time.sleep(0.05)
if(message != ""):
soc.sendall(message.encode("utf8"))
if soc.recv(BUFFER_SIZE).decode("utf8") == "-":
pass # null operation
string = ""
if (not queue.empty()):
string = str(queue.get_nowait()) + "\n"
if(string == None or string == ""):
message = ""
else:
message = string
soc.send(b'--quit--')
def start_server(host, port):
host = host
port = int(port) # arbitrary non-privileged port
soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# SO_REUSEADDR flag tells the kernel to reuse a local socket in TIME_WAIT state, without waiting for its natural timeout to expire
soc.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
print("Socket created")
try:
soc.bind((host, port))
except:
print("Bind failed. Error : " + str(sys.exc_info()))
sys.exit()
soc.listen(5) # queue up to 5 requests
print("Socket now listening")
# infinite loop- do not reset for every requests
while True:
connection, address = soc.accept()
ip, port = str(address[0]), str(address[1])
print("Connected with " + ip + ":" + port)
try:
threading.Thread(target=client_thread, args=(connection, ip, port)).start()
except:
print("Thread did not start.")
traceback.print_exc()
soc.close()
def client_thread(connection, ip, port, max_buffer_size=BUFFER_SIZE):
is_active = True
while is_active:
client_input = receive_input(connection, max_buffer_size)
if "--QUIT--" in client_input:
print("Client is requesting to quit")
connection.close()
print("Connection " + ip + ":" + port + " closed")
is_active = False
elif not client_input == "":
print("{}".format(client_input))
connection.sendall("-".encode("utf8"))
else:
connection.sendall("-".encode("utf8"))
def receive_input(connection, max_buffer_size):
client_input = connection.recv(max_buffer_size)
client_input_size = sys.getsizeof(client_input)
if client_input_size > max_buffer_size:
print("The input size is greater than expected {}".format(client_input_size))
decoded_input = client_input.decode("utf8").rstrip() # decode and strip end of line
result = process_input(decoded_input)
return result
def process_input(input_str):
return str(input_str).upper()
if __name__ == '__main__':
print('HOST START (inner - as main).')
main(sys.argv[1:])
Edit-2: Furthermore thoughts
Having direct control of the subprocess' console input pipe/buffer would be the preferable solution to this problem. For this is the bounty of 500 Reputation.
Unfortunately I'm running out of time. Therefore I might use one of those workarounds for now and replace them with the proper solution later. Or maybe I have to use the nuclear option, just one console, where the ongoing log output is paused during any user keyboard input, and printed afterwards. Of course this might lead to buffer problems, when the user decides to type something just half the way.
Edit-3: Code including the accepted answer (one file)
With the answer from James Kent I get the desired behavior, when I start a script with the code via the Windows command line (cmd) or PowerShell. However, when I start this same script via Eclipse/PyDev with "Python run", then the output is always printed on the main Eclipse/PyDev console, while the second console of the subprocess remains empty and stays inactive. Though, I guess this is another system/environment speciality and a different issue.
from sys import argv, stdin, stdout
from threading import Thread
from cmd import Cmd
from time import sleep
from datetime import datetime
from subprocess import Popen, PIPE, CREATE_NEW_CONSOLE
INTRO = 'command line'
PROMPT = '> '
class CommandLine(Cmd):
"""Custom console"""
def __init__(self, subprocess, intro=INTRO, prompt=PROMPT):
Cmd.__init__(self)
self.subprocess = subprocess
self.intro = intro
self.prompt = prompt
self.doc_header = intro
self.running = False
def do_date(self, args):
"""Prints the current date and time."""
print(datetime.now())
sleep(1)
def do_exit(self, args):
"""Exits this command line application."""
print("Exit by user command.")
if self.subprocess is not None:
try:
self.subprocess.terminate()
except:
self.subprocess.kill()
exit()
class Console():
def __init__(self):
if '-r' not in argv:
self.p = Popen(
['python.exe', __file__, '-r'],
stdin=PIPE,
creationflags=CREATE_NEW_CONSOLE
)
else:
while True:
data = stdin.read(1)
if not data:
# break
sleep(1)
continue
stdout.write(data)
def write(self, data):
self.p.stdin.write(data.encode('utf8'))
self.p.stdin.flush()
def getSubprocess(self):
if self.p:
return self.p
else:
return None
class Feeder (Thread):
def __init__(self, console):
self.console = console
Thread.__init__(self)
def run(self):
feeding(self.console)
def feeding(console):
for i in range(0, 100):
console.write('test %i\n' % i)
sleep(1)
if __name__ == '__main__':
p = Console()
if '-r' not in argv:
thread = Feeder(p)
thread.setDaemon(True)
thread.start()
cl = CommandLine(subprocess=p.getSubprocess())
cl.use_rawinput = False
cl.prompt = PROMPT
cl.cmdloop('\nCommand line is waiting for user input (e.g. help).')
Edit-3: Honorable mentions
In the questions's text above I have mentioned using the ctypes library for directly accessing the Windows console API as another workround (under "Edit-1: More thoughts"). Or using just one console in a way, that the input prompt always stays at the bottom as nuclear option to this entire problem. (under "Edit-2: Furthermore thoughts")
For using the ctypes library I would have oriented myself on the following answer to Change console font in Windows. And for using just one console I would have tried the following answer to Keep console input line below output. I think both of these answers may offer potential merrit regarding this problem and maybe they are helpful to others how come accross this post. Also, I if i find the time, I will try if they work somehow.
The issue you're up against is the architecture of the console subsystem on Windows, the console window that you normally see is not hosted by cmd.exe but instead by conhost.exe, a child process of a conhost window can only connect to a single conhost instance meaning you're limited to a single window per process.
This then leads on to having an extra process for each console window you wish to have, then in order to look at displaying anything in that window you need to look at how stdin and stdout are normally handled, in that they are written and read from by the conhost instance, except if you turn stdin into a pipe (so you can write to the process) it no longer comes from conhost but instead from your parent process and as such conhost has no visibility of it. This means that anything written to stdin is only read by the child process so is not displayed by conhost.
As far as I know there isn't a way to share the pipe like that.
As a side effect if you make stdin a pipe then all keyboard input sent to the new console window goes nowhere, as stdin is not connected to that window.
For an output only function this means you can spawn a new process that communicates with the parent via a pipe to stdin and echos everything to stdout.
Heres an attempt:
#!python3
import sys, subprocess, time
class Console():
def __init__(self):
if '-r' not in sys.argv:
self.p = subprocess.Popen(
['python.exe', __file__, '-r'],
stdin=subprocess.PIPE,
creationflags=subprocess.CREATE_NEW_CONSOLE
)
else:
while True:
data = sys.stdin.read(1)
if not data:
break
sys.stdout.write(data)
def write(self, data):
self.p.stdin.write(data.encode('utf8'))
self.p.stdin.flush()
if (__name__ == '__main__'):
p = Console()
if '-r' not in sys.argv:
for i in range(0, 100):
p.write('test %i\n' % i)
time.sleep(1)
So a nice simple pipe between two processes and echoing the input back to the output if its the subprocess, I used a -r to signify whether the instance is a process but there are other ways depending on how you implement it.
Several things to note:
the flush after writing to stdin is needed as python normally uses buffering.
the way this approach is written is aimed at being in its own module hence the use of __file__
due to the use of __file__ this approach may need modification if frozen using cx_Freeze or similar.
EDIT 1
for a version that can be frozen with cx_Freeze:
Console.py
import sys, subprocess
class Console():
def __init__(self, ischild=True):
if not ischild:
if hasattr(sys, 'frozen'):
args = ['Console.exe']
else:
args = [sys.executable, __file__]
self.p = subprocess.Popen(
args,
stdin=subprocess.PIPE,
creationflags=subprocess.CREATE_NEW_CONSOLE
)
else:
while True:
data = sys.stdin.read(1)
if not data:
break
sys.stdout.write(data)
def write(self, data):
self.p.stdin.write(data.encode('utf8'))
self.p.stdin.flush()
if (__name__ == '__main__'):
p = Console()
test.py
from Console import Console
import sys, time
if (__name__ == '__main__'):
p = Console(False)
for i in range(0, 100):
p.write('test %i\n' % i)
time.sleep(1)
setup.py
from cx_Freeze import setup, Executable
setup(
name = 'Console-test',
executables = [
Executable(
'Console.py',
base=None,
),
Executable(
'test.py',
base=None,
)
]
)
EDIT 2
New version that should work under dev tools like IDLE
Console.py
#!python3
import ctypes, sys, subprocess
Kernel32 = ctypes.windll.Kernel32
class Console():
def __init__(self, ischild=True):
if ischild:
# try allocate new console
result = Kernel32.AllocConsole()
if result > 0:
# if we succeed open handle to the console output
sys.stdout = open('CONOUT$', mode='w')
else:
# if frozen we assume its names Console.exe
# note that when frozen 'Win32GUI' must be used as a base
if hasattr(sys, 'frozen'):
args = ['Console.exe']
else:
# otherwise we use the console free version of python
args = ['pythonw.exe', __file__]
self.p = subprocess.Popen(
args,
stdin=subprocess.PIPE
)
return
while True:
data = sys.stdin.read(1)
if not data:
break
sys.stdout.write(data)
def write(self, data):
self.p.stdin.write(data.encode('utf8'))
self.p.stdin.flush()
if (__name__ == '__main__'):
p = Console()
test.py
from Console import Console
import sys, time
if (__name__ == '__main__'):
p = Console(False)
for i in range(0, 100):
p.write('test %i\n' % i)
time.sleep(1)
setup.py
from cx_Freeze import setup, Executable
setup(
name = 'Console-test',
executables = [
Executable(
'Console.py',
base='Win32GUI',
),
Executable(
'test.py',
base=None,
)
]
)
This could be made more robust, i.e. always checking for an existing console and detaching it if found before creating a new console, and possibly better error handling.
Since you are on windows you can use win32console module to open a second console or multiple consoles for your thread or subprocess output. This is the most simple and easiest way that works if you are on windows.
Here is a sample code:
import win32console
import multiprocessing
def subprocess(queue):
win32console.FreeConsole() #Frees subprocess from using main console
win32console.AllocConsole() #Creates new console and all input and output of subprocess goes to this new console
while True:
print(queue.get())
#prints any output produced by main script passed to subprocess using queue
if __name__ == "__main__":
queue = multiprocessing.Queue()
multiprocessing.Process(target=subprocess, args=[queue]).start()
while True:
print("Hello World in main console")
queue.put("Hello work in sub process console")
#sends above string to subprocess and it prints it into its console
#and whatever else you want to do in ur main process
You can also do this with threading. You have to use queue module if you want the queue functionality as threading module doesn't have queue
Here is the win32console module documentation

Multiple Python threads writing to single JSON file

I am adapting the Python script in this project (expanded below) to a point where it updates a JSON file's elements, instead of the InitialState streamer. However, with the multiple threads that are opened by the script, it is impossible to succinctly write the data from each thread back to the file as it would be read, changed, and written back to the file in all threads at the same time. As there can only be one file, no version will ever be accurate as the last thread would override all others.
Question: How can I update the states in the JSON based in each thread (simultaneously) without it affecting the other thread's writing operation or locking up the file?
JSON file contains the occupant's status that I would like to manipulate with the python script:
{
"janeHome": "false",
"johnHome": "false",
"jennyHome": "false",
"jamesHome": "false"
}
This is the python script:
import subprocess
import json
from time import sleep
from threading import Thread
# Edit these for how many people/devices you want to track
occupant = ["Jane","John","Jenny","James"]
# MAC addresses for our phones
address = ["11:22:33:44:55:66","77:88:99:00:11:22","33:44:55:66:77:88","99:00:11:22:33:44"]
# Sleep once right when this script is called to give the Pi enough time
# to connect to the network
sleep(60)
# Some arrays to help minimize streaming and account for devices
# disappearing from the network when asleep
firstRun = [1] * len(occupant)
presentSent = [0] * len(occupant)
notPresentSent = [0] * len(occupant)
counter = [0] * len(occupant)
# Function that checks for device presence
def whosHere(i):
# 30 second pause to allow main thread to finish arp-scan and populate output
sleep(30)
# Loop through checking for devices and counting if they're not present
while True:
# Exits thread if Keyboard Interrupt occurs
if stop == True:
print ("Exiting Thread")
exit()
else:
pass
# If a listed device address is present print
if address[i] in output:
print(occupant[i] + "'s device is connected")
if presentSent[i] == 0:
# TODO: UPDATE THIS OCCUPANT'S STATUS TO TRUE
# Reset counters so another stream isn't sent if the device
# is still present
firstRun[i] = 0
presentSent[i] = 1
notPresentSent[i] = 0
counter[i] = 0
sleep(900)
else:
# If a stream's already been sent, just wait for 15 minutes
counter[i] = 0
sleep(900)
# If a listed device address is not present, print and stream
else:
print(occupant[i] + "'s device is not connected")
# Only consider a device offline if it's counter has reached 30
# This is the same as 15 minutes passing
if counter[i] == 30 or firstRun[i] == 1:
firstRun[i] = 0
if notPresentSent[i] == 0:
# TODO: UPDATE THIS OCCUPANT'S STATUS TO FALSE
# Reset counters so another stream isn't sent if the device
# is still present
notPresentSent[i] = 1
presentSent[i] = 0
counter[i] = 0
else:
# If a stream's already been sent, wait 30 seconds
counter[i] = 0
sleep(30)
# Count how many 30 second intervals have happened since the device
# disappeared from the network
else:
counter[i] = counter[i] + 1
print(occupant[i] + "'s counter at " + str(counter[i]))
sleep(30)
# Main thread
try:
# Initialize a variable to trigger threads to exit when True
global stop
stop = False
# Start the thread(s)
# It will start as many threads as there are values in the occupant array
for i in range(len(occupant)):
t = Thread(target=whosHere, args=(i,))
t.start()
while True:
# Make output global so the threads can see it
global output
# Reads existing JSON file into buffer
with open("data.json", "r") as jsonFile:
data = json.load(jsonFile)
jsonFile.close()
# Assign list of devices on the network to "output"
output = subprocess.check_output("arp-scan -interface en1 --localnet -l", shell=True)
temp = data["janeHome"]
data["janeHome"] = # RETURNED STATE
data["johnHome"] = # RETURNED STATE
data["jennyHome"] = # RETURNED STATE
data["jamesHome"] = # RETURNED STATE
with open("data.json", "w") as jsonFile:
json.dump(data, jsonFile)
jsonFile.close()
# Wait 30 seconds between scans
sleep(30)
except KeyboardInterrupt:
# On a keyboard interrupt signal threads to exit
stop = True
exit()
I think we can all agree that the best idea would be to return the data from each thread to the main and write it to the file in one location but here is where it gets confusing, with each thread checking for a different person, how can the state be passed back to main for writing?

Timer just runs the first time

First of all I am a complete noobie when it comes to python. Actually I started reading about it this morning when I needed to use it, so sorry if the code is a disaster.
I'd like to get this done:
A communication via serial between two devices. The device where the python program is running has to be listening for some data being sent by the other device and storing it in a file. But every 30 seconds of received data it has to send a command to the other device to tell it to stop sending and begin a scan that takes 10 seconds.
This is the code I've written. It's printing continuously Opening connection..
from serial import Serial
from threading import Timer
import time
MOVE_TIME = 30.0
SCAN_TIME = 10.0
DEVICE_ADDRESS = '/dev/ttyACM0'
BAUD_RATE = 9600
while True:
try:
print("Opening connection...")
ser = Serial(DEVICE_ADDRESS, BAUD_RATE
break
except SerialException:
print("No device attached")
def scan():
print("Scanning...")
timeout = time.time() + SCAN_TIME
while True:
#Some code I haven't thought of yet
if time.time() > timeout:
ser.write(b'r') #command to start
break
def send_stop_command():
print("Sending stop command")
ser.write(b's') #command to stop
scan()
t = Timer(MOVE_TIME + SCAN_TIME, send_stop_command)
t.start()
filename = time.strftime("%d-%m-%Y_%H:%M:%S") + ".txt"
while True:
data = ser.readline()
try:
with open(filename, "ab") as outfile:
outfile.write(data)
outfile.close()
except IOError:
print("Data could not be written")

How to finish a socket file transfer in Python?

I have a Client and a Server and I need to transfer some files using sockets. I can send small messages, but when I try to send a File, the problems begins...
client.py:
from socket import *
from threading import Thread
import sys
import hashlib
class Client(object):
ASK_LIST_FILES = "#001" # 001 is the requisition code to list
# all the files
ASK_SPECIFIC_FILE = "#002" # 002 is the requisition code to a
# specific file
SEND_FILE = "#003" # 003 is the requisition code to send one
# file
AUTHENTICATION = "#004" # 004 is the requisition code to user
# authentication
listOfFiles = []
def __init__(self):
try:
self.clientSocket = socket(AF_INET, SOCK_STREAM)
except (error):
print("Failed to create a Socket.")
sys.exit()
def connect(self, addr):
try:
self.clientSocket.connect(addr)
except (error):
print("Failed to connect.")
sys.exit()
print(self.clientSocket.recv(1024).decode())
def closeConnection(self):
self.clientSocket.close()
def _askFileList(self):
try:
data = Client.ASK_LIST_FILES
self.clientSocket.sendall(data.encode())
# self._recvFileList()
except (error):
print("Failed asking for the list of files.")
self.closeConnection()
sys.exit()
thread = Thread(target = self._recvFileList)
thread.start()
def _recvFileList(self):
print("Waiting for the list...")
self.listOfFiles = []
while len(self.listOfFiles) == 0:
data = self.clientSocket.recv(1024).decode()
if (data):
self.listOfFiles = data.split(',')
if(len(self.listOfFiles) > 0):
print (self.listOfFiles)
def _askForFile(self, fileIndex):
fileIndex = fileIndex - 1
try:
data = Client.ASK_SPECIFIC_FILE + "#" + str(fileIndex)
self.clientSocket.sendall(data.encode())
except(error):
print("Failed to ask for an specific file.")
self.closeConnection()
sys.exit()
self._downloadFile(fileIndex)
def _downloadFile(self, fileIndex):
print("Starting receiving file")
f = open("_" + self.listOfFiles[fileIndex], "wb+")
read = self.clientSocket.recv(1024)
# print(read)
# f.close
while len(read) > 0:
print(read)
f.write(read)
f.flush()
read = self.clientSocket.recv(1024)
f.flush()
f.close()
self.closeConnection()
server.py
from socket import *
from threading import Thread
import sys
import glob
class Server(object):
def __init__(self):
try:
self.serverSocket = socket(AF_INET, SOCK_STREAM)
except (error):
print("Failed to create a Socket.")
sys.exit()
def connect(self, addr):
try:
self.serverSocket.bind(addr)
except (error):
print ("Failed on binding.")
sys.exit()
def closeConnection(self):
self.serverSocket.close()
def waitClients(self, num):
while True:
print("Waiting for clients...")
self.serverSocket.listen(num)
conn, addr = self.serverSocket.accept()
print("New client found...")
thread = Thread(target = self.clientThread, args = (conn,))
thread.start()
def clientThread(self, conn):
WELCOME_MSG = "Welcome to the server"
conn.send(WELCOME_MSG.encode())
while True:
data = conn.recv(2024).decode()
if(data):
# print(data)
# reply = 'OK: ' + data
# conn.sendall(reply.encode())
if(data == "#001"):
listOfFiles = self.getFileList()
strListOfFiles = ','.join(listOfFiles)
self._sendFileList(strListOfFiles, conn)
else:
dataCode = data.split('#')
print(dataCode)
if(dataCode[1] == "002"):
print("Asking for file")
self._sendFile(int(dataCode[2]), conn)
if(dataCode[1] == "003"):
print("Pedido de login")
if self._authentication(dataCode[2]):
conn.send("OK".encode())
# self._recvFile(conn)
else:
conn.send("FAILED".encode())
def _sendFile(self, fileIndex, conn):
listOfFiles = self.getFileList()
print(fileIndex)
print(listOfFiles[fileIndex])
f = open(listOfFiles[fileIndex], "rb")
read = f.read(1024)
while len(read) > 0:
conn.send(read)
read = f.read(1024)
f.close()
def _sendFileList(self, strList, conn):
try:
conn.sendall(strList.encode())
except (error):
print("Failed to send list of files.")
def getFileList(self):
return glob.glob("files/*")
When I try to get a file from my server, I can transfer everything but the connection never ends. What is going on with my code?
First, you are doing here the most common error using TCP: assume all data sent in a single send() will be got identically in a single recv(). This is untrue for TCP, because it is an octet stream, not a message stream. Your code will work only under ideal (lab) conditions and could mysteriously fail in a real world usage. You should either explicitly invent message boundaries in TCP streams, or switch e.g. to SCTP. The latter is available now almost everywhere and keeps message boundaries across a network connection.
The second your error is directly connected to the first one. When sending file, you don't provide any explicit mark that file has been finished. So, clients waits forever. You might try to close server connection to show that file is finished, but in that case client won't be able to distinguish real file end and connection loss; moreover, the connection won't be reusable for further commands. You would select one of the following ways:
Prefix a file contents with its length. In this case, client will know how many bytes shall be received for the file.
Send file contents as a chunk sequence, prefixing each chunk with its length (only for TCP) and with mark whether this chunk is last (for both transports). Alternatively, a special mark "EOF" can be sent without data.
Similarly, control messages and their responses shall be provided with either length prefix or a terminator which can't appear inside such message.
When you finish developing this, you would look at FTP and HTTP; both addresses all issues I described here but in principally different ways.

Categories