i have this script but counts from seconds while the scripts ends in less than a second.
import time
start = time.time()
p=[1,2,3,4,5]
print('It took {0:0.1f} seconds'.format(time.time() - start))
python 3.7 uses a new function that can do that. I have 3.6.5. How do i do that?
time.perf_counter(), available since Python 3.3, lets you access a high-resolution wallclock.
t0 = time.perf_counter()
time.sleep(.1)
print(time.perf_counter() - t0)
It doesn't count in seconds. It counts in fractions of a second, it's just that the script ends faster than the precision allowed by the string formatted float, ie. much less than a second.
Try:
import time
start = time.time()
p=[1,2,3,4,5]
time.sleep(0.5)
print('It took {0:0.1f} seconds'.format(time.time() - start))
Also, for shorter sleep you may want to increase the precision of your float formatter (eg {0:0.3f}), so that for shorter sleeps (eg 0.007) you don't have a 0.0 printed to console.
import time
start = time.time()
p=[1,2,3,4,5]
time.sleep(0.007)
print('It took {0:0.3f} seconds'.format(time.time() - start))
Or just remove the formatter entirely (As commented by Inder):
import time
start = time.time()
p=[1,2,3,4,5]
time.sleep(0.007)
print ('It took ' + str(time.time()-start) + ' seconds')
See here for more details of timer resolution: https://docs.python.org/2/library/time.html
Related
How do I print the time every 10 seconds based off of using the % operator and the datetime package? This only prints once...
from datetime import datetime, timezone, timedelta
import time
now_utc = datetime.now(timezone.utc)
while True:
if (now_utc - datetime.now(timezone.utc)).total_seconds() % 10 == 0:
print(time.ctime())
In response to comments on the question: you can do this without datetime and %. The benefit is that it's much simpler.
import time
POLLING_PERIOD = 0.1 # seconds
if __name__ == '__main__':
prev_time = time.time()
print(time.ctime())
while True:
cur_time = time.time()
if cur_time - prev_time >= 10:
prev_time = cur_time
print(time.ctime())
time.sleep(POLLING_PERIOD)
This script gets the seconds from Unix epoch and prints the current time every 10s. You can adjust the polling period to minimize spinning and ensure that the time is printed only every 10s, rather than 11s, 12s, etc. due to poor resolution.
Please note that this script is susceptible to drift due to inaccuracy of time.sleep() and will eventually print a time which is greater than 10s since the last printed time.
After running some experiments on a system with low load, time.sleep() performs very well over several hours if the sleep time is adjusted based on the difference between the previous and current times.
import time
REPORTING_INTERVAL = 10 # seconds
if __name__ == '__main__':
prev_time = time.time()
sleep_time_adj = 0
print(time.ctime())
while True:
time.sleep(REPORTING_INTERVAL - sleep_time_adj)
print(time.ctime())
cur_time = time.time()
sleep_time_adj = cur_time - prev_time - REPORTING_INTERVAL
prev_time = cur_time
It really comes down to how accurate this needs to be, how long it's going to run, and the system it will run on.
How can I convert the execution time to milliseconds.
I already multiplied the start and end time to 1000.
I used time.time()
Execution Time
Result:
('Start time: ', 1596465418538.365)
Remove.IntNonIdUniqueIndex
('End time: ', 1596465418538.399)
('Execution time: ', 3.409385681152344e-05)
time.time() basic unit is second. It's enough to multiply the difference between end and start by 1000 to get the milliseconds.
import time
start = time.time()
time.sleep(1)
end = time.time()
d = end - start
print(f'executed in {d} seconds or {d*1000} milliseconds')
executed in 1.003673791885376 seconds or 1003.673791885376 milliseconds
If you are measuring program execution times, it is best to use time.monotonic() or time.monotonic_ns().
These functions are guaranteed never to go backwards even in the event of system clock updates.
The first returns a value in seconds, the second in nanoseconds.
I'm creating a loop which executes every 5 seconds, starting at the startTime variable and ending at the stopTime variable. However, the code below is disregarding the minutes within my startTime and endTime variables and only executing on the hour. For example, even though my startTime is '1130', the code is executing 11:05, rather than ending the loop. I have the same problem with the endTime variable. If the current time is 12:45, the code still executes even though the endTime variable is '1230'. The code will stop executing at '1300'.
frequency = 5
startTime = '1130'
endTime = '1230'
while True:
now = datetime.now().strftime('%H:%M:%S')
if startTime <= now <= endTime:
print('Loop is working. Time is: ',now)
time.sleep(frequency)
else:
print('Loop is stopped')
break
I live in Central Time, so I tried switching to Eastern timezone by modifying the "now" variable to:
now = datetime.now(timezone('US/Eastern')).strftime('%H:%M:%S.%f %Z')
but I still get the same problem when I substitute eastern times with startTime and endTime when using the eastern datetime.now().
Is executing code at a precise minute possible with strftime()?
EDIT: (this is now the answer to the real question (oops))
If you want to wait till for example 11:30 (which was the real question)
you can calculate the time (in seconds) the program should sleep (and let it sleep for that time):
def wait_till(hour, minute, second=0):
# get system time (and date)
now_time = datetime.datetime.now()
# create time point we are waiting for (this year, this month and this day)
wait_till_time = datetime.datetime(year=now_time.year, month=now_time.month, day=now_time.day, hour=hour, minute=minute, second=second)
# calculate time we want to wait for and convert to seconds
wait_for = (wait_till_time - now_time).total_seconds()
# check if it's going to be tomorrow (if we would sleep for a negative amount of seconds)
if wait_for < 0:
# add one day
wait_till_time = wait_till_time.replace(day=now_time.day+1)
# recalculate (not very beautiful, but i don't know a better way)
wait_for = (wait_till_time - now_time).total_seconds()
# printing this waiting time (in seconds)
print("waiting for",wait_for,"seconds")
# sleeping for that time
time.sleep(wait_for)
# printing the new now time, so we can see how accurate it is
print("its now",datetime.datetime.now())
and say for example:
wait_till(20, 24) # waiting till 20:24 (today)
and get:
waiting for 15.32297 seconds
its now 2019-03-11 20:24:00.003857
which is pretty darn close to what we wanted (20:24:00.000000) and this delay is probably only caused by the calculation lag of formatting the string.
(The old stuff ...)
if it's not important that it takes 100% 5s (but rather 100.04546642303467% --> it will get off a little bit every time) you can just do
import time
frequency = 5 #every 5 seconds
start_time = time.time()
while 1:
elspsed_time = time.time() - start_time
print(elspsed_time)
time.sleep(frequency)
but if you need the 100% you can try this autocorrecting solution:
import time
from threading import Timer
frequency = 5 #every 5 seconds
start_time = time.time()
def what_to_do_after_5s():
elapsed_time = time.time() - start_time
print(elapsed_time)
# next call
Timer(5.0 - (elapsed_time - int(elapsed_time)), what_to_do_after_5s, ()).start()
what_to_do_after_5s()
and we can see that it autocorrects:
0.0
5.000170707702637
10.000272989273071
15.000539064407349
20.001248836517334
25.00046443939209
30.000929355621338
35.00142860412598
40.0007688999176
45.00128436088562
50.00045442581177
55.000683069229126
60.00123882293701
65.00095415115356
70.0015127658844
I am working on a project which accurate timer is really crucial. I am working on python and am using timer.sleep() function.
I noticed that timer.sleep() function will add additional delay because of the scheduling problem (refer to timer.sleep docs). Due to that issue, the longer my program runs, the more inaccurate the timer is.
Is there any more accurate timer/ticker to sleep the program or solution for this problem?
Any help would be appreciated. Cheers.
I had a solution similar to above, but it became processor heavy very quickly. Here is a processor-heavy idea and a workaround.
def processor_heavy_sleep(ms): # fine for ms, starts to work the computer hard in second range.
start = time.clock()
end = start + ms /1000.
while time.clock() < end:
continue
return start, time.clock()
def efficient_sleep(secs, expected_inaccuracy=0.5): # for longer times
start = time.clock()
end = secs + start
time.sleep(secs - expected_inaccuracy)
while time.clock() < end:
continue
return start, time.clock()
output of efficient_sleep(5, 0.5) 3 times was:
(3.1999303695151594e-07, 5.0000003199930365)
(5.00005983869791, 10.00005983869791)
(10.000092477987678, 15.000092477987678)
This is on windows. I'm running it for 100 loops right now. Here are the results.
(485.003749358414, 490.003749358414)
(490.0037919174879, 495.0037922374809)
(495.00382903668014, 500.00382903668014)
The sleeps remain accurate, but the calls are always delayed a little. If you need a scheduler that accurately calls every xxx secs to the millisecond, that would be a different thing.
the longer my program runs, the more inaccurate the timer is.
So, for example by expecting 0.5s delay, it will be time.sleep(0.5 - (start-end)). But still didn't solve the issue
You seem to be complaining about two effects, 1) the fact that timer.sleep() may take longer than you expect, and 2) the inherent creep in using a series of timer.sleep() calls.
You can't do anything about the first, short of switching to a real-time OS. The underlying OS calls are defined to sleep for at least as long as requested. They only guarantee that you won't wake early; they make no guarantee that you won't wake up late.
As for the second, you ought to figure your sleep time according to an unchanging epoch, not from your wake-up time. For example:
import time
import random
target = time.time()
def myticker():
# Sleep for 0.5s between tasks, with no creep
target += 0.5
now = time.time()
if target > now:
time.sleep(target - now)
def main():
previous = time.time()
for _ in range(100):
now = time.time()
print(now - previous)
previous = now
# simulate some work
time.sleep(random.random() / 10) # Always < tick frequency
# time.sleep(random.random()) # Not always < tick frequency
myticker()
if __name__ == "__main__":
main()
Working on Linux with zero knowledge of Windows, I may be being naive here but is there some reason that writing your own sleep function, won't work for you?
Something like:
import time
def sleep_time():
start_time = time.time()
while (time.time() - start_time) < 0.0001:
continue
end_time = time.time() + 60 # run for a minute
cnt = 0
while time.time() < end_time:
cnt += 1
print('sleeping',cnt)
sleep_time()
print('Awake')
print("Slept ",cnt," Times")
I'm trying to make a simple timer which prints the time remaining every second.
for k in range(100):
print(100-k)
t.sleep(1)
#output
#100
#99
#98
#...
#1
However, this will take slightly longer than 100 seconds, because there will be a delay added when print() is used. For long periods, this is slightly noticeable. Is there a way to account for this, and accurately display the time every second? I know I could just sleep(100), but this wouldn't let the time left be printed.
import time
start_time=time.time()
for k in range(25):
print(25-k)
time.sleep(1)
print("it took "+str(float(time.time()-start_time)*1000)+" Milliseconds")
the output with print is: it took 26412.75382041931 Milliseconds
the output without print : it took 25053.035020828247 Milliseconds
it should have been just 25000 milliseconds but it is not
printing will take time, even reading the code takes time
point is don't expect accurate timing with time.sleep() !!!
You can use time.time() to measure elapsed time.
import time
start_time = time.time()
for k in range(100):
# k seconds SHOULD be elapsed at this point
print(100 - k)
slept_time = time.time() - start_time
time.sleep(1 + k-slept_time)
Using time.sleep will never give you the accurate time for your timer, since the time it takes is the one second sleep time + printing time, you can use threading.Timer to get more accurate results. https://repl.it/Hwkt :
import threading, time
start_time=time.time()
def count_loop(counter):
if counter <= 0:
print("it took "+str(float(time.time()-start_time)*1000)+" Milliseconds")
return
threading.Timer(1.0, count_loop, args=[counter-1]).start()
print(counter)
count_loop(100)
This is still not accurate, but with only very minimum offset, only 45 ms. However, when using time.sleep from legendisback's example, there is apparently 81 ms delay. https://repl.it/HwlK