Run a script in Python in parallel [duplicate] - python

I researched first and couldn't find an answer to my question. I am trying to run multiple functions in parallel in Python.
I have something like this:
files.py
import common #common is a util class that handles all the IO stuff
dir1 = 'C:\folder1'
dir2 = 'C:\folder2'
filename = 'test.txt'
addFiles = [25, 5, 15, 35, 45, 25, 5, 15, 35, 45]
def func1():
c = common.Common()
for i in range(len(addFiles)):
c.createFiles(addFiles[i], filename, dir1)
c.getFiles(dir1)
time.sleep(10)
c.removeFiles(addFiles[i], dir1)
c.getFiles(dir1)
def func2():
c = common.Common()
for i in range(len(addFiles)):
c.createFiles(addFiles[i], filename, dir2)
c.getFiles(dir2)
time.sleep(10)
c.removeFiles(addFiles[i], dir2)
c.getFiles(dir2)
I want to call func1 and func2 and have them run at the same time. The functions do not interact with each other or on the same object. Right now I have to wait for func1 to finish before func2 to start. How do I do something like below:
process.py
from files import func1, func2
runBothFunc(func1(), func2())
I want to be able to create both directories pretty close to the same time because every min I am counting how many files are being created. If the directory isn't there it will throw off my timing.

You could use threading or multiprocessing.
Due to peculiarities of CPython, threading is unlikely to achieve true parallelism. For this reason, multiprocessing is generally a better bet.
Here is a complete example:
from multiprocessing import Process
def func1():
print 'func1: starting'
for i in xrange(10000000): pass
print 'func1: finishing'
def func2():
print 'func2: starting'
for i in xrange(10000000): pass
print 'func2: finishing'
if __name__ == '__main__':
p1 = Process(target=func1)
p1.start()
p2 = Process(target=func2)
p2.start()
p1.join()
p2.join()
The mechanics of starting/joining child processes can easily be encapsulated into a function along the lines of your runBothFunc:
def runInParallel(*fns):
proc = []
for fn in fns:
p = Process(target=fn)
p.start()
proc.append(p)
for p in proc:
p.join()
runInParallel(func1, func2)

If your functions are mainly doing I/O work (and less CPU work) and you have Python 3.2+, you can use a ThreadPoolExecutor:
from concurrent.futures import ThreadPoolExecutor
def run_io_tasks_in_parallel(tasks):
with ThreadPoolExecutor() as executor:
running_tasks = [executor.submit(task) for task in tasks]
for running_task in running_tasks:
running_task.result()
run_io_tasks_in_parallel([
lambda: print('IO task 1 running!'),
lambda: print('IO task 2 running!'),
])
If your functions are mainly doing CPU work (and less I/O work) and you have Python 2.6+, you can use the multiprocessing module:
from multiprocessing import Process
def run_cpu_tasks_in_parallel(tasks):
running_tasks = [Process(target=task) for task in tasks]
for running_task in running_tasks:
running_task.start()
for running_task in running_tasks:
running_task.join()
run_cpu_tasks_in_parallel([
lambda: print('CPU task 1 running!'),
lambda: print('CPU task 2 running!'),
])

This can be done elegantly with Ray, a system that allows you to easily parallelize and distribute your Python code.
To parallelize your example, you'd need to define your functions with the #ray.remote decorator, and then invoke them with .remote.
import ray
ray.init()
dir1 = 'C:\\folder1'
dir2 = 'C:\\folder2'
filename = 'test.txt'
addFiles = [25, 5, 15, 35, 45, 25, 5, 15, 35, 45]
# Define the functions.
# You need to pass every global variable used by the function as an argument.
# This is needed because each remote function runs in a different process,
# and thus it does not have access to the global variables defined in
# the current process.
#ray.remote
def func1(filename, addFiles, dir):
# func1() code here...
#ray.remote
def func2(filename, addFiles, dir):
# func2() code here...
# Start two tasks in the background and wait for them to finish.
ray.get([func1.remote(filename, addFiles, dir1), func2.remote(filename, addFiles, dir2)])
If you pass the same argument to both functions and the argument is large, a more efficient way to do this is using ray.put(). This avoids the large argument to be serialized twice and to create two memory copies of it:
largeData_id = ray.put(largeData)
ray.get([func1(largeData_id), func2(largeData_id)])
Important - If func1() and func2() return results, you need to rewrite the code as follows:
ret_id1 = func1.remote(filename, addFiles, dir1)
ret_id2 = func2.remote(filename, addFiles, dir2)
ret1, ret2 = ray.get([ret_id1, ret_id2])
There are a number of advantages of using Ray over the multiprocessing module. In particular, the same code will run on a single machine as well as on a cluster of machines. For more advantages of Ray see this related post.

Seems like you have a single function that you need to call on two different parameters. This can be elegantly done using a combination of concurrent.futures and map with Python 3.2+
import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
def sleep_secs(seconds):
time.sleep(seconds)
print(f'{seconds} has been processed')
secs_list = [2,4, 6, 8, 10, 12]
Now, if your operation is IO bound, then you can use the ThreadPoolExecutor as such:
with ThreadPoolExecutor() as executor:
results = executor.map(sleep_secs, secs_list)
Note how map is used here to map your function to the list of arguments.
Now, If your function is CPU bound, then you can use ProcessPoolExecutor
with ProcessPoolExecutor() as executor:
results = executor.map(sleep_secs, secs_list)
If you are not sure, you can simply try both and see which one gives you better results.
Finally, if you are looking to print out your results, you can simply do this:
with ThreadPoolExecutor() as executor:
results = executor.map(sleep_secs, secs_list)
for result in results:
print(result)

In 2021 the easiest way is to use asyncio:
import asyncio, time
async def say_after(delay, what):
await asyncio.sleep(delay)
print(what)
async def main():
task1 = asyncio.create_task(
say_after(4, 'hello'))
task2 = asyncio.create_task(
say_after(3, 'world'))
print(f"started at {time.strftime('%X')}")
# Wait until both tasks are completed (should take
# around 2 seconds.)
await task1
await task2
print(f"finished at {time.strftime('%X')}")
asyncio.run(main())
References:
[1] https://docs.python.org/3/library/asyncio-task.html

If you are a windows user and using python 3, then this post will help you to do parallel programming in python.when you run a usual multiprocessing library's pool programming, you will get an error regarding the main function in your program. This is because the fact that windows has no fork() functionality. The below post is giving a solution to the mentioned problem .
http://python.6.x6.nabble.com/Multiprocessing-Pool-woes-td5047050.html
Since I was using the python 3, I changed the program a little like this:
from types import FunctionType
import marshal
def _applicable(*args, **kwargs):
name = kwargs['__pw_name']
code = marshal.loads(kwargs['__pw_code'])
gbls = globals() #gbls = marshal.loads(kwargs['__pw_gbls'])
defs = marshal.loads(kwargs['__pw_defs'])
clsr = marshal.loads(kwargs['__pw_clsr'])
fdct = marshal.loads(kwargs['__pw_fdct'])
func = FunctionType(code, gbls, name, defs, clsr)
func.fdct = fdct
del kwargs['__pw_name']
del kwargs['__pw_code']
del kwargs['__pw_defs']
del kwargs['__pw_clsr']
del kwargs['__pw_fdct']
return func(*args, **kwargs)
def make_applicable(f, *args, **kwargs):
if not isinstance(f, FunctionType): raise ValueError('argument must be a function')
kwargs['__pw_name'] = f.__name__ # edited
kwargs['__pw_code'] = marshal.dumps(f.__code__) # edited
kwargs['__pw_defs'] = marshal.dumps(f.__defaults__) # edited
kwargs['__pw_clsr'] = marshal.dumps(f.__closure__) # edited
kwargs['__pw_fdct'] = marshal.dumps(f.__dict__) # edited
return _applicable, args, kwargs
def _mappable(x):
x,name,code,defs,clsr,fdct = x
code = marshal.loads(code)
gbls = globals() #gbls = marshal.loads(gbls)
defs = marshal.loads(defs)
clsr = marshal.loads(clsr)
fdct = marshal.loads(fdct)
func = FunctionType(code, gbls, name, defs, clsr)
func.fdct = fdct
return func(x)
def make_mappable(f, iterable):
if not isinstance(f, FunctionType): raise ValueError('argument must be a function')
name = f.__name__ # edited
code = marshal.dumps(f.__code__) # edited
defs = marshal.dumps(f.__defaults__) # edited
clsr = marshal.dumps(f.__closure__) # edited
fdct = marshal.dumps(f.__dict__) # edited
return _mappable, ((i,name,code,defs,clsr,fdct) for i in iterable)
After this function , the above problem code is also changed a little like this:
from multiprocessing import Pool
from poolable import make_applicable, make_mappable
def cube(x):
return x**3
if __name__ == "__main__":
pool = Pool(processes=2)
results = [pool.apply_async(*make_applicable(cube,x)) for x in range(1,7)]
print([result.get(timeout=10) for result in results])
And I got the output as :
[1, 8, 27, 64, 125, 216]
I am thinking that this post may be useful for some of the windows users.

There's no way to guarantee that two functions will execute in sync with each other which seems to be what you want to do.
The best you can do is to split up the function into several steps, then wait for both to finish at critical synchronization points using Process.join like #aix's answer mentions.
This is better than time.sleep(10) because you can't guarantee exact timings. With explicitly waiting, you're saying that the functions must be done executing that step before moving to the next, instead of assuming it will be done within 10ms which isn't guaranteed based on what else is going on on the machine.

(about How can I simultaneously run two (or more) functions in python?)
With asyncio, sync/async tasks could be run concurrently by:
import asyncio
import time
def function1():
# performing blocking tasks
while True:
print("function 1: blocking task ...")
time.sleep(1)
async def function2():
# perform non-blocking tasks
while True:
print("function 2: non-blocking task ...")
await asyncio.sleep(1)
async def main():
loop = asyncio.get_running_loop()
await asyncio.gather(
# https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_in_executor
loop.run_in_executor(None, function1),
function2(),
)
if __name__ == '__main__':
asyncio.run(main())

Related

Python How to check whether the variable state is changed which is shared and edited in another scheduled thread without using while loop to check

My API is to receive users' texts within 900ms and they will be sent to the model to calculate their length (just for a simple demo). I already realized it but the way is ugly. I will open a new background schedule thread. And API receives the query in the main thread, it will put it in the queue which is shared by the main and new thread. And the new thread will schedule get all texts in the queue and send them to the model. After the model calculated them, results are stored in a shared dict. In the main thread, get_response method will use a while loop to check the result in the shared dict, my question is how can I get rid of the while loop in get_response method. I wanna an elegant method. Thx!
this is server code, need to remove while sleep in get-response because it's ugly :
import asyncio
import uuid
from typing import Union, List
import threading
from queue import Queue
from fastapi import FastAPI, Request, Body, APIRouter
from fastapi_utils.tasks import repeat_every
import uvicorn
import time
import logging
import datetime
logger = logging.getLogger(__name__)
app = APIRouter()
def feed_data_into_model(queue,shared_dict,lock):
if queue.qsize() != 0:
data = []
ids = []
while queue.qsize() != 0:
task = queue.get()
task_id = task[0]
ids.append(task_id)
text = task[1]
data.append(text)
result = model_work(data)
# print("model result:",result)
for index,task_id in enumerate(ids):
value = result[index]
handle_dict(task_id,value,action = "put",lock=lock, shared_dict = shared_dict)
class TestThreading(object):
def __init__(self, interval, queue,shared_dict,lock):
self.interval = interval
thread = threading.Thread(target=self.run, args=(queue,shared_dict,lock))
thread.daemon = True
thread.start()
def run(self,queue,shared_dict,lock):
while True:
# More statements comes here
# print(datetime.datetime.now().__str__() + ' : Start task in the background')
feed_data_into_model(queue,shared_dict,lock)
time.sleep(self.interval)
if __name__ != "__main__":
# since uvicorn will init and reload the file, and __name__ will change, not as __main__, so I init variable here
# otherwise, we will have 2 background thread (one is empty) , it doesn't run but hard to debug due to the confusion
global queue, shared_dict, lock
queue = Queue(maxsize=64) #
shared_dict = {} # model result saved here!
lock = threading.Lock()
tr = TestThreading(0.9, queue,shared_dict,lock)
def handle_dict(key, value = None, action = "put", lock = None, shared_dict = None):
lock.acquire()
try:
if action == "put":
shared_dict[key] = value
elif action == "delete":
del shared_dict[key]
elif action == "get":
value = shared_dict[key]
elif action == "exist":
value = key in shared_dict
else:
pass
finally:
# Always called, even if exception is raised in try block
lock.release()
return value
def model_work(x:Union[str,List[str]]):
time.sleep(3)
if isinstance(x,str):
result = [len(x)]
else:
result = [len(_) for _ in x]
return result
async def get_response(task_id, lock, shared_dict):
not_exist_flag = True
while not_exist_flag:
not_exist_flag = handle_dict(task_id, None, action= "exist",lock=lock, shared_dict = shared_dict) is False
await asyncio.sleep(0.02)
value = handle_dict(task_id, None, action= "get", lock=lock, shared_dict = shared_dict)
handle_dict(task_id, None, action= "delete",lock=lock, shared_dict = shared_dict)
return value
#app.get("/{text}")
async def demo(text:str):
global queue, shared_dict, lock
task_id = str(uuid.uuid4())
logger.info(task_id)
state = "pending"
item= [task_id,text,state,""]
queue.put(item)
# TODO: await query_from_answer_dict , need to change since it's ugly to while wait the answer
value = await get_response(task_id, lock, shared_dict)
return 1
if __name__ == "__main__":
# what I want to do:
# single process run every 900ms, if queue is not empty then pop them out to model
# and model will save result in thread-safe dict, key is task-id
uvicorn.run("api:app", host="0.0.0.0", port=5555)
client code:
for n in {1..5}; do curl http://localhost:5555/a & ; done
The usual way to run a blocking task in asyncio code is to use asyncio's builtin run_in_executor to handle if for you. You can either setup an executor, or let it do it for you:
import asyncio
from time import sleep
def proc(t):
print("in thread")
sleep(t)
return f"Slept for {t} seconds"
async def submit_task(t):
print("submitting:", t)
res = await loop.run_in_executor(None, proc, t)
print("got:", res)
async def other_task():
for _ in range(4):
print("poll!")
await asyncio.sleep(1)
loop = asyncio.new_event_loop()
loop.create_task(other_task())
loop.run_until_complete(submit_task(3))
Note that if loop is not defined globally, you can get it inside the function with asyncio.get_event_loop(). I've deliberately used a simple example without fastapi/uvicorn to illustrate the point, but the idea is the same: fastapi (etc) just run in the event loop, which is why you define coroutines for the endpoints.
The advantage of this is that we can simply await the response directly, without messing about with awaiting an event and then using some other means (shared dict with mutex, pipe, queue, whatever) to get the result out, which keeps the code clean and readable, and is likely also a good deal quicker. If, for some reason, we want to make sure it runs in processes and not threads we can make our own executor:
from concurrent.futures import ProcessPoolExecutor
e = ProcessPoolExecutor()
...
res = await loop.run_in_executor(e, proc, t)
See the docs for more information.
Another option would be using a multiprocessing.Pool to run the task, and then apply_async. But you can't await multiprocessing futures directly. There is a library aiomultiprocessing to make the two play together but I have no experience with it and cannot see a reason to prefer it over the builtin executor for this case (running a single background task per invocation of the coro).
Lastly do note that the main reason to avoid a polling while loop is not that it's ugly (although it is), but that it's not nearly as performant as almost any other solution.
I think I already got the answer that is using asyncio.event to communicate across threads. Using set, clear, wait and asyncio.get_event_loop().

Implementing "competing" processes in python

I'm trying to implement a function that takes 2 functions as arguments, runs both, returns the value of the function that returns first and kills the slower function before it finishes its execution.
My problem is that when I try to empty the Queue object I use to collect the return values, I get stuck.
Is there a more 'correct' way to handle this scenario or even an existing module? If not, can anyone explain what I'm doing wrong?
Here is my code (the implementation of the above function is 'run_both()'):
import multiprocessing as mp
from time import sleep
Q = mp.Queue()
def dump_queue(queue):
result = []
for i in iter(queue.get, 'STOP'):
result.append(i)
return result
def rabbit(x):
sleep(10)
Q.put(x)
def turtle(x):
sleep(30)
Q.put(x)
def run_both(a,b):
a.start()
b.start()
while a.is_alive() and b.is_alive():
sleep(1)
if a.is_alive():
a.terminate()
else:
b.terminate()
a.join()
b.join()
return dump_queue(Q)
p1 = mp.Process(target=rabbit, args=(1,))
p1 = mp.Process(target=turtle, args=(2,))
run_both(p1, p2)
Here's an example to call 2 or more functions with multiprocessing and return the fastest result. There are a few important things to note however.
Running multiprocessing code in IDLE sometimes causes problems. This example works, but I did run into that issue trying to solve this.
Multiprocessing code should start from inside a if __name__ == '__main__' clause, or else it will be run again if the main module is re-imported by another process. read the multiprocessing doc page for more info.
The result queue is passed directly to each process that uses it. When you use the queue by referencing a global name in the module, the code fails on windows because a new instance of the queue is used by each process. Read more here Multiprocessing Queue.get() hangs
I have also added a bit of a feature here to know which process' result was actually used.
import multiprocessing as mp
import time
import random
def task(value):
# our dummy task is to sleep for a random amount of time and
# return the given arg value
time.sleep(random.random())
return value
def process(q, idx, fn, args):
# simply call function fn with args, and push its result in the queue with its index
q.put([fn(*args), idx])
def fastest(calls):
queue = mp.Queue()
# we must pass the queue directly to each process that may use it
# or else on Windows, each process will have its own copy of the queue
# making it useless
procs = []
# create a 'mp.Process' that calls our 'process' for each call and start it
for idx, call in enumerate(calls):
fn = call[0]
args = call[1:]
p = mp.Process(target=process, args=(queue, idx, fn, args))
procs.append(p)
p.start()
# wait for the queue to have something
result, idx = queue.get()
for proc in procs: # kill all processes that may still be running
proc.terminate()
# proc may be using queue, so queue may be corrupted.
# https://docs.python.org/3.8/library/multiprocessing.html?highlight=queue#multiprocessing.Process.terminate
# we no longer need queue though so this is fine
return result, idx
if __name__ == '__main__':
from datetime import datetime
start = datetime.now()
print(start)
# to be compatible with 'fastest', each call is a list with the first
# element being callable, followed by args to be passed
calls = [
[task, 1],
[task, 'hello'],
[task, [1,2,3]]
]
val, idx = fastest(calls)
end = datetime.now()
print(end)
print('elapsed time:', end-start)
print('returned value:', val)
print('from call at index', idx)
Example output:
2019-12-21 04:01:09.525575
2019-12-21 04:01:10.171891
elapsed time: 0:00:00.646316
returned value: hello
from call at index 1
Apart from the typo on the penultimate line which should read:
p2 = mp.Process(target=turtle, args=(2,)) # not p1
the simplest change you can make to get the program to work is to add:
Q.put('STOP')
to the end of turtle() and rabbit().
You also don't really need to keep looping watching if the processes are alive, by definition if you just read the message queue and receive STOP, one of them has finished, so you could replace run_both() with:
def run_both(a,b):
a.start()
b.start()
result = dump_queue(Q)
a.terminate()
b.terminate()
return result
You may also need to think about what happens if both processes put some messages in the queue at much the same time. They could get mixed up. Maybe consider using 2 queues, or joining all the results up into a single message rather than appending multiple values together from queue.get()

How to have multiple Python scripts interacting with each other [duplicate]

I am trying to understand threading in Python. I've looked at the documentation and examples, but quite frankly, many examples are overly sophisticated and I'm having trouble understanding them.
How do you clearly show tasks being divided for multi-threading?
Since this question was asked in 2010, there has been real simplification in how to do simple multithreading with Python with map and pool.
The code below comes from an article/blog post that you should definitely check out (no affiliation) - Parallelism in one line: A Better Model for Day to Day Threading Tasks. I'll summarize below - it ends up being just a few lines of code:
from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(4)
results = pool.map(my_function, my_array)
Which is the multithreaded version of:
results = []
for item in my_array:
results.append(my_function(item))
Description
Map is a cool little function, and the key to easily injecting parallelism into your Python code. For those unfamiliar, map is something lifted from functional languages like Lisp. It is a function which maps another function over a sequence.
Map handles the iteration over the sequence for us, applies the function, and stores all of the results in a handy list at the end.
Implementation
Parallel versions of the map function are provided by two libraries:multiprocessing, and also its little known, but equally fantastic step child:multiprocessing.dummy.
multiprocessing.dummy is exactly the same as multiprocessing module, but uses threads instead (an important distinction - use multiple processes for CPU-intensive tasks; threads for (and during) I/O):
multiprocessing.dummy replicates the API of multiprocessing, but is no more than a wrapper around the threading module.
import urllib2
from multiprocessing.dummy import Pool as ThreadPool
urls = [
'http://www.python.org',
'http://www.python.org/about/',
'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
'http://www.python.org/doc/',
'http://www.python.org/download/',
'http://www.python.org/getit/',
'http://www.python.org/community/',
'https://wiki.python.org/moin/',
]
# Make the Pool of workers
pool = ThreadPool(4)
# Open the URLs in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)
# Close the pool and wait for the work to finish
pool.close()
pool.join()
And the timing results:
Single thread: 14.4 seconds
4 Pool: 3.1 seconds
8 Pool: 1.4 seconds
13 Pool: 1.3 seconds
Passing multiple arguments (works like this only in Python 3.3 and later):
To pass multiple arrays:
results = pool.starmap(function, zip(list_a, list_b))
Or to pass a constant and an array:
results = pool.starmap(function, zip(itertools.repeat(constant), list_a))
If you are using an earlier version of Python, you can pass multiple arguments via this workaround).
(Thanks to user136036 for the helpful comment.)
Here's a simple example: you need to try a few alternative URLs and return the contents of the first one to respond.
import Queue
import threading
import urllib2
# Called by each thread
def get_url(q, url):
q.put(urllib2.urlopen(url).read())
theurls = ["http://google.com", "http://yahoo.com"]
q = Queue.Queue()
for u in theurls:
t = threading.Thread(target=get_url, args = (q,u))
t.daemon = True
t.start()
s = q.get()
print s
This is a case where threading is used as a simple optimization: each subthread is waiting for a URL to resolve and respond, to put its contents on the queue; each thread is a daemon (won't keep the process up if the main thread ends -- that's more common than not); the main thread starts all subthreads, does a get on the queue to wait until one of them has done a put, then emits the results and terminates (which takes down any subthreads that might still be running, since they're daemon threads).
Proper use of threads in Python is invariably connected to I/O operations (since CPython doesn't use multiple cores to run CPU-bound tasks anyway, the only reason for threading is not blocking the process while there's a wait for some I/O). Queues are almost invariably the best way to farm out work to threads and/or collect the work's results, by the way, and they're intrinsically threadsafe, so they save you from worrying about locks, conditions, events, semaphores, and other inter-thread coordination/communication concepts.
NOTE: For actual parallelization in Python, you should use the multiprocessing module to fork multiple processes that execute in parallel (due to the global interpreter lock, Python threads provide interleaving, but they are in fact executed serially, not in parallel, and are only useful when interleaving I/O operations).
However, if you are merely looking for interleaving (or are doing I/O operations that can be parallelized despite the global interpreter lock), then the threading module is the place to start. As a really simple example, let's consider the problem of summing a large range by summing subranges in parallel:
import threading
class SummingThread(threading.Thread):
def __init__(self,low,high):
super(SummingThread, self).__init__()
self.low=low
self.high=high
self.total=0
def run(self):
for i in range(self.low,self.high):
self.total+=i
thread1 = SummingThread(0,500000)
thread2 = SummingThread(500000,1000000)
thread1.start() # This actually causes the thread to run
thread2.start()
thread1.join() # This waits until the thread has completed
thread2.join()
# At this point, both threads have completed
result = thread1.total + thread2.total
print result
Note that the above is a very stupid example, as it does absolutely no I/O and will be executed serially albeit interleaved (with the added overhead of context switching) in CPython due to the global interpreter lock.
Like others mentioned, CPython can use threads only for I/O waits due to GIL.
If you want to benefit from multiple cores for CPU-bound tasks, use multiprocessing:
from multiprocessing import Process
def f(name):
print 'hello', name
if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()
Just a note: A queue is not required for threading.
This is the simplest example I could imagine that shows 10 processes running concurrently.
import threading
from random import randint
from time import sleep
def print_number(number):
# Sleeps a random 1 to 10 seconds
rand_int_var = randint(1, 10)
sleep(rand_int_var)
print "Thread " + str(number) + " slept for " + str(rand_int_var) + " seconds"
thread_list = []
for i in range(1, 10):
# Instantiates the thread
# (i) does not make a sequence, so (i,)
t = threading.Thread(target=print_number, args=(i,))
# Sticks the thread in a list so that it remains accessible
thread_list.append(t)
# Starts threads
for thread in thread_list:
thread.start()
# This blocks the calling thread until the thread whose join() method is called is terminated.
# From http://docs.python.org/2/library/threading.html#thread-objects
for thread in thread_list:
thread.join()
# Demonstrates that the main process waited for threads to complete
print "Done"
The answer from Alex Martelli helped me. However, here is a modified version that I thought was more useful (at least to me).
Updated: works in both Python 2 and Python 3
try:
# For Python 3
import queue
from urllib.request import urlopen
except:
# For Python 2
import Queue as queue
from urllib2 import urlopen
import threading
worker_data = ['http://google.com', 'http://yahoo.com', 'http://bing.com']
# Load up a queue with your data. This will handle locking
q = queue.Queue()
for url in worker_data:
q.put(url)
# Define a worker function
def worker(url_queue):
queue_full = True
while queue_full:
try:
# Get your data off the queue, and do some work
url = url_queue.get(False)
data = urlopen(url).read()
print(len(data))
except queue.Empty:
queue_full = False
# Create as many threads as you want
thread_count = 5
for i in range(thread_count):
t = threading.Thread(target=worker, args = (q,))
t.start()
Given a function, f, thread it like this:
import threading
threading.Thread(target=f).start()
To pass arguments to f
threading.Thread(target=f, args=(a,b,c)).start()
I found this very useful: create as many threads as cores and let them execute a (large) number of tasks (in this case, calling a shell program):
import Queue
import threading
import multiprocessing
import subprocess
q = Queue.Queue()
for i in range(30): # Put 30 tasks in the queue
q.put(i)
def worker():
while True:
item = q.get()
# Execute a task: call a shell program and wait until it completes
subprocess.call("echo " + str(item), shell=True)
q.task_done()
cpus = multiprocessing.cpu_count() # Detect number of cores
print("Creating %d threads" % cpus)
for i in range(cpus):
t = threading.Thread(target=worker)
t.daemon = True
t.start()
q.join() # Block until all tasks are done
Python 3 has the facility of launching parallel tasks. This makes our work easier.
It has thread pooling and process pooling.
The following gives an insight:
ThreadPoolExecutor Example (source)
import concurrent.futures
import urllib.request
URLS = ['http://www.foxnews.com/',
'http://www.cnn.com/',
'http://europe.wsj.com/',
'http://www.bbc.co.uk/',
'http://some-made-up-domain.com/']
# Retrieve a single page and report the URL and contents
def load_url(url, timeout):
with urllib.request.urlopen(url, timeout=timeout) as conn:
return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
# Start the load operations and mark each future with its URL
future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
data = future.result()
except Exception as exc:
print('%r generated an exception: %s' % (url, exc))
else:
print('%r page is %d bytes' % (url, len(data)))
ProcessPoolExecutor (source)
import concurrent.futures
import math
PRIMES = [
112272535095293,
112582705942171,
112272535095293,
115280095190773,
115797848077099,
1099726899285419]
def is_prime(n):
if n % 2 == 0:
return False
sqrt_n = int(math.floor(math.sqrt(n)))
for i in range(3, sqrt_n + 1, 2):
if n % i == 0:
return False
return True
def main():
with concurrent.futures.ProcessPoolExecutor() as executor:
for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
print('%d is prime: %s' % (number, prime))
if __name__ == '__main__':
main()
I saw a lot of examples here where no real work was being performed, and they were mostly CPU-bound. Here is an example of a CPU-bound task that computes all prime numbers between 10 million and 10.05 million. I have used all four methods here:
import math
import timeit
import threading
import multiprocessing
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
def time_stuff(fn):
"""
Measure time of execution of a function
"""
def wrapper(*args, **kwargs):
t0 = timeit.default_timer()
fn(*args, **kwargs)
t1 = timeit.default_timer()
print("{} seconds".format(t1 - t0))
return wrapper
def find_primes_in(nmin, nmax):
"""
Compute a list of prime numbers between the given minimum and maximum arguments
"""
primes = []
# Loop from minimum to maximum
for current in range(nmin, nmax + 1):
# Take the square root of the current number
sqrt_n = int(math.sqrt(current))
found = False
# Check if the any number from 2 to the square root + 1 divides the current numnber under consideration
for number in range(2, sqrt_n + 1):
# If divisible we have found a factor, hence this is not a prime number, lets move to the next one
if current % number == 0:
found = True
break
# If not divisible, add this number to the list of primes that we have found so far
if not found:
primes.append(current)
# I am merely printing the length of the array containing all the primes, but feel free to do what you want
print(len(primes))
#time_stuff
def sequential_prime_finder(nmin, nmax):
"""
Use the main process and main thread to compute everything in this case
"""
find_primes_in(nmin, nmax)
#time_stuff
def threading_prime_finder(nmin, nmax):
"""
If the minimum is 1000 and the maximum is 2000 and we have four workers,
1000 - 1250 to worker 1
1250 - 1500 to worker 2
1500 - 1750 to worker 3
1750 - 2000 to worker 4
so let’s split the minimum and maximum values according to the number of workers
"""
nrange = nmax - nmin
threads = []
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
# Start the thread with the minimum and maximum split up to compute
# Parallel computation will not work here due to the GIL since this is a CPU-bound task
t = threading.Thread(target = find_primes_in, args = (start, end))
threads.append(t)
t.start()
# Don’t forget to wait for the threads to finish
for t in threads:
t.join()
#time_stuff
def processing_prime_finder(nmin, nmax):
"""
Split the minimum, maximum interval similar to the threading method above, but use processes this time
"""
nrange = nmax - nmin
processes = []
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
p = multiprocessing.Process(target = find_primes_in, args = (start, end))
processes.append(p)
p.start()
for p in processes:
p.join()
#time_stuff
def thread_executor_prime_finder(nmin, nmax):
"""
Split the min max interval similar to the threading method, but use a thread pool executor this time.
This method is slightly faster than using pure threading as the pools manage threads more efficiently.
This method is still slow due to the GIL limitations since we are doing a CPU-bound task.
"""
nrange = nmax - nmin
with ThreadPoolExecutor(max_workers = 8) as e:
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
e.submit(find_primes_in, start, end)
#time_stuff
def process_executor_prime_finder(nmin, nmax):
"""
Split the min max interval similar to the threading method, but use the process pool executor.
This is the fastest method recorded so far as it manages process efficiently + overcomes GIL limitations.
RECOMMENDED METHOD FOR CPU-BOUND TASKS
"""
nrange = nmax - nmin
with ProcessPoolExecutor(max_workers = 8) as e:
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
e.submit(find_primes_in, start, end)
def main():
nmin = int(1e7)
nmax = int(1.05e7)
print("Sequential Prime Finder Starting")
sequential_prime_finder(nmin, nmax)
print("Threading Prime Finder Starting")
threading_prime_finder(nmin, nmax)
print("Processing Prime Finder Starting")
processing_prime_finder(nmin, nmax)
print("Thread Executor Prime Finder Starting")
thread_executor_prime_finder(nmin, nmax)
print("Process Executor Finder Starting")
process_executor_prime_finder(nmin, nmax)
if __name__ == "__main__":
main()
Here are the results on my Mac OS X four-core machine
Sequential Prime Finder Starting
9.708213827005238 seconds
Threading Prime Finder Starting
9.81836523200036 seconds
Processing Prime Finder Starting
3.2467174359990167 seconds
Thread Executor Prime Finder Starting
10.228896902000997 seconds
Process Executor Finder Starting
2.656402041000547 seconds
Using the blazing new concurrent.futures module
def sqr(val):
import time
time.sleep(0.1)
return val * val
def process_result(result):
print(result)
def process_these_asap(tasks):
import concurrent.futures
with concurrent.futures.ProcessPoolExecutor() as executor:
futures = []
for task in tasks:
futures.append(executor.submit(sqr, task))
for future in concurrent.futures.as_completed(futures):
process_result(future.result())
# Or instead of all this just do:
# results = executor.map(sqr, tasks)
# list(map(process_result, results))
def main():
tasks = list(range(10))
print('Processing {} tasks'.format(len(tasks)))
process_these_asap(tasks)
print('Done')
return 0
if __name__ == '__main__':
import sys
sys.exit(main())
The executor approach might seem familiar to all those who have gotten their hands dirty with Java before.
Also on a side note: To keep the universe sane, don't forget to close your pools/executors if you don't use with context (which is so awesome that it does it for you)
For me, the perfect example for threading is monitoring asynchronous events. Look at this code.
# thread_test.py
import threading
import time
class Monitor(threading.Thread):
def __init__(self, mon):
threading.Thread.__init__(self)
self.mon = mon
def run(self):
while True:
if self.mon[0] == 2:
print "Mon = 2"
self.mon[0] = 3;
You can play with this code by opening an IPython session and doing something like:
>>> from thread_test import Monitor
>>> a = [0]
>>> mon = Monitor(a)
>>> mon.start()
>>> a[0] = 2
Mon = 2
>>>a[0] = 2
Mon = 2
Wait a few minutes
>>> a[0] = 2
Mon = 2
Most documentation and tutorials use Python's Threading and Queue module, and they could seem overwhelming for beginners.
Perhaps consider the concurrent.futures.ThreadPoolExecutor module of Python 3.
Combined with with clause and list comprehension it could be a real charm.
from concurrent.futures import ThreadPoolExecutor, as_completed
def get_url(url):
# Your actual program here. Using threading.Lock() if necessary
return ""
# List of URLs to fetch
urls = ["url1", "url2"]
with ThreadPoolExecutor(max_workers = 5) as executor:
# Create threads
futures = {executor.submit(get_url, url) for url in urls}
# as_completed() gives you the threads once finished
for f in as_completed(futures):
# Get the results
rs = f.result()
With borrowing from this post we know about choosing between the multithreading, multiprocessing, and async/asyncio and their usage.
Python 3 has a new built-in library in order to make concurrency and parallelism — concurrent.futures
So I'll demonstrate through an experiment to run four tasks (i.e. .sleep() method) by Threading-Pool:
from concurrent.futures import ThreadPoolExecutor, as_completed
from time import sleep, time
def concurrent(max_worker):
futures = []
tic = time()
with ThreadPoolExecutor(max_workers=max_worker) as executor:
futures.append(executor.submit(sleep, 2)) # Two seconds sleep
futures.append(executor.submit(sleep, 1))
futures.append(executor.submit(sleep, 7))
futures.append(executor.submit(sleep, 3))
for future in as_completed(futures):
if future.result() is not None:
print(future.result())
print(f'Total elapsed time by {max_worker} workers:', time()-tic)
concurrent(5)
concurrent(4)
concurrent(3)
concurrent(2)
concurrent(1)
Output:
Total elapsed time by 5 workers: 7.007831811904907
Total elapsed time by 4 workers: 7.007944107055664
Total elapsed time by 3 workers: 7.003149509429932
Total elapsed time by 2 workers: 8.004627466201782
Total elapsed time by 1 workers: 13.013478994369507
[NOTE]:
As you can see in the above results, the best case was 3 workers for those four tasks.
If you have a process task instead of I/O bound or blocking (multiprocessing instead of threading) you can change the ThreadPoolExecutor to ProcessPoolExecutor.
I would like to contribute with a simple example and the explanations I've found useful when I had to tackle this problem myself.
In this answer you will find some information about Python's GIL (global interpreter lock) and a simple day-to-day example written using multiprocessing.dummy plus some simple benchmarks.
Global Interpreter Lock (GIL)
Python doesn't allow multi-threading in the truest sense of the word. It has a multi-threading package, but if you want to multi-thread to speed your code up, then it's usually not a good idea to use it.
Python has a construct called the global interpreter lock (GIL).
The GIL makes sure that only one of your 'threads' can execute at any one time. A thread acquires the GIL, does a little work, then passes the GIL onto the next thread.
This happens very quickly so to the human eye it may seem like your threads are executing in parallel, but they are really just taking turns using the same CPU core.
All this GIL passing adds overhead to execution. This means that if you want to make your code run faster then using the threading
package often isn't a good idea.
There are reasons to use Python's threading package. If you want to run some things simultaneously, and efficiency is not a concern,
then it's totally fine and convenient. Or if you are running code that needs to wait for something (like some I/O) then it could make a lot of sense. But the threading library won't let you use extra CPU cores.
Multi-threading can be outsourced to the operating system (by doing multi-processing), and some external application that calls your Python code (for example, Spark or Hadoop), or some code that your Python code calls (for example: you could have your Python code call a C function that does the expensive multi-threaded stuff).
Why This Matters
Because lots of people spend a lot of time trying to find bottlenecks in their fancy Python multi-threaded code before they learn what the GIL is.
Once this information is clear, here's my code:
#!/bin/python
from multiprocessing.dummy import Pool
from subprocess import PIPE,Popen
import time
import os
# In the variable pool_size we define the "parallelness".
# For CPU-bound tasks, it doesn't make sense to create more Pool processes
# than you have cores to run them on.
#
# On the other hand, if you are using I/O-bound tasks, it may make sense
# to create a quite a few more Pool processes than cores, since the processes
# will probably spend most their time blocked (waiting for I/O to complete).
pool_size = 8
def do_ping(ip):
if os.name == 'nt':
print ("Using Windows Ping to " + ip)
proc = Popen(['ping', ip], stdout=PIPE)
return proc.communicate()[0]
else:
print ("Using Linux / Unix Ping to " + ip)
proc = Popen(['ping', ip, '-c', '4'], stdout=PIPE)
return proc.communicate()[0]
os.system('cls' if os.name=='nt' else 'clear')
print ("Running using threads\n")
start_time = time.time()
pool = Pool(pool_size)
website_names = ["www.google.com","www.facebook.com","www.pinterest.com","www.microsoft.com"]
result = {}
for website_name in website_names:
result[website_name] = pool.apply_async(do_ping, args=(website_name,))
pool.close()
pool.join()
print ("\n--- Execution took {} seconds ---".format((time.time() - start_time)))
# Now we do the same without threading, just to compare time
print ("\nRunning NOT using threads\n")
start_time = time.time()
for website_name in website_names:
do_ping(website_name)
print ("\n--- Execution took {} seconds ---".format((time.time() - start_time)))
# Here's one way to print the final output from the threads
output = {}
for key, value in result.items():
output[key] = value.get()
print ("\nOutput aggregated in a Dictionary:")
print (output)
print ("\n")
print ("\nPretty printed output: ")
for key, value in output.items():
print (key + "\n")
print (value)
Here is the very simple example of CSV import using threading. (Library inclusion may differ for different purpose.)
Helper Functions:
from threading import Thread
from project import app
import csv
def import_handler(csv_file_name):
thr = Thread(target=dump_async_csv_data, args=[csv_file_name])
thr.start()
def dump_async_csv_data(csv_file_name):
with app.app_context():
with open(csv_file_name) as File:
reader = csv.DictReader(File)
for row in reader:
# DB operation/query
Driver Function:
import_handler(csv_file_name)
Here is multi threading with a simple example which will be helpful. You can run it and understand easily how multi threading is working in Python. I used a lock for preventing access to other threads until the previous threads finished their work. By the use of this line of code,
tLock = threading.BoundedSemaphore(value=4)
you can allow a number of processes at a time and keep hold to the rest of the threads which will run later or after finished previous processes.
import threading
import time
#tLock = threading.Lock()
tLock = threading.BoundedSemaphore(value=4)
def timer(name, delay, repeat):
print "\r\nTimer: ", name, " Started"
tLock.acquire()
print "\r\n", name, " has the acquired the lock"
while repeat > 0:
time.sleep(delay)
print "\r\n", name, ": ", str(time.ctime(time.time()))
repeat -= 1
print "\r\n", name, " is releaseing the lock"
tLock.release()
print "\r\nTimer: ", name, " Completed"
def Main():
t1 = threading.Thread(target=timer, args=("Timer1", 2, 5))
t2 = threading.Thread(target=timer, args=("Timer2", 3, 5))
t3 = threading.Thread(target=timer, args=("Timer3", 4, 5))
t4 = threading.Thread(target=timer, args=("Timer4", 5, 5))
t5 = threading.Thread(target=timer, args=("Timer5", 0.1, 5))
t1.start()
t2.start()
t3.start()
t4.start()
t5.start()
print "\r\nMain Complete"
if __name__ == "__main__":
Main()
None of the previous solutions actually used multiple cores on my GNU/Linux server (where I don't have administrator rights). They just ran on a single core.
I used the lower level os.fork interface to spawn multiple processes. This is the code that worked for me:
from os import fork
values = ['different', 'values', 'for', 'threads']
for i in range(len(values)):
p = fork()
if p == 0:
my_function(values[i])
break
As a python3 version of the second anwser:
import queue as Queue
import threading
import urllib.request
# Called by each thread
def get_url(q, url):
q.put(urllib.request.urlopen(url).read())
theurls = ["http://google.com", "http://yahoo.com", "http://www.python.org","https://wiki.python.org/moin/"]
q = Queue.Queue()
def thread_func():
for u in theurls:
t = threading.Thread(target=get_url, args = (q,u))
t.daemon = True
t.start()
s = q.get()
def non_thread_func():
for u in theurls:
get_url(q,u)
s = q.get()
And you can test it:
start = time.time()
thread_func()
end = time.time()
print(end - start)
start = time.time()
non_thread_func()
end = time.time()
print(end - start)
non_thread_func() should cost 4 times the time spent than thread_func()
import threading
import requests
def send():
r = requests.get('https://www.stackoverlow.com')
thread = []
t = threading.Thread(target=send())
thread.append(t)
t.start()
It's very easy to understand. Here are the two simple ways to do threading.
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
def a(a=1, b=2):
print(a)
time.sleep(5)
print(b)
return a+b
def b(**kwargs):
if "a" in kwargs:
print("am b")
else:
print("nothing")
to_do=[]
executor = ThreadPoolExecutor(max_workers=4)
ex1=executor.submit(a)
to_do.append(ex1)
ex2=executor.submit(b, **{"a":1})
to_do.append(ex2)
for future in as_completed(to_do):
print("Future {} and Future Return is {}\n".format(future, future.result()))
print("threading")
to_do=[]
to_do.append(threading.Thread(target=a))
to_do.append(threading.Thread(target=b, kwargs={"a":1}))
for threads in to_do:
threads.start()
for threads in to_do:
threads.join()
This code below can run 10 threads concurrently printing the numbers from 0 to 99:
from threading import Thread
def test():
for i in range(0, 100):
print(i)
thread_list = []
for _ in range(0, 10):
thread = Thread(target=test)
thread_list.append(thread)
for thread in thread_list:
thread.start()
for thread in thread_list:
thread.join()
And, this code below is the shorthand for loop version of the above code running 10 threads concurrently printing the numbers from 0 to 99:
from threading import Thread
def test():
[print(i) for i in range(0, 100)]
thread_list = [Thread(target=test) for _ in range(0, 10)]
[thread.start() for thread in thread_list]
[thread.join() for thread in thread_list]
This is the result below:
...
99
83
97
84
98
99
85
86
87
88
...
The easiest way of using threading/multiprocessing is to use more high level libraries like autothread.
import autothread
from time import sleep as heavyworkload
#autothread.multithreaded() # <-- This is all you need to add
def example(x: int, y: int):
heavyworkload(1)
return x*y
Now, you can feed your functions lists of ints. Autothread will handle everything for you and just give you the results computed in parallel.
result = example([1, 2, 3, 4, 5], 10)

Python3 Pool async processes | workers

I am trying to use 4 processes for 4 async methods.
Here is my code for 1 async method (x):
from multiprocessing import Pool
import time
def x(i):
while(i < 100):
print(i)
i += 1
time.sleep(1)
def finish(str):
print("done!")
if __name__ == "__main__":
pool = Pool(processes=5)
result = pool.apply_async(x, [0], callback=finish)
print("start")
according to: https://docs.python.org/2/library/multiprocessing.html#multiprocessing.JoinableQueue
the parameter processes in Pool is the number of workers.
How can i use each of these workers?
EDIT: my ASYNC class
from multiprocessing import Pool
import time
class ASYNC(object):
def __init__(self, THREADS=[]):
print('do')
pool = Pool(processes=len(THREADS))
self.THREAD_POOL = {}
thread_index = 0
for thread_ in THREADS:
self.THREAD_POOL[thread_index] = {
'thread': thread_['thread'],
'args': thread_['args'],
'callback': thread_['callback']
}
pool.apply_async(self.run, [thread_index], callback=thread_['callback'])
self.THREAD_POOL[thread_index]['running'] = True
thread_index += 1
def run(self, thread_index):
print('enter')
while(self.THREAD_POOL[thread_index]['running']):
print("loop")
self.THREAD_POOL[thread_index]['thread'](self.THREAD_POOL[thread_index])
time.sleep(1)
self.THREAD_POOL[thread_index]['running'] = False
def wait_for_finish(self):
for pool in self.THREAD_POOL:
while(self.THREAD_POOL[pool]['running']):
time.sleep(1)
def x(pool):
print(str(pool))
pool['args'][0] += 1
def y(str):
print("done")
A = ASYNC([{'thread': x, 'args':[10], 'callback':y}])
print("start")
A.wait_for_finish()
multiprocessing.Pool is designed to be a convenient way of distributing work to a pool of workers, without worrying about which worker does which work. The reason that it has a size is to allow you to be lazy about how quickly you dispatch work to the queue and to limit the expensive (relatively) overhead of creating child processes.
So the answer to your question is in principle you shouldn't be able to access individual workers in a Pool. If you want to be able to address workers individually, you will need to implement your own work distribution system and using multiprocessing.Process, something like:
from multiprocessing import Process
def x(i):
while(i < 100):
print(i)
i += 1
pools = [Process(target=x, args=(1,)) for _ in range(5)]
map(lambda pool: pool.start(), pools)
map(lambda pool: pool.join(), pools)
print('Done!')
And now you can access each worker directly. If you want to be able to send work dynamically to each worker while it's running (not just give it one thing to do like I did in my example) then you'll have to implement that yourself, potentially using multiprocessing.Queue. Have a look at the code for multiprocessing to see how that distributes work to its workers to get an idea of how to do this.
Why do you want to do this anyway? If it's just concern about whether the workers get scheduled efficiently, then my advice would just be to trust multiprocessing to get that right for you, unless you have really good evidence that in your case it does not for some reason.

Python sharing a lock between processes

I am attempting to use a partial function so that pool.map() can target a function that has more than one parameter (in this case a Lock() object).
Here is example code (taken from an answer to a previous question of mine):
from functools import partial
def target(lock, iterable_item):
for item in items:
# Do cool stuff
if (... some condition here ...):
lock.acquire()
# Write to stdout or logfile, etc.
lock.release()
def main():
iterable = [1, 2, 3, 4, 5]
pool = multiprocessing.Pool()
l = multiprocessing.Lock()
func = partial(target, l)
pool.map(func, iterable)
pool.close()
pool.join()
However when I run this code, I get the error:
Runtime Error: Lock objects should only be shared between processes through inheritance.
What am I missing here? How can I share the lock between my subprocesses?
You can't pass normal multiprocessing.Lock objects to Pool methods, because they can't be pickled. There are two ways to get around this. One is to create Manager() and pass a Manager.Lock():
def main():
iterable = [1, 2, 3, 4, 5]
pool = multiprocessing.Pool()
m = multiprocessing.Manager()
l = m.Lock()
func = partial(target, l)
pool.map(func, iterable)
pool.close()
pool.join()
This is a little bit heavyweight, though; using a Manager requires spawning another process to host the Manager server. And all calls to acquire/release the lock have to be sent to that server via IPC.
The other option is to pass the regular multiprocessing.Lock() at Pool creation time, using the initializer kwarg. This will make your lock instance global in all the child workers:
def target(iterable_item):
for item in items:
# Do cool stuff
if (... some condition here ...):
lock.acquire()
# Write to stdout or logfile, etc.
lock.release()
def init(l):
global lock
lock = l
def main():
iterable = [1, 2, 3, 4, 5]
l = multiprocessing.Lock()
pool = multiprocessing.Pool(initializer=init, initargs=(l,))
pool.map(target, iterable)
pool.close()
pool.join()
The second solution has the side-effect of no longer requiring partial.
Here's a version (using Barrier instead of Lock, but you get the idea) which would also work on Windows (where the missing fork is causing additional troubles):
import multiprocessing as mp
def procs(uid_barrier):
uid, barrier = uid_barrier
print(uid, 'waiting')
barrier.wait()
print(uid, 'past barrier')
def main():
N_PROCS = 10
with mp.Manager() as man:
barrier = man.Barrier(N_PROCS)
with mp.Pool(N_PROCS) as p:
p.map(procs, ((uid, barrier) for uid in range(N_PROCS)))
if __name__ == '__main__':
mp.freeze_support()
main()

Categories