I am trying to calculate the exact( 3 cm error rate is acceptable ) distance between aruco marker and camera. I use python, opencv and aruco. I can detect them ( marker side is 0.023 meters which is 2.3 cm ) but I can't interpret the distance because for 40 cm distance the norm of the translation vector gives 1 meter. I am so confused about this. Can anyone help? Full code ( sorry , not documented well ):
import numpy as np
import cv2
import cv2.aruco as aruco
import glob
import argparse
import math
# Marker id infos. Global to access everywhere. It is unnecessary to change it to local.
firstMarkerID = None
secondMarkerID = None
cap = cv2.VideoCapture(0)
image_width = 0
image_height = 0
#hyper parameters
distanceBetweenTwoMarkers = 0.0245 # in meters, 2.45 cm
oneSideOfTheMarker = 0.023 # in meters, 2.3 cm
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
class Namespace:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def calibrate(dirpath):
""" Apply camera calibration operation for images in the given directory path. """
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(8,6,0)
objp = np.zeros((6*9, 3), np.float32)
objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob(dirpath+'/*.jpg')
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)
# If found, add object points, image points (after refining them)
if ret:
objpoints.append(objp)
corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners2)
# Draw and display the corners
img = cv2.drawChessboardCorners(img, (9, 6), corners2, ret)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
return [ret, mtx, dist, rvecs, tvecs]
def saveCoefficients(mtx, dist, path):
""" Save the camera matrix and the distortion coefficients to given path/file. """
cv_file = cv2.FileStorage(path, cv2.FILE_STORAGE_WRITE)
cv_file.write("camera_matrix", mtx)
cv_file.write("dist_coeff", dist)
# note you *release* you don't close() a FileStorage object
cv_file.release()
def loadCoefficients(path):
""" Loads camera matrix and distortion coefficients. """
# FILE_STORAGE_READ
cv_file = cv2.FileStorage(path, cv2.FILE_STORAGE_READ)
# note we also have to specify the type to retrieve other wise we only get a
# FileNode object back instead of a matrix
camera_matrix = cv_file.getNode("camera_matrix").mat()
dist_matrix = cv_file.getNode("dist_coeff").mat()
# Debug: print the values
# print("camera_matrix : ", camera_matrix.tolist())
# print("dist_matrix : ", dist_matrix.tolist())
cv_file.release()
return [camera_matrix, dist_matrix]
def inversePerspective(rvec, tvec):
""" Applies perspective transform for given rvec and tvec. """
rvec, tvec = rvec.reshape((3, 1)), tvec.reshape((3, 1))
R, _ = cv2.Rodrigues(rvec)
R = np.matrix(R).T
invTvec = np.dot(R, np.matrix(-tvec))
invRvec, _ = cv2.Rodrigues(R)
invTvec = invTvec.reshape((3, 1))
invTvec = invTvec.reshape((3, 1))
return invRvec, invTvec
def make_1080p():
global image_width
global image_height
image_width = 1920
image_height = 1080
change_res(image_width, image_height)
def make_720p():
global image_width
global image_height
image_width = 1280
image_height = 720
change_res(image_width, image_height)
def make_480p():
global image_width
global image_height
image_width = 640
image_height = 480
change_res(image_width, image_height)
def change_res(width, height):
cap.set(3, width)
cap.set(4, height)
def relativePosition(rvec1, tvec1, rvec2, tvec2):
""" Get relative position for rvec2 & tvec2. Compose the returned rvec & tvec to use composeRT with rvec2 & tvec2 """
rvec1, tvec1 = rvec1.reshape((3, 1)), tvec1.reshape((3, 1))
rvec2, tvec2 = rvec2.reshape((3, 1)), tvec2.reshape((3, 1))
# Inverse the second marker, the right one in the image
invRvec, invTvec = inversePerspective(rvec2, tvec2)
info = cv2.composeRT(rvec1, tvec1, invRvec, invTvec)
composedRvec, composedTvec = info[0], info[1]
composedRvec = composedRvec.reshape((3, 1))
composedTvec = composedTvec.reshape((3, 1))
return composedRvec, composedTvec
def euclideanDistanceOfTvecs(tvec1, tvec2):
return math.sqrt(math.pow(tvec1[0]-tvec2[0], 2) + math.pow(tvec1[1]-tvec2[1], 2) + math.pow(tvec1[2]-tvec2[2], 2))
def euclideanDistanceOfTvec(tvec):
return euclideanDistanceOfTvecs(tvec, [0, 0, 0])
def draw(img, imgpts, color):
""" draw a line between given two points. """
imgpts = np.int32(imgpts).reshape(-1, 2)
for pointf in range(len(imgpts)):
for points in range(len(imgpts)):
img = cv2.line(img, tuple(imgpts[pointf]), tuple(imgpts[points]), color, 3)
return img
def track(matrix_coefficients, distortion_coefficients):
global image_width
global image_height
""" Real time ArUco marker tracking. """
needleComposeRvec, needleComposeTvec = None, None # Composed for needle
ultraSoundComposeRvec, ultraSoundComposeTvec = None, None # Composed for ultrasound
savedNeedleRvec, savedNeedleTvec = None, None # Pure Composed
savedUltraSoundRvec, savedUltraSoundTvec = None, None # Pure Composed
TcomposedRvecNeedle, TcomposedTvecNeedle = None, None
TcomposedRvecUltrasound, TcomposedTvecUltrasound = None, None
make_480p()
while True:
isFirstMarkerDetected = False
isSecondMarkerDetected = False
ret, frame = cap.read()
# operations on the frame come here
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Change grayscale
aruco_dict = aruco.Dictionary_get(aruco.DICT_5X5_250) # Use 5x5 dictionary to find markers
parameters = aruco.DetectorParameters_create() # Marker detection parameters
# lists of ids and the corners beloning to each id
corners, ids, rejected_img_points = aruco.detectMarkers(gray, aruco_dict,
parameters=parameters,
cameraMatrix=matrix_coefficients,
distCoeff=distortion_coefficients)
if np.all(ids is not None): # If there are markers found by detector
zipped = zip(ids, corners)
ids, corners = zip(*(sorted(zipped)))
# print(ids)
for i in range(0, len(ids)): # Iterate in markers
# Estimate pose of each marker and return the values rvec and tvec---different from camera coefficients
rvec, tvec, markerPoints = aruco.estimatePoseSingleMarkers(corners[i], oneSideOfTheMarker, matrix_coefficients,
distortion_coefficients)
if ids[i] == firstMarkerID:
firstRvec = rvec
firstTvec = tvec
isFirstMarkerDetected = True
firstMarkerCorners = corners[i]
elif ids[i] == secondMarkerID:
secondRvec = rvec
secondTvec = tvec
isSecondMarkerDetected = True
secondMarkerCorners = corners[i]
(rvec - tvec).any() # get rid of that nasty numpy value array error
# aruco.drawAxis(frame, matrix_coefficients, distortion_coefficients, rvec, tvec, 0.01) # Draw Axis
aruco.drawDetectedMarkers(frame, corners) # Draw A square around the markers
''' First try
if isFirstMarkerDetected and isSecondMarkerDetected:
composedRvec, composedTvec = relativePosition(firstRvec, firstTvec, secondRvec, secondTvec)
info = cv2.composeRT(composedRvec, composedTvec, secondRvec.T, secondTvec.T)
composedRvec, composedTvec = info[0], info[1]
composedRvec, composedTvec = composedRvec.T, composedTvec.T
differenceRvec, differenceTvec = composedRvec-secondRvec, composedTvec-secondTvec
# print infos
print("composed Rvec: ", composedRvec)
print("composed Tvec: ", composedTvec)
print("Second marker Rvec: ", secondRvec)
print("Second marker Tvec: ", secondTvec)
print("differenceRvec: ", differenceRvec)
print("differenceTvec: ", differenceTvec)
print("real difference: ", euclideanDistanceOfTvecs(composedTvec[0], secondTvec[0][0]))
# draw axis to estimated location
aruco.drawAxis(frame, mtx, dist, composedRvec, composedTvec, 0.0115)
realDistanceInTvec = euclideanDistanceOfTvec(secondTvec[0][0])
difference = euclideanDistanceOfTvecs(composedTvec[0], secondTvec[0][0])
calculatedDistance = realDistanceInTvec * (distanceBetweenTwoMarkers / difference)
calculatedDistance = realDistanceInTvec * (distanceBetweenTwoMarkers / (secondTvec[0][0][2] - firstTvec[0][0][2]))
print(calculatedDistance)
'''
if isFirstMarkerDetected and isSecondMarkerDetected:
composedRvec, composedTvec = relativePosition(firstRvec, firstTvec, secondRvec, secondTvec)
camerafirstRvec, cameraFirstTvec = inversePerspective(firstRvec, firstTvec)
camerasecondRvec, camerasecondTvec = inversePerspective(secondRvec, secondTvec)
differenceRvec, differenceTvec = camerafirstRvec - camerasecondRvec, cameraFirstTvec - camerasecondTvec
# print infos
print("first Rvec: ", camerafirstRvec)
print("first Tvec: ", cameraFirstTvec)
print("Second marker Rvec: ", camerasecondRvec)
print("Second marker Tvec: ", camerasecondTvec)
# print("differenceRvec: ", differenceRvec)
# print("differenceTvec: ", differenceTvec)
realDistanceInTvec = euclideanDistanceOfTvec(secondTvec[0][0])
print(cv2.norm(secondTvec[0][0]))
difference = euclideanDistanceOfTvecs(composedTvec.T[0], secondTvec[0][0])
calculatedDistance = realDistanceInTvec * (distanceBetweenTwoMarkers / difference)
# print(calculatedDistance)
# Display the resulting frame
cv2.namedWindow('frame', cv2.WINDOW_NORMAL)
cv2.resizeWindow('frame', image_width, image_height)
cv2.imshow('frame', frame)
# Wait 3 milisecoonds for an interaction. Check the key and do the corresponding job.
key = cv2.waitKey(3) & 0xFF
if key == ord('q'): # Quit
break
elif key == ord('p'): # print necessary information here
pass # Insert necessary print here
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Aruco Marker Tracking')
parser.add_argument('--coefficients', metavar='bool', required=True,
help='File name for matrix coefficients and distortion coefficients')
parser.add_argument('--firstMarker', metavar='int', required=True,
help='first')
parser.add_argument('--secondMarker', metavar='int', required=True,
help='second')
# Parse the arguments and take action for that.
args = parser.parse_args()
firstMarkerID = int(args.firstMarker)
secondMarkerID = int(args.secondMarker)
if args.coefficients == '1':
mtx, dist = loadCoefficients("test.yaml")
ret = True
else:
ret, mtx, dist, rvecs, tvecs = calibrate("calib_images")
saveCoefficients(mtx, dist, "calibrationCoefficients.yaml")
print("Calibration is completed. Starting tracking sequence.")
if ret:
track(mtx, dist)
I got the answer. Problem is in the calibration. When calibration with chessboard, I gave the object points like this:
(0,0,0), (1,0,0) and so on.
The thing is when doing pose estimation, camera should be calibrated nicely. My chessboard square size was 1.5 centimeters which means 0.015 meters. I changed the object point matrix as:
(0,0,0), (0.015,0,0) and so on.
So I said to program that the calibration should be in meters. If you do the calibration with different object points matrix than it should be, the pose estimation fails. That was included in the opencv documentation but I couldn't see it. In the docs it was said like "you can pass them like that." and I didn't think that it fails at the pose estimation.
Related
I am working with VSCode 1.68.1, Ubuntu 20.04.
I am following link:
https://courses.ece.cornell.edu/ece5990/ECE5725_Fall2020_Projects/Dec_21_Demo/Drawing%20Robot/eam348_mm2994_W/index.html
from unittest import result
import numpy as np
import time
import cv2
import sys
import cv2.aruco as aruco
import socket
import datetime
import glob
import math
import multiprocessing as mp
port = 30003
IP = '192.11.0.25'
robot_ID = 20185500976
robot = 'ur-20185500976'
marker_dimension =0.06
worldx = 390
worldy = 260
bottom_left = 31 #this is the origin - positivex: towards bottom right - positivey: towards top left
bottom_right = 32
top_left = 9
top_right = 20
#camera dist, matrix and newcameramatrix
dist=np.array(([[5.0164361897882787e-02, 6.6308284023737640e-01, 2.5493975084043882e-03, -6.0403656948007376e-03, -2.9652221208277720e+00]]))
mtx=np.array([[6.1618286891135097e+02, 0., 3.2106366551961219e+02],
[0 , 6.1595924417559945e+02, 2.4165645046034246e+02],
[0. , 0. , 1. ]])
found_dict_pixel_space = {}
found_dict_camera_space = {}
found_dict_world_space = {}
found_dict_homography_space = {}
final_string = ""
originRvec = np.array([0,0,1])
markerRvec= np.array([0,0,0])
def UDP(IP,port,message):
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #IPv4 DNS server - UDP protocol
sock.sendto(bytes(message, "utf-8"), (IP,port)) #self, data, address
def getMarkerCenter(corners):
px = (corners[0][0] + corners[1][0] + corners[2][0]+ corners[3][0]) * 0.25
py = (corners[0][1] + corners[1][1] + corners[2][1]+ corners[3][1]) * 0.25
return [px,py]
def getMarkerRotation(corners):
unit_x_axis = [1.,0.]
center = getMarkerCenter(corners)
right_edge_midpoint = (corners[1]+corners[2])/2.
unit_vec = (right_edge_midpoint-center)/np.linalg.norm(right_edge_midpoint-center)
angle = np.arccos(np.dot(unit_x_axis,unit_vec))
return angle
def inversePerspective(rvec, tvec):
R, _ = cv2.Rodrigues(rvec)
R = np.array(R).T #this was np.matrix but had error
invTvec = np.dot(-R, np.array(tvec))
invRvec, _ = cv2.Rodrigues(R)
return invRvec, invTvec
def normalize(v):
if np.linalg.norm(v) == 0 : return v
return v / np.linalg.norm(v)
def findWorldCoordinate(originCorners, point):
zero = np.array(originCorners[3]) #bottom left as the origin - check the data structure
print(zero)
x = (np.array(originCorners[0]) - zero) # bottom right - Green Axis -- throw out z
y = (np.array(originCorners[1]) - zero) # top left - Red Axis -- throw out z
x = x[0][0:2]
y = y[0][0:2]
x = normalize(x)
y = normalize(y)
#print("x", x)
vec = (point - zero)[0][0:2]
#print("vec", vec)
vecNormal = normalize(vec)
cosX = np.dot(x,vecNormal)
cosY = np.dot(y,vecNormal)
xW = np.linalg.norm(vec) * cosX
yW = np.linalg.norm(vec) * cosY
return [xW, yW]
cap=cv2.VideoCapture(4)
font = cv2.FONT_HERSHEY_SIMPLEX #font for displaying text (below)
while True:
t0 = time.time()
ret, frame = cap.read()
h, w = frame.shape[:2]
#new image size to generate192.0.1.25
h1, w1 = h, w
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 0, (w1,h1))
#print(newcameramtx)
#mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w1,h1), 5)
#dst1 = cv2.remap(frame, mapx, mapy, cv2.INTER_LINEAR)
dst1 = cv2.undistort(frame, mtx, dist, None, newcameramtx)
x, y, w1, h1 = roi
dst1 = dst1[y:y + h1, x:x + w1]
frame=dst1
t1 = time.time()-t0
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
aruco_dict = aruco.Dictionary_get(aruco.DICT_4X4_50)
arucoParameters = aruco.DetectorParameters_create()
t2 = time.time()-t0
data = aruco.detectMarkers(gray, aruco_dict, parameters=arucoParameters)
t3 = time.time()-t0
corners = data[0]
ids = data[1]
originIDglobal = 0
# If you can't find it, type id
if ids is not None:
t4 = time.time()-t0
result = aruco.estimatePoseSingleMarkers(corners, marker_dimension, newcameramtx, dist)
rvecs = result[0] # rotation vectors of markers
tvecs = result[1] # translation vector of markers
#setting bottom_left as the origin
if bottom_left in ids:
originID = np.where(ids == bottom_left)[0][0]
originIDglobal = originID
else:
originID = originIDglobal
originCorners = corners[originID] # corners of the tag set as the origin
originCornersCamera = getCornerInCameraWorld(marker_dimension, rvecs[originID], tvecs[originID])[0] # origin tag corners in camera space
originRvec = rvecs[originID] # rotation vec of origin tag
originTvec = tvecs[originID] # translation vec of origin tag
display = aruco.drawDetectedMarkers(frame, corners,ids) #Draw a square around the markers
t5 = time.time()-t0
for i in range(len(ids)):
ID = ids[i]
rvec = rvecs[i]
tvec = tvecs[i]
corners4 = corners[i]
display = cv2.drawFrameAxes(frame, newcameramtx, dist, rvec, tvec,0.03)#Draw 3D Axis, 3cm(0.03)
found_dict_pixel_space[""+str(ids[i][0])] = corners4 # put the corners of this tag in the dictionary
# Homography
zero = found_dict_pixel_space[str(bottom_left)][0][3] #bottom left - 3
x = found_dict_pixel_space[str(bottom_right)][0][2] #bottom right - 27
y = found_dict_pixel_space[str(top_left)][0][0] #top left - 22
xy = found_dict_pixel_space[str(top_right)][0][1] #top right - 24
workspace_world_corners = np.array([[0.0, 0.0], [worldx, 0.0], [0.0, worldy], [worldx, worldy]], np.float32) # 4 corners in millimeters
workspace_pixel_corners = np.array([zero,x,y,xy], np.float32) # 4 corners in pixels
# Homography Matrix
h, status = cv2.findHomography(workspace_pixel_corners, workspace_world_corners) #perspective matrix
t6=time.time()-t0
im_out = cv2.warpPerspective(frame, h, (worldx,worldy)) #showing that it works
t7 = time.time()-t0
for i in range(len(ids)):
j = ids[i][0]
corners_pix = found_dict_pixel_space[str(j)]#[0]
corners_pix_transformed = cv2.perspectiveTransform(corners_pix,h)
found_dict_homography_space[str(j)] = corners_pix_transformed
print(found_dict_homography_space)
robot = found_dict_homography_space[str(robot_ID)][0]
print(getMarkerCenter(robot))
cv2.imshow('Warped Source Image', im_out)
t8=time.time()-t0
print("t1: %8.4f t2: %8.4f t3: %8.4f t4: %8.4f t5: %8.4f t6: %8.4f t7: %8.4f t8: %8.4f" %(t1,t2-t1,t3-t2,t4-t3,t5-t4,t6-t5,t7-t6,t8-t7))
else:
display = frame
cv2.imshow('Display', display)
# Display result frame
cv2.imshow("frame",frame)
key = cv2.waitKey(1)
if key == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
I am getting Error: "NameError: name 'getCornerInCameraWorld' is not defined"
I am unable to find anything related to getCornerInCameraWorld.
Please provide some help.
I got reply from the author of the code. She confirmed the code was missing some part and provided that.
The code missing was:
def getCornerInCameraWorld(size, rvec, tvec):
half_size = size * 0.5
rotMatrix, jacobian = cv2.Rodrigues(rvec) #convert rot vector from marker space to camera space
X = half_size * rotMatrix[:,0]
Y = half_size * rotMatrix[:,1]
c1 = np.add(np.add(-1*X,Y), tvec) #top left
c2 = np.add(np.add(X, Y), tvec) #top right
c3 = np.add(np.add(X, -1*Y), tvec) # bottom right
c4 = np.add(np.add(-1*X, -1*Y), tvec) # bottom left
cornersInCameraWorld = [c1,c2,c3,c4]
cornersInCameraWorld = np.array(cornersInCameraWorld, dtype=np.float32)
return cornersInCameraWorld, rotMatrix
I have checked and it is working for me
How can I convert an objects position in PyBullet to pixel coordinates & draw a line onto the frame using PyBullet & OpenCV?
We would like to do this because PyBullet native addUserDebugLine() function is not available in DIRECT mode.
import pybullet as p
import numpy as np
import time
import pybullet_data
import cv2
VIDEO_RESOLUTION = (1280, 720)
MY_COLORS = [(255,0,0), (0,255,0), (0,0,255)]
def capture_frame(base_pos=[0,0,0], _cam_dist=3, _cam_yaw=45, _cam_pitch=-45):
_render_width, _render_height = VIDEO_RESOLUTION
view_matrix = p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=base_pos,
distance=_cam_dist,
yaw=_cam_yaw,
pitch=_cam_pitch,
roll=0,
upAxisIndex=2)
proj_matrix = p.computeProjectionMatrixFOV(
fov=90, aspect=float(_render_width) / _render_height,
nearVal=0.01, farVal=100.0)
(_, _, px, _, _) = p.getCameraImage(
width=_render_width, height=_render_height, viewMatrix=view_matrix,
projectionMatrix=proj_matrix, renderer=p.ER_TINY_RENDERER) # ER_BULLET_HARDWARE_OPENGL)
rgb_array = np.array(px, dtype=np.uint8)
rgb_array = np.reshape(rgb_array, (_render_height, _render_width, 4))
rgb_array = rgb_array[:, :, :3]
return rgb_array, view_matrix, proj_matrix
def render():
frame, vmat, pmat = capture_frame()
p1, cubeOrn = p.getBasePositionAndOrientation(1)
p2, cubeOrn = p.getBasePositionAndOrientation(2)
frame, view_matrix, proj_matrix = capture_frame()
frame = cv2.resize(frame, VIDEO_RESOLUTION)
points = {}
# reshape matrices
my_order = 'C'
pmat = np.array(proj_matrix).reshape((4,4), order=my_order)
vmat = np.array(view_matrix).reshape((4,4), order=my_order)
fmat = vmat.T # pmat.T
# compute origin from origin point in simulation
origin = np.array([0,0,0,1])
frame_origin = (fmat # origin)[:3]*np.array([1280, 640, 0]) + np.array([640, 360, 0])
# define unit vectors
unit_vectors = [ np.array([1,0,0,1]),
np.array([0,1,0,1]),
np.array([0,0,1,1]) ]
for col_id, unit_vector in enumerate(unit_vectors):
cur_point = (fmat # unit_vector)[:3]*np.array([1280, 640, 0]) + np.array([640, 360, 0])
cv2.line(frame, (640,360), (int(cur_point[0]),int(cur_point[1])), color=MY_COLORS[col_id], thickness=2)
cv2.imwrite("my_rendering.jpg", frame)
print(p1,p2)
if __name__ == '__main__':
physicsClient = p.connect(p.DIRECT)#or p.DIRECT for non-graphical version
p.setAdditionalSearchPath(pybullet_data.getDataPath()) #optionally
p.setGravity(0,0,-10)
planeId = p.loadURDF("plane.urdf")
startPos = [1,0,0.2]
startOrientation = p.getQuaternionFromEuler([0,0,0])
boxId = p.loadURDF("r2d2.urdf",startPos, startOrientation)
startPos = [0,2,0.2]
boxId = p.loadURDF("r2d2.urdf",startPos, startOrientation)
#set the center of mass frame (loadURDF sets base link frame) startPos/Ornp.resetBasePositionAndOrientation(boxId, startPos, startOrientation)
for i in range (2400):
if i == 2399:
render()
p.stepSimulation()
p.disconnect()
The expected output would be the following frame but with the origin-coordinate frame drawn correctly. E.g. X, Y, and Z axis are colored Red, Blue, and Green respectively.
Since the two R2D2 robots are positioned at [1,0,0] and [0,1,0] respectively, we can see that the coordinate frame is off. (See image below)
We tried the following:
transposing the matrices
not transposing the matrices
changing the order of how we compute fmat e.g. pmat # vmat instead of vmat # pmat etc.
Any help is appreciated.
After a lot of fiddling, I came to a solution.
Playing with it for a while, I came to a point where it looked almost OK except for a rotation of the axes given by the yaw angle. So, I did a second call to computeViewMatrixFromYawPitchRoll but with the opposite yaw in order to compute the transformation for the axes.
Unfortunately, I'm not sure about why this works... But it works!
Note: base_pos, _cam_dist, _cam_yaw and _cam_pitch have been displaced into render() Note also: the up direction has been reversed too (don't ask why... :-) ) A pretty messy explanation, I must admit...
import pybullet as p
import numpy as np
import time
import pybullet_data
import cv2
import os
VIDEO_RESOLUTION = (1280, 720)
MY_COLORS = [(255,0,0), (0,255,0), (0,0,255)]
K=np.array([[1280,0,0],[0,720,0],[0,0,1]])
def capture_frame(base_pos, _cam_dist, _cam_yaw, _cam_pitch):
_render_width, _render_height = VIDEO_RESOLUTION
view_matrix = p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=base_pos,
distance=_cam_dist,
yaw=_cam_yaw,
pitch=_cam_pitch,
roll=0,
upAxisIndex=2)
proj_matrix = p.computeProjectionMatrixFOV(
fov=90, aspect=float(_render_width) / _render_height,
nearVal=0.01, farVal=100.0)
(_, _, px, _, _) = p.getCameraImage(
width=_render_width, height=_render_height, viewMatrix=view_matrix,
projectionMatrix=proj_matrix, renderer=p.ER_TINY_RENDERER) # ER_BULLET_HARDWARE_OPENGL)
rgb_array = np.array(px, dtype=np.uint8)
rgb_array = np.reshape(rgb_array, (_render_height, _render_width, 4))
rgb_array = rgb_array[:, :, :3]
return rgb_array, view_matrix, proj_matrix
def render():
p1, cubeOrn = p.getBasePositionAndOrientation(1)
p2, cubeOrn = p.getBasePositionAndOrientation(2)
base_pos=[0,0,0]
_cam_dist=3
_cam_yaw=45
_cam_pitch=-30
frame, view_matrix, proj_matrix = capture_frame(base_pos, _cam_dist, _cam_yaw, _cam_pitch)
frame = cv2.resize(frame, VIDEO_RESOLUTION)
points = {}
# inverse transform
view_matrix = p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=base_pos,
distance=_cam_dist,
yaw=-_cam_yaw,
pitch=_cam_pitch,
roll=0,
upAxisIndex=2)
my_order = 'C'
pmat = np.array(proj_matrix).reshape((4,4), order=my_order)
vmat = np.array(view_matrix).reshape((4,4), order=my_order)
fmat = pmat # vmat.T
# compute origin from origin point in simulation
origin = np.array([0,0,0,1])
frame_origin = (fmat # origin)[:3]*np.array([1280, 720, 0]) + np.array([640, 360, 0])
# define unit vectors
unit_vectors = [ np.array([1,0,0,1]),
np.array([0,1,0,1]),
np.array([0,0,-1,1]) ]
for col_id, unit_vector in enumerate(unit_vectors):
cur_point = (fmat # unit_vector)[:3]*np.array([1280, 720, 0]) + np.array([640, 360, 0])
cv2.line(frame, (640,360), (int(cur_point[0]),int(cur_point[1])), color=MY_COLORS[col_id], thickness=2)
cv2.imwrite("my_rendering.jpg", frame)
print(p1,p2)
if __name__ == '__main__':
physicsClient = p.connect(p.DIRECT)#or p.DIRECT for non-graphical version
#physicsClient = p.connect(p.GUI)#or p.DIRECT for non-graphical version
p.setAdditionalSearchPath(pybullet_data.getDataPath()) #optionally
p.setGravity(0,0,-10)
planeId = p.loadURDF("plane.urdf")
#arrows = p.loadURDF("arrows.urdf")
startPos = [1,0,0.2]
startOrientation = p.getQuaternionFromEuler([0,0,0])
boxId = p.loadURDF("r2d2.urdf",startPos, startOrientation)
startPos = [0,2,0.2]
boxId = p.loadURDF("r2d2.urdf",startPos, startOrientation)
#set the center of mass frame (loadURDF sets base link frame) startPos/Ornp.resetBasePositionAndOrientation(boxId, startPos, startOrientation)
for i in range (2400):
if i == 2399:
render()
p.stepSimulation()
p.disconnect()
Here is the result:
Best regards.
I am new to OpenCV, and attempting to use OpenCV for Python 3.7 to stitch five images together into one singular image. The source code I originally used only allowed for two images to be stitched together, so I had to modify it to allow five webcam images to be stitched. However, I am presented with this error:
Traceback (most recent call last):
File "C:\Users\colby\OneDrive\Desktop\New folder\photomosaic.py", line 80, in <module>
img3 = cv2.drawMatches(kpsA,secondImg,kpsB,thirdImg, kpsC, forthImg, kpsD, fifthImg, kpsE, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
TypeError: Expected Ptr<cv::UMat> for argument '%s'
My Code:
import cv2
import numpy as np
import matplotlib.pyplot as plt
import imageio
import imutils
import cameracapture
cv2.ocl.setUseOpenCL(False)
feature_extractor = 'orb' # one of 'sift', 'surf', 'brisk', 'orb'
feature_matching = 'bf'
firstImg = imageio.imread('cap1.jpg')
firstImg_gray = cv2.cvtColor(firstImg, cv2.COLOR_RGB2GRAY)
secondImg = imageio.imread('cap2.jpg')
secondImg_gray = cv2.cvtColor(secondImg, cv2.COLOR_RGB2GRAY)
thirdImg = imageio.imread('cap3.jpg')
thirdImg_gray = cv2.cvtColor(thirdImg, cv2.COLOR_RGB2GRAY)
forthImg = imageio.imread('cap4.jpg')
forthImg_gray = cv2.cvtColor(forthImg, cv2.COLOR_RGB2GRAY)
fifthImg = imageio.imread('cap5.jpg')
fifthImg_gray = cv2.cvtColor(fifthImg, cv2.COLOR_RGB2GRAY)
plt.show()
def detectAndDescribe(image, method=None):
assert method is not None, "You need to define a feature detection
method. Values are: 'sift', 'surf'"
if method == 'sift':
descriptor = cv2.xfeatures2d.SIFT_create()
elif method == 'surf':
descriptor = cv2.xfeatures2d.SURF_create()
elif method == 'brisk':
descriptor = cv2.BRISK_create()
elif method == 'orb':
descriptor = cv2.ORB_create()
# get keypoints and descriptors
(kps, features) = descriptor.detectAndCompute(image, None)
return (kps, features)
kpsA, featuresA = detectAndDescribe(firstImg_gray, method=feature_extractor)
kpsB, featuresB = detectAndDescribe(secondImg_gray, method=feature_extractor)
kpsC, featuresC = detectAndDescribe(thirdImg_gray, method=feature_extractor)
kpsD, featuresD = detectAndDescribe(forthImg_gray, method=feature_extractor)
kpsE, featuresE = detectAndDescribe(fifthImg_gray, method=feature_extractor)
def createMatcher(method,crossCheck):
if method == 'sift' or method == 'surf':
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=crossCheck)
elif method == 'orb' or method == 'brisk':
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=crossCheck)
return bf
def matchKeyPointsBF(featuresA, featuresB, featuresC, featuresD, featuresE, method):
bf = createMatcher(method, crossCheck=True)
# Match descriptors.
best_matches = bf.match(featuresA,featuresB)
best_matchs = bf.match(featuresA,featuresB + featuresC + featuresD + featuresE)
# Sort the features in order of distance.
# The points with small distance (more similarity) are ordered first in the vector
rawMatches = sorted(best_matches, key = lambda x:x.distance)
print("Raw matches (Brute force):", len(rawMatches))
return rawMatches
def matchKeyPointsKNN(featuresA, featuresB, featuresC, featuresD, featuresE, ratio, method):
bf = createMatcher(method, crossCheck=False)
# compute the raw matches and initialize the list of actual matches
rawMatches = bf.knnMatch(featuresA,featuresB, featuresC, featuresD, featuresE, 2)
print("Raw matches (knn):", len(rawMatches))
matches = []
# loop over the raw matches
for m,n in rawMatches:
# ensure the distance is within a certain ratio of each
# other (i.e. Lowe's ratio test)
if m.distance < n.distance * ratio:
matches.append(m)
return matches
print("Using: {} feature matcher".format(feature_matching))
fig = plt.figure(figsize=(20,8))
if feature_matching == 'bf':
matches = matchKeyPointsBF(featuresA,featuresB, featuresC, featuresD,
featuresE, method=feature_extractor)
img3 = cv2.drawMatches(kpsA,secondImg,kpsB,thirdImg, kpsC, forthImg,
kpsD, fifthImg, kpsE, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
elif feature_matching == 'knn':
matches = matchKeyPointsKNN(featuresA,featuresB, featuresC, featuresD,
featuresE, ratio=0.75, method=feature_extractor)
img3 = cv2.drawMatches(firstImg,kpsA,secondImg,kpsB,thirdImg, kpsC,
forthImg, kpsD, fifthImg, kpsE, np.random.choice(matches,100),
None,flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
plt.imshow(img3)
plt.show()
def getHomography(kpsA, kpsB, kpsC, kpsD, kpsE, featuresA, featuresB,
featuresC, featuresD, featuresE, matches, reprojThresh):
# convert the keypoints to numpy arrays
kpsA = np.float32([kp.pt for kp in kpsA])
kpsB = np.float32([kp.pt for kp in kpsB])
kpsC = np.float32([kp.pt for kp in kpsC])
kpsD = np.float32([kp.pt for kp in kpsD])
kpsE = np.float32([kp.pt for kp in kpsE])
if len(matches) > 4:
# construct the two sets of points
ptsA = np.float32([kpsA[m.firstIdx] for m in matches])
ptsB = np.float32([kpsB[m.secondIdx] for m in matches])
ptsC = np.float32([kpsC[m.thirdIdx] for m in matches])
ptsD = np.float32([kpsD[m.forthIdx] for m in matches])
ptsE = np.float32([kpsE[m.fifthIdx] for m in matches])
# estimate the homography between the sets of points
(H, status) = cv2.findHomography(ptsA,ptsB,ptsC,ptsD,ptsE, cv2.RANSAC, reprojThresh)
return (matches, H, status)
else:
return None
M = getHomography(kpsA, kpsB, kpsC, kpsD, kpsE, featuresA, featuresB,
featuresC, featuresD, featuresE, matches, reprojThresh=4)
if M is None:
print("Error!")
(matches, H, status) = M
print(H)
# Apply panorama correction
width = trainImg.shape[1] + queryImg.shape[1]
height = trainImg.shape[0] + queryImg.shape[0]
result = cv2.warpPerspective(trainImg, H, (width, height))
result[0:queryImg.shape[0], 0:queryImg.shape[1]] = queryImg
plt.figure(figsize=(20,10))
plt.imshow(result)
plt.axis('off')
plt.show()
# transform the panorama image to grayscale and threshold it
gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)[1]
# Finds contours from the binary image
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# get the maximum contour area
c = max(cnts, key=cv2.contourArea)
# get a bbox from the contour area
(x, y, w, h) = cv2.boundingRect(c)
# crop the image to the bbox coordinates
result = result[y:y + h, x:x + w]
# show the cropped image
plt.figure(figsize=(20,10))
plt.imshow(result)
The expected output:
I expect the program to be able to take five pictures with my webcam (which is imported through cameracapture), and then stitch them together to make one image. Any advice or fixes to this error would be greatly appreciated.
firstImg = imageio.imread('cap1.jpg')
print(type(firstImg))
if the output is
<class 'PIL.JpegImagePlugin.JpegImageFile'>
Then covert it to an array using:-
firstImg = np.asarray(firstImg)
Load this firstImg to convert it to gray scale image
import numpy as np
import cv2
import imutils
import argparse
class Stitcher:
def init(self):
# determine if we are using OpenCV v3.X
self.isv3 = imutils.is_cv3()
def stitch(self, images, ratio=0.75, reprojThresh=4.0,
showMatches=False):
(imageB, imageA) = images
(kpsA, featuresA) = self.detectAndDescribe(imageA)
(kpsB, featuresB) = self.detectAndDescribe(imageB)
# match features between the two images
M = self.matchKeypoints(kpsA, kpsB,
featuresA, featuresB, ratio, reprojThresh)
if M is None:
return None
# apply a perspective warp to stitch the images
(matches, H, status) = M
result = cv2.warpPerspective(imageA, H,
(imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
# check to see if the keypoint matches should be visualized
if showMatches:
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches,
status)
# return a tuple of the stitched image and the
# visualization
return (result, vis)
# return the stitched image
return result
def detectAndDescribe(self, image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
if self.isv3:
orb = cv2.ORB_create()
(kps, features) = orb.detectAndCompute(image, None)
# If we are using OpenCV 2.4.X
else:
# detect keypoints in the image
detector = cv2.FeatureDetector_create("ORB")
kps = detector.detect(gray)
# extract features from the image
extractor = cv2.DescriptorExtractor_create("ORB")
(kps, features) = extractor.compute(gray, kps)
# convert the keypoints to NumPy arrays
kps = np.float32([kp.pt for kp in kps])
# return a tuple of keypoints and features
return (kps, features)
def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
ratio, reprojThresh):
# compute the raw matches and initialize the list of actual matches
matcher = cv2.DescriptorMatcher_create("BruteForce")
rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
matches = []
# loop over the raw matches
for m in rawMatches:
# ensure the distance is within a certain ratio of each
# other (i.e. Lowe's ratio test)
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
matches.append((m[0].trainIdx, m[0].queryIdx))
# computing a homography requires at least 4 matches
if len(matches) > 4:
# construct the two sets of points
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# homography between the two sets of points
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
reprojThresh)
# return the matches along with the homograpy matrix
# and status of each matched point
return (matches, H, status)
return None
def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
# initialize the output visualization image
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
# loop over the matches
for ((trainIdx, queryIdx), s) in zip(matches, status):
# matching if the keypoint is matched
if s == 1:
# draw the match
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (240, 255, 100), 1)
# return the visualization
return vis
Output:: Attribute Error: 'module' object has no attribute 'is_cv3
Please check the code and resend the edited code to solve the problem.
you can access to the OpenCV version with cv2.__version__
def is_cv3():
return cv2.__version__[0] == '3'
I am trying to do an image stitching project with OpenCV in Python where I use point matches calculated by tracking points between frames of a video using the Lucas Kanade algorithm to find homography matrices. After writing the program and it came time for stitching together the frames of a video, I decided to run a test where I simply display the perspective warped versions of each image onto a black canvas to see how the Homography matrix had warped them. When I did this, instead of moving over bit by bit between frames, frames were translated further and further distances, way off from a slight nudge between frames
[----------------------------------------------------------------------------Empty Space------------------------------------]
[Frame0------------------------------------------------------------------------------------------------------------------------]
[------------Frame1----------------------------------------------------------------------------------------------------------- ]
[-------------------------------------------Frame 2----------------------------------------------------------------------------]
[------------------------------------------------------------------------------------------------------------Frame 3-----------]
Subsequent frames would be out of visual range. I am not quiet sure why this is happening. I implemented a back-projection error check to make sure only points with accurate optical flow calculations were passed on. I also set the back-projection threshold for findHomography to be 10, 1, and then 0.5, all to no avail. I am stitching multiple images, so I am multiplying my homography matrices between frames. This seems to be compounding the error. Why is this happening and how can I fix my homography matrices? Here is my code (ignore commented out tests. Also, some of the indentation formatting might have been messed with while copying over to the forum):
import numpy as np
import sys
import cv2
import math
lastFeatures = None
currentFeatures = None
opticFlow = None
panRow = None
Rows = None
finalPanorama = None
def loadRow(dirPath, fType, numImages, column):
imageRow = []
for i in range(0, numImages):
imageRow.append(cv2.imread("%s/%i_%i.%s" % (dirPath, column, i, fType), cv2.IMREAD_COLOR))
return imageRow
def findNthFeatures(prevImg, prevPnts, nxtImg):
back_threshold = 0.5
nxtDescriptors = []
prevGrey = None
nxtGrey = None
nxtPnts = prevPnts[:]
prevGrey = cv2.cvtColor(prevImg, cv2.COLOR_BGR2GRAY)
nxtGrey = cv2.cvtColor(nxtImg, cv2.COLOR_BGR2GRAY)
lucasKanadeParams = dict(winSize = (19,19), maxLevel = 100, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
nxtPnts, status, err = cv2.calcOpticalFlowPyrLK(prevGrey, nxtGrey, prevPnts, None, **lucasKanadeParams)
backProjections, status, err = cv2.calcOpticalFlowPyrLK(nxtGrey, prevGrey, nxtPnts, None, **lucasKanadeParams)
d = abs(prevPnts - backProjections).reshape(-1, 2).max(-1)
status = d < back_threshold
goodNew = nxtPnts[status].copy()
goodLast = prevPnts[status].copy()
return goodLast, goodNew
def getHomographies(videoName):
color = np.random.randint(0,255,(100,3))
lastFrame = None
currentFrame = None
lastKeypoints = None
currentKeypoints = None
firstImage = True
featureRefreshRate = 5
feature_params = dict( maxCorners = 100,
qualityLevel = 0.1,
minDistance = 8,
blockSize = 15)
frameCount = 0
Homographies = []
cv2.namedWindow('display', cv2.WINDOW_NORMAL)
cap = cv2.VideoCapture(videoName)
flags, frame = cap.read()
while flags:
if firstImage:
firstImage = False
lastFrame = frame[:,:].copy()
lastGray = cv2.cvtColor(lastFrame, cv2.COLOR_BGR2GRAY)
lastKeypoints = cv2.goodFeaturesToTrack(lastGray, mask = None, **feature_params)
flags, frame = cap.read()
frameCount += 1
else:
mask = np.zeros_like(lastFrame)
currentFrame = frame[:,:].copy()
frameCount += 1
lastKeypoints, currentKeypoints = findNthFeatures(lastFrame, lastKeypoints, currentFrame)
# for i,(new,old) in enumerate(zip(currentKeypoints, lastKeypoints)):
# a, b = new.ravel()
# c, d = old.ravel()
# mask = cv2.line(mask, (a,b), (c,d), color[i].tolist(), 2)
# frame = cv2.circle(frame, (a,b), 5, color[i].tolist(), -1)
# img = cv2.add(frame,mask)
# cv2.imshow('display', img)
# cv2.waitKey(0)
homographyMatrix, homographyStatus = cv2.findHomography(currentKeypoints, lastKeypoints, cv2.RANSAC, 0.5)
Homographies.append(homographyMatrix)
lastFrame = currentFrame
lastKeypoints = currentKeypoints
if frameCount % featureRefreshRate == 0:
grayBuf = cv2.cvtColor(lastFrame, cv2.COLOR_BGR2GRAY)
lastKeypoints = cv2.goodFeaturesToTrack(grayBuf, mask = None, **feature_params)
flags, frame = cap.read()
return Homographies
def stitchRow(videoName):
cv2.namedWindow('display', cv2.WINDOW_NORMAL)
frameCount = 0
cap = cv2.VideoCapture(videoName)
ret, initialImage = cap.read()
homographyMatrices = []
homographyMatrices = getHomographies(videoName)
warpHMat = homographyMatrices[frameCount]
while ret:
ret, nextImg = cap.read()
frameCount += 1
result = cv2.warpPerspective(nextImg, warpHMat, (initialImage.shape[1] + nextImg.shape[1], nextImg.shape[0]))
#result[0:initialImage.shape[0], 0:initialImage.shape[1]] = initialImage
cv2.imshow('display', result)
cv2.waitKey(0)
# cv2.imshow('display', initialImage)
# cv2.waitKey(0)
warpHMat = homographyMatrices[frameCount]
for j in range(frameCount, 0, -1):
warpHMat = warpHMat * homographyMatrices[j-1]
# initialImage = result[:, :].copy()
stitchRow(sys.argv[1])