Compare the LBP in python - python

I generated a texture image like this
I have to compare two textures. I have used histogram comparison method.
image_file = 'output_ori.png'
img_bgr = cv2.imread(image_file)
height, width, channel = img_bgr.shape
hist_lbp = cv2.calcHist([img_bgr], [0], None, [256], [0, 256])
print("second started")
image_fileNew = 'output_scan.png'
img_bgr_new = cv2.imread(image_fileNew)
height_new, width_new, channel_new = img_bgr_new.shape
print("second lbp")
hist_lbp_new = cv2.calcHist([img_bgr_new], [0], None, [256], [0, 256])
print("compar started")
compare = cv2.compareHist(hist_lbp, hist_lbp_new, cv2.HISTCMP_CORREL)
print(compare)
But this method is not effective. It shows similar results for two different image textures. Also it is not showing too much of variation to identify Print & Scan effect. How do I compare the textures? I thought of analysing the GLCM characteristics.
import cv2
import numpy as np
from skimage.feature import greycomatrix
img = cv2.imread('images/noised_img1.jpg', 0)
image = np.array(img, dtype=np.uint8)
g = greycomatrix(image, [1, 2], [0, np.pi/2], levels=4, normed=True, symmetric=True)
contrast = greycoprops(g, 'contrast')
print(contrast)
In this method, I am getting the output as 2*2 matrix. How do I compare two matrices of several features like contrast, similarity, homogeneity, ASM, energy and correlation?
COMMENT CLARIFICATION
import numpy as np
from PIL import Image
class LBP:
def __init__(self, input, num_processes, output):
# Convert the image to grayscale
self.image = Image.open(input).convert("L")
self.width = self.image.size[0]
self.height = self.image.size[1]
self.patterns = []
self.num_processes = num_processes
self.output = output
def execute(self):
self._process()
if self.output:
self._output()
def _process(self):
pixels = list(self.image.getdata())
pixels = [pixels[i * self.width:(i + 1) * self.width] for i in range(self.height)]
# Calculate LBP for each non-edge pixel
for i in range(1, self.height - 1):
# Cache only the rows we need (within the neighborhood)
previous_row = pixels[i - 1]
current_row = pixels[i]
next_row = pixels[i + 1]
for j in range(1, self.width - 1):
# Compare this pixel to its neighbors, starting at the top-left pixel and moving
# clockwise, and use bit operations to efficiently update the feature vector
pixel = current_row[j]
pattern = 0
pattern = pattern | (1 << 0) if pixel < previous_row[j-1] else pattern
pattern = pattern | (1 << 1) if pixel < previous_row[j] else pattern
pattern = pattern | (1 << 2) if pixel < previous_row[j+1] else pattern
pattern = pattern | (1 << 3) if pixel < current_row[j+1] else pattern
pattern = pattern | (1 << 4) if pixel < next_row[j+1] else pattern
pattern = pattern | (1 << 5) if pixel < next_row[j] else pattern
pattern = pattern | (1 << 6) if pixel < next_row[j-1] else pattern
pattern = pattern | (1 << 7) if pixel < current_row[j-1] else pattern
self.patterns.append(pattern)
def _output(self):
# Write the result to an image file
result_image = Image.new(self.image.mode, (self.width - 2, self.height - 2))
result_image.putdata(self.patterns)
result_image.save("output.png")
I generated texture with this code. I have texture and I have methods to calculate the texture properties, but the question is how to identify the similarity between two textures.

Suppose you have two classes, for example couscous and knitwear, and you wish to classify an unknown color image as either couscous or knitwear. One possible method would be:
Converting the color images to grayscale.
Computing the local binary patterns.
Calculating the normalized histogram of local binary patterns.
The following snippet implements this approach:
import numpy as np
from skimage import io, color
from skimage.feature import local_binary_pattern
def lbp_histogram(color_image):
img = color.rgb2gray(color_image)
patterns = local_binary_pattern(img, 8, 1)
hist, _ = np.histogram(patterns, bins=np.arange(2**8 + 1), density=True)
return hist
couscous = io.imread('https://i.stack.imgur.com/u3xLI.png')
knitwear = io.imread('https://i.stack.imgur.com/Zj14J.png')
unknown = io.imread('https://i.stack.imgur.com/JwP3j.png')
couscous_feats = lbp_histogram(couscous)
knitwear_feats = lbp_histogram(knitwear)
unknown_feats = lbp_histogram(unknown)
Then you need to measure the similarity (or dissimilarity) between the LBP histogram of the unknown image and the histograms of the images that represent the two considered classes. Euclidean distance between histograms is a popular dissimilarity measure.
In [63]: from scipy.spatial.distance import euclidean
In [64]: euclidean(unknown_feats, couscous_feats)
Out[64]: 0.10165884804845844
In [65]: euclidean(unknown_feats, knitwear_feats)
Out[65]: 0.0887492936776889
In this example the unknown image will be classified as knitwear because the dissimilarity unknown-couscous is greater than the dissimilarity unknown-knitwear. This is in good agreement with the fact that the unknown image is actually a different type of knitwear.
import matplotlib.pyplot as plt
hmax = max([couscous_feats.max(), knitwear_feats.max(), unknown_feats.max()])
fig, ax = plt.subplots(2, 3)
ax[0, 0].imshow(couscous)
ax[0, 0].axis('off')
ax[0, 0].set_title('Cous cous')
ax[1, 0].plot(couscous_feats)
ax[1, 0].set_ylim([0, hmax])
ax[0, 1].imshow(knitwear)
ax[0, 1].axis('off')
ax[0, 1].set_title('Knitwear')
ax[1, 1].plot(knitwear_feats)
ax[1, 1].set_ylim([0, hmax])
ax[1, 1].axes.yaxis.set_ticklabels([])
ax[0, 2].imshow(unknown)
ax[0, 2].axis('off')
ax[0, 2].set_title('Unknown (knitwear)')
ax[1, 2].plot(unknown_feats)
ax[1, 1].set_ylim([0, hmax])
ax[1, 2].axes.yaxis.set_ticklabels([])
plt.show(fig)

Related

Why are these codes not visually showing the right colors extracted from the image?

so I am working on a program to extract up to 4 of the most common colors, from a picture. Right now, I'm working on it visually showing the most common colors, however, after reading the image, I am:
unable to get an output of the correct rgb codes (it's not outputting it for me)
and
the chart that pops up either shows all black, or shows 3 random colors that are not in the picture.
Any tips or help? I've tried anything that I can, I am not sure why it cannot read the colors well. Thank you.
The code:
import matplotlib.image as img
import matplotlib.pyplot as plt
from scipy.cluster.vq import whiten
from scipy.cluster.vq import kmeans
import pandas as pd
import numpy as np
bimage = img.imread('Images/build2.jpg') #read image (this part works)
print(bimage.shape)
r = []
g = []
b = []
for row in bimage:
for temp_r, temp_g, temp_b in row:
r.append(temp_r)
g.append(temp_g)
b.append(temp_b)
bimage_df = pd.DataFrame({'red': r,
'green': g,
'blue': b})
bimage_df['scaled_color_red'] = whiten(bimage_df['red']) #supposed to give color codes
bimage_df['scaled_color_blue'] = whiten(bimage_df['blue'])
bimage_df['scaled_color_green'] = whiten(bimage_df['green'])
cluster_centers, _ = kmeans(bimage_df[['scaled_color_red', #to find most common colors
'scaled_color_blue',
'scaled_color_green']], 3)
dominant_colors = []
red_std, green_std, blue_std = bimage_df[['red',
'green',
'blue']].std()
for cluster_center in cluster_centers:
red_scaled, green_scaled, blue_scaled = cluster_center
dominant_colors.append((
red_scaled * red_std / 255,
green_scaled * green_std / 255,
blue_scaled * blue_std / 255
))
plt.imshow([dominant_colors])
plt.show()
The image I used:
I have tried using this method for an output and another type of chart too, but that gave me all black or purple, unrelated colors. I had referred to geeks4geeks for this, could not troubleshoot either. Any help would be greatly appreciated.
The major issue is the usage of whiten method that is not adequate for the sample image:
whiten documentation:
Before running k-means, it is beneficial to rescale each feature dimension of the observation set by its standard deviation (i.e. “whiten” it - as in “white noise” where each frequency has equal power). Each feature is divided by its standard deviation across all observations to give it unit variance.
The normalization method assumes normal distribution of the noise.
The sample image is not a natural image (has no noise), and the normalization procedure does not feat the given image.
Instead of normalization, it is recommended to convert the image to LAB color space, where color distances better match the perceptual distances.
Keeping the colors in RGB format may work good enough...
Swapping the green and the blue channels is another issue.
Instead of using a for loop, we may use NumPy array operations (it's not a bug, just faster):
fimage = bimage.astype(float) # Convert image from uint8 to float (kmeans requires floats).
r = fimage[:, :, 0].flatten().tolist() # Convert red elements to list
g = fimage[:, :, 1].flatten().tolist() # Convert grenn elements to list
b = fimage[:, :, 2].flatten().tolist() # Convert blue elements to list
bimage_df = pd.DataFrame({'red': r,
'green': g,
'blue': b})
Apply kmeans with 100 iterations (the default is 20, and may not be enough):
cluster_centers, _ = kmeans(bimage_df[['red', #Find rhe 4 most common colors
'green',
'blue']], 4, iter=100) # The default is 20 iterations, use 100 iterations for better convergence
Before using plt.imshow we have to convert the colors to uint8 type (we may also convert to range [0, 1]), otherwize the displayed colors are going to be white (saturated).
dominant_colors = np.round(cluster_centers).astype(np.uint8) # Round and convert to uint8
plt.imshow([dominant_colors])
plt.show()
Code sample:
import matplotlib.image as img
import matplotlib.pyplot as plt
#from scipy.cluster.vq import whiten
from scipy.cluster.vq import kmeans
import pandas as pd
import numpy as np
bimage = img.imread('Images/build2.jpg') #read image (this part works)
print(bimage.shape)
#r = []
#g = []
#b = []
#for row in bimage:
# for temp_r, temp_g, temp_b in row:
# r.append(temp_r)
# g.append(temp_g)
# b.append(temp_b)
# Use NumPy array operations, instead of using a for loop.
fimage = bimage.astype(float) # Convert image from uint8 to float (kmeans requires floats).
r = fimage[:, :, 0].flatten().tolist() # Convert red elements to list
g = fimage[:, :, 1].flatten().tolist() # Convert grenn elements to list
b = fimage[:, :, 2].flatten().tolist() # Convert blue elements to list
bimage_df = pd.DataFrame({'red': r,
'green': g,
'blue': b})
# Don't use whiten
#bimage_df['scaled_color_red'] = whiten(bimage_df['red']) #supposed to give color codes
#bimage_df['scaled_color_blue'] = whiten(bimage_df['blue'])
#bimage_df['scaled_color_green'] = whiten(bimage_df['green'])
#cluster_centers, _ = kmeans(bimage_df[['scaled_color_red', #to find most common colors
# 'scaled_color_blue',
# 'scaled_color_green']], 3)
cluster_centers, _ = kmeans(bimage_df[['red', #Find the 4 most common colors
'green',
'blue']], 4, iter=100) # The default is 20 iterations, use 100 iterations for better convergence
dominant_colors = np.round(cluster_centers).astype(np.uint8) # Round and convert to uint8
print(dominant_colors)
# Since whiten is not used, we don't need the STD
#red_std, green_std, blue_std = bimage_df[['red',
# 'green',
# 'blue']].std()
#for cluster_center in cluster_centers:
# red_scaled, green_scaled, blue_scaled = cluster_center
# dominant_colors.append((
# red_scaled * red_std / 255,
# green_scaled * green_std / 255,
# blue_scaled * blue_std / 255
# ))
plt.imshow([dominant_colors])
plt.show()
Result:

Doing naive affine_transforms (shear numpy image using numpy)

from scipy import ndimage
height, width, colors = image.shape
transform = [[1, 0, 0],
[0.5, 1, 0],
[0, 0, 1]]
sheared_array = ndimage.affine_transform(image,
transform,
offset=(0, -height*0.7, 0),
output_shape=(height, width*2, colors))
plt.imshow(sheared_array)
My current code does this. My aim is to shear the image by any degree X.
I want to do the same thing with a naive approach. As in, without any pre-defined functions. Just python/numpy code from scratch.
Given the image:
the following code should do what you want to achieve. It copies y-rows of pixels from the numpy array representing the source image to a new created wider image at appropriate x-offsets calculated from the given shear angle. The variable names in a following code are chosen in a way explaining what they are used for providing further details about what the code does:
from PIL import Image
import numpy as np
shearAngleDegrees = 30
PILimg = Image.open('shearNumpyImageByAngle.jpg')
#PILimg.show()
npImg = np.asarray(PILimg)
def shearNpImgByAngle(numpyImageArray, shearAngleDegrees, maxShearAngle=75):
import numpy as np
from math import tan, radians
assert -maxShearAngle <= shearAngleDegrees <= maxShearAngle
ccw = True if shearAngleDegrees > 0 else False # shear counter-clockwise?
imgH, imgW, imgRGBtplItems = npImg.shape
shearAngleRadians = radians(shearAngleDegrees)
imgWplus2imgH = abs(tan(shearAngleRadians)) # (plus in width)/(image height)
imgWplus = int((imgH-1)*imgWplus2imgH) # image width increase in pixels
npImgOut = np.zeros((imgH, imgW+imgWplus, imgRGBtplItems), dtype='uint8')
Wplus, Wplus2H = (0, -imgWplus2imgH) if ccw else (imgWplus,imgWplus2imgH)
for y in range(imgH):
shiftX = Wplus-int(y*Wplus2H)
npImgOut[y][shiftX:shiftX+imgW] = npImg[y]
return npImgOut
#:def
npImgOut = shearNpImgByAngle(npImg, shearAngleDegrees)
PILout = Image.fromarray(npImgOut)
PILout.show()
PILout.save('shearNumpyImageByAngle_shearedBy30deg.jpg')
gives:
As a nice add-on to the above code an extension filling the black edges of the sheared image mirroring the source picture around its sides:
def filledShearNpImgByAngle(npImg, angleDeg, fill=True, maxAngle=75):
import numpy as np
from math import tan, radians
assert -maxAngle <= angleDeg <= maxAngle
ccw = True if angleDeg > 0 else False # shear counter-clockwise?
imgH, imgW, imgRGBtplItems = npImg.shape
angleRad = radians(angleDeg)
imgWplus2imgH = abs(tan(angleRad)) # (plus in width)/(image height)
imgWplus = int((imgH-1)*imgWplus2imgH) # image add. width in pixels
npImgOut = np.zeros((imgH, imgW+imgWplus, imgRGBtplItems),
dtype=npImg.dtype) # 'uint8')
Wplus, Wplus2H = (0, -imgWplus2imgH) if ccw else (imgWplus, imgWplus2imgH)
for y in range(imgH):
shiftXy = Wplus-int(y*Wplus2H)
npImgOut[y][shiftXy:shiftXy+imgW] = npImg[y]
if fill:
assert imgW > imgWplus
npImgOut[y][0:shiftXy] = np.flip(npImg[y][0:shiftXy], axis=0)
npImgOut[y][imgW+shiftXy:imgW+imgWplus] = np.flip(npImg[y][imgW-imgWplus-1+shiftXy:imgW-1], axis=0)
[imgW-x-2]
return npImgOut
#:def
from PIL import Image
import numpy as np
PILimg = Image.open('shearNumpyImageByAngle.jpg')
npImg = np.asarray(PILimg)
shearAngleDegrees = 20
npImgOut = filledShearNpImgByAngle(npImg, shearAngleDegrees)#, fill=False)
shearAngleDegrees = 10
npImgOut = filledShearNpImgByAngle(npImgOut, shearAngleDegrees)#, fill=False)
PILout = Image.fromarray(npImgOut)
PILout.show()
PILout.save('shearNumpyImageByAngle_filledshearBy30deg.jpg')
gives:
or other way around:

How to identify dashed lines in an image?

I am trying to identify small dashed lines in an image. An example would be identifying copy area in an excel type of application.
I have tried this.
I am finding it difficult to chose the filter sizes. So, I tried a different approach using Fourier Transform to check repeatability.
Given I know the dashed line pixel repetition range I go row by row by using a moving window to check for periodicity by finding dominant frequency in that window.
If dominant frequency is in range of dashed lines period I set the mask in the mask image. I repeat the same for columns. However this is still failing. Any suggestions/other techniques ?
Here is the code:
import cv2
import numpy as np
img = cv2.imread('test.png')
imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('imgGray', imgGray)
rows,cols = imgGray.shape
maskImage = np.full((rows, cols), 0, dtype=np.uint8)
kernelL = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]], dtype=np.float32)
imgLaplacian = cv2.filter2D(imgGray, cv2.CV_32F, kernelL)
imgResult = imgLaplacian
imgResult = np.clip(imgResult, 0, 255)
imgResult = imgResult.astype('uint8')
imgLaplacian = imgResult
cv2.imshow('imgLaplacian', imgLaplacian)
dashLineSearchInterval = 30
fmaxPixel =9 # minimum interval for dash repetation
fminPixel =7 # maximum interval for dash repetation
stride =2
for y in range(0,rows-dashLineSearchInterval,stride):
for x in range(0,cols-dashLineSearchInterval,stride):
kX = (imgLaplacian[y,x:x+ dashLineSearchInterval]).copy()
kX = kX - np.mean(kX)
N= dashLineSearchInterval
freq = np.fft.fftfreq(N)
ft = np.fft.fft(kX) # fourier transform
power = ft.real**2 + ft.imag**2 # power
maxPowerFreq= np.argmax(power) # dominant frequency
domFreq = freq [maxPowerFreq]
if(domFreq<0):
domFreq = -domFreq
#print(domFreq)
if float(1/fmaxPixel) <= domFreq <= float(1/fminPixel) :
maskImage[y,x:x+dashLineSearchInterval]=255
for x in range(0,cols-dashLineSearchInterval,stride):
for y in range(0,rows-dashLineSearchInterval,stride):
kY = (imgLaplacian[y:y+dashLineSearchInterval,x]).copy()
kY = kY - np.mean(kY)
N= dashLineSearchInterval
freq = np.fft.fftfreq(N)
ft = np.fft.fft(kY) # fourier transform
power = ft.real**2 + ft.imag**2 # power
maxPowerFreq= np.argmax(power) # dominant frequency
domFreq = freq [maxPowerFreq]
if(domFreq<0):
domFreq = -domFreq
#print(domFreq)
if float(1/fmaxPixel) <= domFreq <= float(1/fminPixel) :
maskImage[y:y+dashLineSearchInterval,x]=255
cv2.imshow('maskImage', maskImage)
cv2.waitKey()

Shape recognition with numpy/scipy (perhaps watershed)

My goal is to trace drawings that have a lot of separate shapes in them and to split these shapes into individual images. It is black on white. I'm quite new to numpy,opencv&co - but here is my current thought:
scan for black pixels
black pixel found -> watershed
find watershed boundary (as polygon path)
continue searching, but ignore points within the already found boundaries
I'm not very good at these kind of things, is there a better way?
First I tried to find the rectangular bounding box of the watershed results (this is more or less a collage of examples):
from numpy import *
import numpy as np
from scipy import ndimage
np.set_printoptions(threshold=np.nan)
a = np.zeros((512, 512)).astype(np.uint8) #unsigned integer type needed by watershed
y, x = np.ogrid[0:512, 0:512]
m1 = ((y-200)**2 + (x-100)**2 < 30**2)
m2 = ((y-350)**2 + (x-400)**2 < 20**2)
m3 = ((y-260)**2 + (x-200)**2 < 20**2)
a[m1+m2+m3]=1
markers = np.zeros_like(a).astype(int16)
markers[0, 0] = 1
markers[200, 100] = 2
markers[350, 400] = 3
markers[260, 200] = 4
res = ndimage.watershed_ift(a.astype(uint8), markers)
unique(res)
B = argwhere(res.astype(uint8))
(ystart, xstart), (ystop, xstop) = B.min(0), B.max(0) + 1
tr = a[ystart:ystop, xstart:xstop]
print tr
Somehow, when I use the original array (a) then argwhere seems to work, but after the watershed (res) it just outputs the complete array again.
The next step could be to find the polygon path around the shape, but the bounding box would be great for now!
Please help!
#Hooked has already answered most of your question, but I was in the middle of writing this up when he answered, so I'll post it in the hopes that it's still useful...
You're trying to jump through a few too many hoops. You don't need watershed_ift.
You use scipy.ndimage.label to differentiate separate objects in a boolean array and scipy.ndimage.find_objects to find the bounding box of each object.
Let's break things down a bit.
import numpy as np
from scipy import ndimage
import matplotlib.pyplot as plt
def draw_circle(grid, x0, y0, radius):
ny, nx = grid.shape
y, x = np.ogrid[:ny, :nx]
dist = np.hypot(x - x0, y - y0)
grid[dist < radius] = True
return grid
# Generate 3 circles...
a = np.zeros((512, 512), dtype=np.bool)
draw_circle(a, 100, 200, 30)
draw_circle(a, 400, 350, 20)
draw_circle(a, 200, 260, 20)
# Label the objects in the array.
labels, numobjects = ndimage.label(a)
# Now find their bounding boxes (This will be a tuple of slice objects)
# You can use each one to directly index your data.
# E.g. a[slices[0]] gives you the original data within the bounding box of the
# first object.
slices = ndimage.find_objects(labels)
#-- Plotting... -------------------------------------
fig, ax = plt.subplots()
ax.imshow(a)
ax.set_title('Original Data')
fig, ax = plt.subplots()
ax.imshow(labels)
ax.set_title('Labeled objects')
fig, axes = plt.subplots(ncols=numobjects)
for ax, sli in zip(axes.flat, slices):
ax.imshow(labels[sli], vmin=0, vmax=numobjects)
tpl = 'BBox:\nymin:{0.start}, ymax:{0.stop}\nxmin:{1.start}, xmax:{1.stop}'
ax.set_title(tpl.format(*sli))
fig.suptitle('Individual Objects')
plt.show()
Hopefully that makes it a bit clearer how to find the bounding boxes of the objects.
Use the ndimage library from scipy. The function label places a unique tag on each block of pixels that are within a threshold. This identifies the unique clusters (shapes). Starting with your definition of a:
from scipy import ndimage
image_threshold = .5
label_array, n_features = ndimage.label(a>image_threshold)
# Plot the resulting shapes
import pylab as plt
plt.subplot(121)
plt.imshow(a)
plt.subplot(122)
plt.imshow(label_array)
plt.show()

Chromatic Aberration Estimation in python

Hi this code estimates chromatic aberration in an image by giving the center of distortion (x,y) and magnitude of distortion (alpha) between the red and green channels and also between the blue and green channels. I have an error in the WarpRegion function
File "CAfeb.py", line 217, in warpRegion
reg_w = sp.interpolate.interp2d(yrampf,xrampf,Cwarp, yramp1f, xramp1f,'cubic');
File "/usr/lib/python2.7/dist-packages/scipy/interpolate/interpolate.py", line 109, in __init__
'quintic' : 5}[kind]
TypeError: unhashable type: 'numpy.ndarray'
Below is the complete code - Any help will be greatly appreciated-Thank you. Areej
import math
from PIL import Image
import numpy as np
from decimal import Decimal
import scipy as sp
from scipy import interpolate
from scitools.std import ndgrid
from scipy import ogrid, sin, mgrid, ndimage, array
def ldimage():
#load image
global im
im = Image.open("/home/areej/Desktop/mandril_color.tif")
def analyzeCA(mode, im):
n_regions = 10;
reg_size = [300, 300];
overlap = 0.5;
levels = 9;
steps = 2;
edge_width = 10;
hist_sz = 128;
# alpha_1 and alpha_2 are assumed to be between these values
w_data = [0.9985, 1.0015];
reg_list=[]
#creating an array of pixels so that we can access them
pix=im.load()
#
#Analyze full image
if mode=='full':
print "Doing a full analysis"
# mx_shift is the third argument in 'full' mode
mx_shift = n_regions;
# [ydim,xdim,zdim]= size(im);
ydim=im.size[0]
xdim=im.size[1]
zdim=3
print "Image dimensions: [ydim, xdim, zdim]= "+str([ydim,xdim,zdim])
global alpha_mx, alpha_mn
alpha_mx = 1 + 4*mx_shift / math.sqrt( xdim*xdim + ydim*ydim );
alpha_mn = 1.0/alpha_mx;
print "alpha_mx= "+str(alpha_mx)
print "alpha_mn= "+str(alpha_mn)
#recompute alpha_1 and alpha_2 to be between
#these new values
w_data = [alpha_mn, alpha_mx];
ew = edge_width;
#take the image minus a ew-wide edge
roi = [ew+1, xdim-ew, ew+1, ydim-ew];
print "edge_width= "+str(ew)
print "roi= "+str(roi)
#Analyze blue to green chromatic aberration
bg_params = parameterSearch( im, [3, 2], roi, ew, hist_sz, w_data);
# Analyze red to green chromatic aberration
rg_params = parameterSearch( im, [1, 2], roi, ew, hist_sz, w_data );
elif mode=='reg':
print "we should do a regional analysis here"
else:
print "unsupported call"
#def estimateCARegions( im, [3, 2], reg_list, settings ):
def parameterSearch( im, colour_space, roi, ew, hist_sz, w_data):
#levels is number of iterations
levels = 8;
steps = 2;
#[ydim,xdim,zdim] = size(im);
ydim=im.size[0]
xdim=im.size[1]
zdim= 3
x_data = [1, xdim];
y_data = [1, ydim];
xlim = x_data;
ylim = y_data;
zlim = w_data;
#work out which of height and width is the bigger
dim = max(xdim,ydim)
print "The highest dimension is : "+str(dim)
#check that roi falls within expected boundries
if ((roi[0] <= ew) or (roi[1] > xdim-ew) or (roi[2] <= ew) or (roi[3] > ydim-ew)):
print "ROI is too close to image edges"
return -1 # TODO: terminate here with an error
#Get image regions
source = im.split()
Cfixed = source[2]
Cwarp = source[1]
#[ydim,xdim,zdim] = size(im);
ydimCwarp=Cwarp.size[0]
xdimCwarp=Cwarp.size[1]
print 'xdimCwarp'+str(xdimCwarp)
roi_pad = [roi[0]-ew, roi[1]+ew, roi[2]-ew, roi[3]+ew];
for levels in range(1,8):
#Guess at a center and then compute best warp
#user defined function linear_space used to generate linearly spaced vectors
x_coords = np.linspace(0,511,steps+2)
y_coords = np.linspace(0,511,steps+2)
z_coords = np.linspace(alpha_mn,alpha_mx,steps+2)
step_x=(xlim[1]-xlim[0])/(steps+1)
start_x=xlim[0]+step_x
end_x=xlim[1]-step_x+0.5
step_y=(ylim[1]-ylim[0])/(steps+1)
start_y=ylim[0]+step_y
end_y=ylim[1]-step_y+0.5
step_z=(zlim[1]-zlim[0])/(steps+1)
start_z=zlim[0]+step_z
fudge_z=step_z/2.0
end_z=zlim[1]-step_z+fudge_z
#Do not include end points in search;
centers_x, centers_y, warps= np.mgrid[start_x:end_x:step_x,start_y:end_y:step_y,start_z:end_z:step_z]
centers_x=centers_x.flatten()
centers_y=centers_y.flatten()
warps=warps.flatten()
mi = np.zeros(centers_x.size)
for k in range(0,centers_x.size):
cx = centers_x[k]
cy = centers_y[k]
wz = warps[k]
#Warp the region
temp_im = warpRegion(Cwarp, roi_pad, [cx, cy, wz])
#correlation
mi[k] = np.corrcoef(Cfixed, temp_im)
#Now pick the best quadrant
v, max_ix = math.max(mi)
ix, jx, kx = arrayInd(mi.size, max_ix);
##The coordinates of err are off by 1 from x_coords and y_coords because
##we did not include the end point
xlim = x_coords([jx, jx+2]);
ylim = y_coords([ix, ix+2]);
zlim = z_coords([kx, kx+2]);
cx = math.mean(xlim);
cy = math.mean(ylim);
wz = math.mean(zlim);
print "x= "+str(cx)
print "y= "+str(cy)
print "z= "+str(wz)
def warpRegion(Cwarp, roi_pad, (cx, cy, wz)):
#Unpack region indices
sx, ex, sy, ey = roi_pad
xramp, yramp = np.mgrid[sx:ex+1, sy:ey+1]
xrampc = xramp - cx;
yrampc = yramp - cy;
xramp1 = 1/wz*xrampc;
yramp1 = 1/wz*yrampc;
xrampf = xrampc.flatten()
yrampf = yrampc.flatten()
xramp1f = xramp1.flatten()
yramp1f = yramp1.flatten()
reg_w = sp.interpolate.interp2d(yrampf,xrampf,Cwarp, yramp1f, xramp1f,'cubic');
ldimage()
analyzeCA('full', im)
As DSM states correctly this is not the correct calling syntax for interp2d which can be viewed at scipy.interp2d. If you would read the calling syntax and then your error message again (or the module itself whichever you prefer) you would recognize that you are trying to use an array as index for a dictionary which will naturally throw an exception.
I think what you are trying to do is an interpolation of the grid given by the arrays xrampf, yrampf at the new positions xrampf1, yrampf1. The scipy documentation also gives an exact same usage example which translate as following to your code:
interp_func = sp.interpolate.interp2d(yrampf, xrampf, Cwarp, kind='cubic')
reg_w = interp_func(yramp1f, xramp1f)
I hope that was your intention to do.
Kind regards

Categories