Difference of positive and negative integers while rounding - python

Why
13 // 3 gives 4 and
-13 // 3 gives -5
if the distance to the nearest integer value is the same?

Because the // operator is floor division, which means it rounds it down to the nearest whole number.
You can read a bit more about it here. Specifically:
Floor division - division that results into whole number adjusted to the left in the number line
In your specific example:
13 / 3 results in 4.333... which will round down to 4.
-13 / 3 results in -4.333... which will round down to -5.

13//3=int of(4.3333)=4, where 4 is the nearest smaller integer of 4.333.....
-13//3=int of(-4.333)=-5, Where -5 is the nearest smaller integer of -4.333...,as we know that -5 is smaller than -4.333....

Related

Difference between // and round() in Python

Is there a difference between using // (Integer Division) and the built-in round() function in Python? If I understand correctly, both will round to the nearest Integer but I'm unsure if the behaviour of both the function and the operator is exactly the same at all times. Can someone clarify? Can both of them be used "interchangeably"?
// is floor division, round rounds to nearest. // stays integer at all times, round using / converts to float before rounding back, which might not work at all for large enough ints, and can lose precision for smaller (but still large) ints.
If you need floor division of ints, always use // (you can do ceiling division too, with -(-num // div)). It's always correct, where round (and math.floor) might not be (for ints exceeding about 53 bits). round is more configurable (you can round off to a specified number of decimal places, including negative decimal places to round off to the left of the decimal point), but you want to avoid converting to float at all whenever you can.
>>> 5 // 2
2
>>> round(5 / 2)
2
>>> round(5 / 2, 1)
2.5
>>>
The round function gives you more control over the precision of rounding. The // operator provides the floor (rounds down) of dividing the two.
Consider also:
>>> round(20 / 3)
7
>>> 20 // 3
6
>>>
// and round() are two different things.
// is divide, then floor
round() is a function to make a float number shorter.
>>> 10 // 3 # 10 divide to 3, then floor
3
>>> round(10 / 3, 2) # 10 divide to 3, take 2 number after the dot
3.33

Python nearest value digits

I would like to round values to the nearest 10 (0-4 = 0; 5-14 = 1; 15-24=2, etc.)
I can get round to nearest 10, but I want to single digits for each range of numbers, as the example shows.
From -5 to 4 = 0, 5 to 14 = 1, 15 to 24 = 2 etc...
What I have tried...
int(math.ceil(x / 10.0)) * 10
This gives to nearest 10, but starts from 0 and gives to nearest 10 instead of single digit.
Any advice is helpful.
We can simply use:
int(round(float(x)/10))
From the documentation:
round(number[, ndigits])
Return the floating point value number rounded to ndigits digits after the decimal point. If ndigits is omitted, it defaults to zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minus ndigits; if two multiples are equally close, rounding is done away from 0 (so, for example, round(0.5) is 1.0 and round(-0.5) is -1.0).

What determines the sign of m % n for integers?

The modulo in Python is confusing.
In Python, % operator is calculating the remainder:
>>> 9 % 5
4
However:
>>> -9 % 5
1
Why is the result 1? and not -4?
Because in python, the sign matches the denominator.
>>> 9 % -5
-1
>>> -9 % 5
1
For an explanation of why it was implemented this way, read the blog post by Guido.
-10 % 5 is 0, ie, -10 is evenly divided by 5.
You ask why -9 % 5 is not -4, and the answer is that both 1 and -4 can be correct answers, it depends on what -9 divided by 5 is. Of course -9 divided by 5 is 1.8, but this is integer division, in Python 3 represented by //, so I'll use // here to be clear that it's integer division we are talking about.
I'll explain this by not using negative numbers, it's easier.
9 // 5 is 1. Ie, you can subtract 5 from 9 only 1 time, and the rest is 4. But if you subtract 5 from 9 one more time, well, then the rest becomes -1!
So -1 is a correct answer to 9 % 5, if 9 // 5 is 2.
In Python 9 // 5 is 1, because the Python integer division is a floor division, ie it always rounds down. If it has rounded up 9 // 5 would be two, and 9 % 5 would have been -1.
Now lets look at the case when we use negative numbers: -9 divided by 5 is now -2. Because it is floor division, it always rounds down. That means that the rest is 1. So -9 % 5 is 1, not -4.
This really has to do with how python rounds integer division.
Mathematically, the following has to be true always for any int x and y
x == (x // y) * y + x % y
So from this, we can say
x % y == x - (x // y) * y
Now recall that python rounds integer divison toward negative infinity, not toward zero.
For example -9 // 5 gives -2, not -1. With this logic, you obtain -9 % 5 = 1
Think about it like this:
0 % 5 is 0
1 % 5 is 1
So... what if you go backwards?
-1 % 5 must be 4
-2 % 5 must be 3
and so on.
You'll see that following this -9 % 5 is 1
NOTE: Depending on the programming language and the implementation of %, you might get different results since programmers disagree on how to handle negative numbers in %
In integers, you can't always pick such a quotient that quotient * divisor == dividend. If the product does not equal the dividend, one always has to make a choice, whether to make it slightly less than the dividend, or slightly greater than the dividend. The sum of the product with the remainder makes the dividend, that's what the remainder is. In any case, the dividends and products have to be close, meaning the absolute value of the remainder has to be less than that of the divisor.
When the divisor is positive, the products increase as the quotients increase; when the divisor is negative, the products decrease as the quotients increase. In the first case, the products go from the below, in the second case, the products go from the above. In Python, in both cases the next quotient is only taken when the dividend reaches the next possible product, going the same way the products go. Before that, only the remainder changes to accommodate for the next dividend, again always going in the same direction as the dividends change, without a break at zero. This rule is universal in Python, it holds always.
That is not the reason why this choice had been made, but that gives the idea what happens (i. e. why the results are what they are, and which results to expect).

Modulo for negative dividends in Python [duplicate]

This question already has answers here:
How does the modulo (%) operator work on negative numbers in Python?
(12 answers)
Closed last month.
Been looking through other answers and I still don't understand the modulo for negative numbers in python
For example the answer by df
x == (x/y)*y + (x%y)
so it makes sense that (-2)%5 = -2 - (-2/5)*5 = 3
Doesn't this (-2 - (-2/5)*5) =0 or am I just crazy?
Modulus operation with negatives values - weird thing?
Same with this
negative numbers modulo in python
Where did he get -2 from?
Lastly if the sign is dependent on the dividend why don't negative dividends have the same output as their positive counterparts?
For instance the output of
print([8%5,-8%5,4%5,-4%5])
is
[3, 2, 4, 1]
In Python, modulo is calculated according to two rules:
(a // b) * b + (a % b) == a, and
a % b has the same sign as b.
Combine this with the fact that integer division rounds down (towards −∞), and the resulting behavior is explained.
If you do -8 // 5, you get -1.6 rounded down, which is -2. Multiply that by 5 and you get -10; 2 is the number that you'd have to add to that to get -8. Therefore, -8 % 5 is 2.
In Python, a // b is defined as floor(a/b), as opposed to most other languages where integer division is defined as trunc(a/b). There is a corresponding difference in the interpretation of a % b = a - (a // b) * b.
The reason for this is that Python's definition of the % operator (and divmod) is generally more useful than that of other languages. For example:
def time_of_day(seconds_since_epoch):
minutes, seconds = divmod(seconds_since_epoch, 60)
hours, minutes = divmod(minutes, 60)
days, hours = divmod(hours, 24)
return '%02d:%02d:%02d' % (hours, minutes, seconds)
With this function, time_of_day(12345) returns '03:25:45', as you would expect.
But what time is it 12345 seconds before the epoch? With Python's definition of divmod, time_of_day(-12345) correctly returns '20:34:15'.
What if we redefine divmod to use the C definition of / and %?
def divmod(a, b):
q = int(a / b) # I'm using 3.x
r = a - b * q
return (q, r)
Now, time_of_day(-12345) returns '-3:-25:-45', which isn't a valid time of day. If the standard Python divmod function were implemented this way, you'd have to write special-case code to handle negative inputs. But with floor-style division, like my first example, it Just Works.
The rationale behind this is really the mathematical definition of least residue. Python respects this definition, whereas in most other programming language the modulus operator is really more like a 'reaminder after division' operator. To compute the least residue of -5 % 11, simply add 11 to -5 until you obtain a positive integer in the range [0,10], and the result is 6.
When you divide ints (-2/5)*5 does not evaluate to -2, as it would in the algebra you're used to. Try breaking it down into two steps, first evaluating the part in the parentheses.
(-2/5) * 5 = (-1) * 5
(-1) * 5 = -5
The reason for step 1 is that you're doing int division, which in python 2.x returns the equivalent of the float division result rounded down to the nearest integer.
In python 3 and higher, 2/5 will return a float, see PEP 238.
Check out this BetterExplained article and look # David's comment (No. 6) to get what the others are talking about.
Since we're working w/ integers, we do int division which, in Python, floors the answer as opposed to C. For more on this read Guido's article.
As for your question:
>>> 8 % 5 #B'coz (5*1) + *3* = 8
3
>>> -8 % 5 #B'coz (5*-2) + *2* = -8
2
Hope that helped. It confused me in the beginning too (it still does)! :)
Say -a % b needs to be computed. for ex.
r= 11 % 10
find the next number after 11 that is perfectly divisible by 10 i.e on dividing that next number after 11 gives the remainder 0.
In the above case its 20 which on dividing by 10 gives 0.
Hence, 20-11 = 9 is the number that needs to be added to 11.
The concept if 60 marbles needs to be equally divided among 8 people, actually what you get after dividing 60/8 is 7.5 since you can'nt halve the marbles, the next value after 60 that is perfectly divisible by 8 is 64. Hence 4 more marbles needs to be added to the lot so that everybody share the same joy of marbles.
This is how Python does it when negatives numbers are divided using modulus operator.

How does the modulo (%) operator work on negative numbers in Python?

Exactly how does the % operator work in Python, particularly when negative numbers are involved?
For example, why does -5 % 4 evaluate to 3, rather than, say, -1?
Unlike C or C++, Python's modulo operator (%) always return a number having the same sign as the denominator (divisor). Your expression yields 3 because
(-5) / 4 = -1.25 --> floor(-1.25) = -2
(-5) % 4 = (-2 × 4 + 3) % 4 = 3.
It is chosen over the C behavior because a nonnegative result is often more useful. An example is to compute week days. If today is Tuesday (day #2), what is the week day N days before? In Python we can compute with
return (2 - N) % 7
but in C, if N ≥ 3, we get a negative number which is an invalid number, and we need to manually fix it up by adding 7:
int result = (2 - N) % 7;
return result < 0 ? result + 7 : result;
(See http://en.wikipedia.org/wiki/Modulo_operator for how the sign of result is determined for different languages.)
Here's an explanation from Guido van Rossum:
http://python-history.blogspot.com/2010/08/why-pythons-integer-division-floors.html
Essentially, it's so that a/b = q with remainder r preserves the relationships b*q + r = a and 0 <= r < b.
In python, modulo operator works like this.
>>> mod = n - math.floor(n/base) * base
so the result is (for your case):
mod = -5 - floor(-1.25) * 4
mod = -5 - (-2*4)
mod = 3
whereas other languages such as C, JAVA, JavaScript use truncation instead of floor.
>>> mod = n - int(n/base) * base
which results in:
mod = -5 - int(-1.25) * 4
mod = -5 - (-1*4)
mod = -1
If you need more information about rounding in python, read this.
Other answers, especially the selected one have clearly answered this question quite well. But I would like to present a graphical approach that might be easier to understand as well, along with python code to perform normal mathematical modulo in python.
Python Modulo for Dummies
Modulo function is a directional function that describes how much we have to move further or behind after the mathematical jumps that we take during division over our X-axis of infinite numbers.
So let's say you were doing 7%3
So in forward direction, your answer would be +1, but in backward direction-
your answer would be -2. Both of which are correct mathematically.
Similarly, you would have 2 moduli for negative numbers as well. For eg: -7%3, can result both in -1 or +2 as shown -
Forward direction
Backward direction
In mathematics, we choose inward jumps, i.e. forward direction for a positive number and backward direction for negative numbers.
But in Python, we have a forward direction for all positive modulo operations. Hence, your confusion -
>>> -5 % 4
3
>>> 5 % 4
1
Here is the python code for inward jump type modulo in python:
def newMod(a,b):
res = a%b
return res if not res else res-b if a<0 else res
which would give -
>>> newMod(-5,4)
-1
>>> newMod(5,4)
1
Many people would oppose the inward jump method, but my personal opinion is, that this one is better!!
As pointed out, Python modulo makes a well-reasoned exception to the conventions of other languages.
This gives negative numbers a seamless behavior, especially when used in combination with the // integer-divide operator, as % modulo often is (as in math.divmod):
for n in range(-8,8):
print n, n//4, n%4
Produces:
-8 -2 0
-7 -2 1
-6 -2 2
-5 -2 3
-4 -1 0
-3 -1 1
-2 -1 2
-1 -1 3
0 0 0
1 0 1
2 0 2
3 0 3
4 1 0
5 1 1
6 1 2
7 1 3
Python % always outputs zero or positive*
Python // always rounds toward negative infinity
* ... as long as the right operand is positive. On the other hand 11 % -10 == -9
There is no one best way to handle integer division and mods with negative numbers. It would be nice if a/b was the same magnitude and opposite sign of (-a)/b. It would be nice if a % b was indeed a modulo b. Since we really want a == (a/b)*b + a%b, the first two are incompatible.
Which one to keep is a difficult question, and there are arguments for both sides. C and C++ round integer division towards zero (so a/b == -((-a)/b)), and apparently Python doesn't.
You can use:
result = numpy.fmod(x,y)
it will keep the sign , see numpy fmod() documentation.
It's also worth to mention that also the division in python is different from C:
Consider
>>> x = -10
>>> y = 37
in C you expect the result
0
what is x/y in python?
>>> print x/y
-1
and % is modulo - not the remainder! While x%y in C yields
-10
python yields.
>>> print x%y
27
You can get both as in C
The division:
>>> from math import trunc
>>> d = trunc(float(x)/y)
>>> print d
0
And the remainder (using the division from above):
>>> r = x - d*y
>>> print r
-10
This calculation is maybe not the fastest but it's working for any sign combinations of x and y to achieve the same results as in C plus it avoids conditional statements.
It's what modulo is used for. If you do a modulo through a series of numbers, it will give a cycle of values, say:
ans = num % 3
num
ans
3
0
2
2
1
1
0
0
-1
2
-2
1
-3
0
I also thought it was a strange behavior of Python. It turns out that I was not solving the division well (on paper); I was giving a value of 0 to the quotient and a value of -5 to the remainder. Terrible... I forgot the geometric representation of integers numbers. By recalling the geometry of integers given by the number line, one can get the correct values for the quotient and the remainder, and check that Python's behavior is fine. (Although I assume that you have already resolved your concern a long time ago).
#Deekshant has explained it well using visualisation. Another way to understand %(modulo) is ask a simple question.
What is nearest smaller number to dividend that can be divisible by divisor on X-axis ?
Let's have a look at few examples.
5 % 3
5 is Dividend, 3 is divisor. If you ask above question 3 is nearest smallest number that is divisible by divisor. ans would be 5 - 3 = 2. For positive Dividend, nearest smallest number would be always right side of dividend.
-5 % 3
Nearest smallest number that is divisible by 3 is -6 so ans would be -5 - (-6) = 1
-5 %4
Nearest smallest number that is divisible by 4 is -8 so ans would be -5 - (-8) = 3
Python answers every modulo expression with this method. Hope you can understand next how expression would be going to execute.
I attempted to write a general answer covering all input cases, because many people ask about various special cases (not just the one in OP, but also especially about negative values on the right-hand side) and it's really all the same question.
What does a % b actually give us in Python, explained in words?
Assuming that a and b are either float and/or int values, finite (not math.inf, math.nan etc.) and that b is not zero....
The result c is the unique number with the sign of b, such that a - c is divisible by b and abs(c) < abs(b). It will be an int when a and b are both int, and a float (even if it is exactly equal to an integer) when either a or b is an int.
For example:
>>> -9 % -5
-4
>>> 9 % 5
4
>>> -9 % 5
1
>>> 9 % -5
-1
The sign preservation also works for floating-point numbers; even when a is divisible by b, it is possible to get distinct 0.0 and -0.0 results (recalling that zero is signed in floating-point), and the sign will match b.
Proof of concept:
import math
def sign(x):
return math.copysign(1, x)
def test(a: [int, float], b: [int, float]):
c = a % b
if isinstance(a, int) and isinstance(b, int):
assert isinstance(c, int)
assert c * b >= 0 # same sign or c == 0
else:
assert isinstance(c, float)
assert sign(c) == sign(b)
assert abs(c) < abs(b)
assert math.isclose((a - c) / b, round((a - c) / b))
It's a little hard to phrase this in a way that covers all possible sign and type combinations and accounts for floating-point imprecision, but I'm pretty confident in the above. One specific gotcha for floats is that, because of that floating-point imprecision, the result for a % b might sometimes appear to give b rather than 0. In fact, it simply gives a value very close to b, because the result of the division wasn't quite exact:
>>> # On my version of Python
>>> 3.5 % 0.1
0.09999999999999981
>>> # On some other versions, it might appear as 0.1,
>>> # because of the internal rules for formatting floats for display
What if abs(a) < abs(b)?
A lot of people seem to think this is a special case, or for some reason have difficulty understanding what happens. But there is nothing special here.
For example: consider -1 % 3. How much, as a positive quantity (because 3 is positive), do we have to subtract from -1, in order to get a result divisible by 3? -1 is not divisible by 3; -1 - 1 is -2, which is also not divisible; but -1 - 2 is -3, which is divisible by 3 (dividing in exactly -1 times). By subtracting 2, we get back to divisibility; thus 2 is our predicted answer - and it checks out:
>>> -1 % 3
2
What about with b equal to zero?
It will raise ZeroDivisionError, regardless of whether b is integer zero, floating-point positive zero, or floating-point negative zero. In particular, it will not result in a NaN value.
What about special float values?
As one might expect, nan and signed infinity values for a produce a nan result, as long as b is not zero (which overrides everything else). nan values for b result in nan as well. NaN cannot be signed, so the sign of b is irrelevant in these cases.
Also as one might expect, inf % inf gives nan, regardless of the signs. If we are sharing out an infinite amount of as to an infinite amount of bs, there's no way to say "which infinity is bigger" or by how much.
The only slightly confusing cases are when b is a signed infinity value:
>>> 0 % inf
0.0
>>> 0 % -inf
-0.0
>>> 1 % inf
1.0
>>> 1 % -inf
-inf
As always, the result takes the sign of b. 0 is divisible by anything (except NaN), including infinity. But nothing else divides evenly into infinity. If a has the same sign as b, the result is simply a (as a floating-point value); if the signs differ, it will be b. Why? Well, consider -1 % inf. There isn't a finite value we can subtract from -1, in order to get to 0 (the unique value that we can divide into infinity). So we have to keep going, to infinity. The same logic applies to 1 % -inf, with all the signs reversed.
What about other types?
It's up to the type. For example, the Decimal type overloads the operator so that the result takes the sign of the numerator, even though it functionally represents the same kind of value that a float does. And, of course, strings use it for something completely different.
Why not always give a positive result, or take the sign of a?
The behaviour is motivated by integer division. While % happens to work with floating-point numbers, it's specifically designed to handle integer inputs, and the results for floats fall in line to be consistent with that.
After making the choice for a // b to give a floored division result, the % behaviour preserves a useful invariant:
>>> def check_consistency(a, b):
... assert (a // b) * b + (a % b) == a
...
>>> for a in range(-10, 11):
... for b in range(-10, 11):
... if b != 0:
... check_consistency(a, b) # no assertion is raised
...
In other words: adding the modulus value back, corrects the error created by doing an integer division.
(This, of course, lets us go back to the first section, and say that a % b simply computes a - ((a // b) * b). But that just kicks the can down the road; we still need to explain what // is doing for signed values, especially for floats.)
One practical application for this is when converting pixel coordinates to tile coordinates. // tells us which tile contains the pixel coordinate, and then % tells us the offset within that tile. Say we have 16x16 tiles: then the tile with x-coordinate 0 contains pixels with x-coordinates 0..15 inclusive, tile 1 corresponds to pixel coordinate values 16..31, and so on. If the pixel coordinate is, say, 100, we can easily calculate that it is in tile 100 // 16 == 6, and offset 100 % 16 == 4 pixels from the left edge of that tile.
We don't have to change anything in order to handle tiles on the other side of the origin. The tile at coordinate -1 needs to account for the next 16 pixel coordinates to the left of 0 - i.e., -16..-1 inclusive. And indeed, we find that e.g. -13 // 16 == -1 (so the coordinate is in that tile), and -13 % 16 == 3 (that's how far it is from the left edge of the tile).
By setting the tile width to be positive, we defined that the within-tile coordinates progress left-to-right. Therefore, knowing that a point is within a specific tile, we always want a positive result for that offset calculation. Python's % operator gives us that, on both sides of the y-axis.
What if I want it to work another way?
math.fmod will take the sign of the numerator. It will also return a floating-point result, even for two integer inputs, and raises an exception for signed-infinity a values with non-nan b values:
>>> math.fmod(-13, 16)
-13.0
>>> math.fmod(13, -16)
13.0
>>> math.fmod(1, -inf) # not -inf
1.0
>>> math.fmod(inf, 1.0) # not nan
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: math domain error
It otherwise handles special cases the same way - a zero value for b raises an exception; otherwise any nan present causes a nan result.
If this also doesn't suit your needs, then carefully define the exact desired behaviour for every possible corner case, figure out where they differ from the built-in options, and make a wrapper function.

Categories