Avoiding divergent solutions with odeint? shooting method - python

I am trying to solve an equation in Python. Basically what I want to do is to solve the equation:
(1/x^2)*d(Gam*dL/dx)/dx)+(a^2*x^2/Gam-(m^2))*L=0
This is the Klein-Gordon equation for a massive scalar field in a Schwarzschild spacetime. It suppose that we know m and Gam=x^2-2*x. The initial/boundary condition that I know are L(2+epsilon)=1 and L(infty)=0. Notice that the asymptotic behavior of the equation is
L(x-->infty)-->Exp[(m^2-a^2)*x]/x and Exp[-(m^2-a^2)*x]/x
Then, if a^2>m^2 we will have oscillatory solutions, while if a^2 < m^2 we will have a divergent and a decay solution.
What I am interested is in the decay solution, however when I am trying to solve the above equation transforming it as a system of first order differential equations and using the shooting method in order to find the "a" that can give me the behavior that I am interested about, I am always having a divergent solution. I suppose that it is happening because odeint is always finding the divergent asymptotic solution. Is there a way to avoid or tell to odeint that I am interested in the decay solution? If not, do you know a way that I could solve this problem? Maybe using another method for solving my system of differential equations? If yes, which method?
Basically what I am doing is to add a new system of equation for "a"
(d^2a/dx^2=0, da/dx(2+epsilon)=0,a(2+epsilon)=a_0)
in order to have "a" as a constant. Then I am considering different values for "a_0" and asking if my boundary conditions are fulfilled.
Thanks for your time. Regards,
Luis P.

I am incorporating the value at infinity considering the assimptotic behavior, it means that I will have a relation between the field and its derivative. I will post the code for you if it is helpful:
from IPython import get_ipython
get_ipython().magic('reset -sf')
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from math import *
from scipy.integrate import ode
These are initial conditions for Schwarzschild. The field is invariant under reescaling, then I can use $L(2+\epsilon)=1$
def init_sch(u_sch):
om = u_sch[0]
return np.array([1,0,om,0]) #conditions near the horizon, [L_c,dL/dx,a,da/dx]
These are our system of equations
def F_sch(IC,r,rho_c,m,lam,l,j=0,mu=0):
L = IC[0]
ph = IC[1]
om = IC[2]
b = IC[3]
Gam_sch=r**2.-2.*r
dR_dr = ph
dph_dr = (1./Gam_sch)*(2.*(1.-r)*ph+L*(l*(l+1.))-om**2.*r**4.*L/Gam_sch+(m**2.+lam*L**2.)*r**2.*L)
dom_dr = b
db_dr = 0.
return [dR_dr,dph_dr,dom_dr,db_dr]
Then I try for different values of "om" and ask if my boundary conditions are fulfilled. p_sch are the parameters of my model. In general what I want to do is a little more complicated and in general I will need more parameters that in the just massive case. Howeve I need to start with the easiest which is what I am asking here
p_sch = (1,1,0,0) #[rho_c,m,lam,l], lam and l are for a more complicated case
ep = 0.2
ep_r = 0.01
r_end = 500
n_r = 500000
n_omega = 1000
omega = np.linspace(p_sch[1]-ep,p_sch[1],n_omega)
r = np.linspace(2+ep_r,r_end,n_r)
tol = 0.01
a = 0
for j in range(len(omega)):
print('trying with $omega =$',omega[j])
omeg = [omega[j]]
ini = init_sch(omeg)
Y = odeint(F_sch,ini,r,p_sch,mxstep=50000000)
print Y[-1,0]
#Here I ask if my asymptotic behavior is fulfilled or not. This should be basically my value at infinity
if abs(Y[-1,0]*((p_sch[1]**2.-Y[-1,2]**2.)**(1/2.)+1./(r[-1]))+Y[-1,1]) < tol:
print(j,'times iterations in omega')
print("R'(inf)) = ", Y[-1,0])
print("\omega",omega[j])
omega_1 = [omega[j]]
a = 10
break
if a > 1:
break
Basically what I want to do here is to solve the system of equations giving different initial conditions and find a value for "a=" (or "om" in the code) that should be near to my boundary conditions. I need this because after this I can give such initial guest to a secant method and try to fiend a best value for "a". However, always that I am running this code I am having divergent solutions that it is, of course, a behavior that I am not interested. I am trying the same but considering the scipy.integrate.solve_vbp, but when I run the following code:
from IPython import get_ipython
get_ipython().magic('reset -sf')
import numpy as np
import matplotlib.pyplot as plt
from math import *
from scipy.integrate import solve_bvp
def bc(ya,yb,p_sch):
m = p_sch[1]
om = p_sch[4]
tol_s = p_sch[5]
r_end = p_sch[6]
return np.array([ya[0]-1,yb[0]-tol_s,ya[1],yb[1]+((m**2-yb[2]**2)**(1/2)+1/r_end)*yb[0],ya[2]-om,yb[2]-om,ya[3],yb[3]])
def fun(r,y,p_sch):
rho_c = p_sch[0]
m = p_sch[1]
lam = p_sch[2]
l = p_sch[3]
L = y[0]
ph = y[1]
om = y[2]
b = y[3]
Gam_sch=r**2.-2.*r
dR_dr = ph
dph_dr = (1./Gam_sch)*(2.*(1.-r)*ph+L*(l*(l+1.))-om**2.*r**4.*L/Gam_sch+(m**2.+lam*L**2.)*r**2.*L)
dom_dr = b
db_dr = 0.*y[3]
return np.vstack((dR_dr,dph_dr,dom_dr,db_dr))
eps_r=0.01
r_end = 500
n_r = 50000
r = np.linspace(2+eps_r,r_end,n_r)
y = np.zeros((4,r.size))
y[0]=1
tol_s = 0.0001
p_sch= (1,1,0,0,0.8,tol_s,r_end)
sol = solve_bvp(fun,bc, r, y, p_sch)
I am obtaining this error: ValueError: bc return is expected to have shape (11,), but actually has (8,).
ValueError: bc return is expected to have shape (11,), but actually has (8,).

Related

Solving an ODE with scipy.integrate.solve_bvp, the return of my function is not able to be broadcast into the appropriate array shape for solve_bvp

I am trying to solve a second order ODE with solve_bvp. I have split the second order ODE into a system of tow first oder ODEs. I have a changing set of constants depending on the x (mesh) value. So I am passing these as an array of shape (N,) into my function numdens. While trying to run solve_bvp I get the error that the returns have different shapes namely (N,) and (N-1,) and thus cannot be broadcast into one array. But when I check each return back manually outside of the function it has the shape (N,).
If I run the solver without my changing constants I get a solution akin to the right one.
import numpy as np
from scipy.integrate import solve_bvp,odeint
import matplotlib.pyplot as plt
E_0 = 1 * 0.0000016021773 #erg: gcm^2/s^2
m_H = 1.6*10**(-24) #g
c = 3e11 #cm
sigma_c = 2*10**(-23)
n_0 = 1*10**(20) #1/cm^3
v_0 = (2*E_0/m_H)**(0.5) #cm/s
T = 10**7
b = 20.3
n_eq = b*T**3
n_s = 2.03*10**(19)
Q = 1
def velocity(v,x):
dvdx = -sigma_c*n_0*v_0*((8*v_0*v-7*v**2-v_0**2)/(2*v*c))
return dvdx
n_num = 100
x_num = np.linspace(-1*10**(6),3*10**(6), n_num)
sol_velo = odeint(velocity,0.999999999999*v_0,x_num)
sol_new = np.reshape(sol_velo,n_num)
def constants(v):
D1 = (c*v/(3*n_0*v_0*sigma_c))
D2 = ((v**2-8*v_0*v+v_0**2)/(6*v))
D3 = sigma_c*n_0*v_0*((8*v_0*v-7*v**2-v_0**2)/(2*v*c))
return D1,D2,D3
def numdens(x,y):
v = sol_new
D1,D2,D3 = constants(v)
return np.vstack((y[1],(-D2*y[1]-D3*y[0]+Q*((1-y[0])/n_eq))/(D1)))
def bc_num(ya, yb):
return np.array([ya[0]-n_s,yb[0]-n_eq])
y_num = np.array([np.linspace(n_s, n_eq, n_num),np.linspace(n_s, n_eq, n_num)])
sol_num = solve_bvp(numdens, bc_num, x_num, y_num)
plt.plot(sol_num.x, sol_num.y[0], label='$n(x)$')
plt.plot(x_num, sol_velo-v_0/7, label='$v(x)$')
plt.yscale('log')
plt.grid(alpha=0.5)
plt.legend(framealpha=1)
plt.show()
You need to take into account that the BVP solver uses an adaptive mesh. That is, after refining the initial guess on the initial grid the solver identifies regions with overly large errors and creates new mesh nodes there. As far as I have seen, the opposite is not implemented, even if it may be in some applications sensible to reduce the number of mesh nodes on especially "nice" segments.
Thus what you are doing the the numdens function is incomprehensible, it has to function exactly like any other function that you would pass to an ODE solver. If I had to propose some fast fix, and without knowing what the underlying problem is that you want to solve, I would change the assignment of v to
v = np.interp(x,x_num,sol_velo)
as that should at least produce an array of the correct format.

lmfit for exponential data returns linear function

I'm working on fitting muon lifetime data to a curve to extract the mean lifetime using the lmfit function. The general process I'm using is to bin the 13,000 data points into 10 bins using the histogram function, calculating the uncertainty with the square root of the counts in each bin (it's an exponential model), then use the lmfit module to determine the best fit along with means and uncertainty. However, graphing the output of the model.fit() method returns this graph, where the red line is the fit (and obviously not the correct fit). Fit result output graph
I've looked online and can't find a solution to this, I'd really appreciate some help figuring out what's going on. Here's the code.
import os
import numpy as np
import matplotlib.pyplot as plt
from numpy import sqrt, pi, exp, linspace
from lmfit import Model
class data():
def __init__(self,file_name):
times_dirty = sorted(np.genfromtxt(file_name, delimiter=' ',unpack=False)[:,0])
self.times = []
for i in range(len(times_dirty)):
if times_dirty[i]<40000:
self.times.append(times_dirty[i])
self.counts = []
self.binBounds = []
self.uncertainties = []
self.means = []
def binData(self,k):
self.counts, self.binBounds = np.histogram(self.times, bins=k)
self.binBounds = self.binBounds[:-1]
def calcStats(self):
if len(self.counts)==0:
print('Run binData function first')
else:
self.uncertainties = sqrt(self.counts)
def plotData(self,fit):
plt.errorbar(self.binBounds, self.counts, yerr=self.uncertainties, fmt='bo')
plt.plot(self.binBounds, fit.init_fit, 'k--')
plt.plot(self.binBounds, fit.best_fit, 'r')
plt.show()
def decay(t, N, lamb, B):
return N * lamb * exp(-lamb * t) +B
def main():
muonEvents = data('C:\Users\Colt\Downloads\muon.data')
muonEvents.binData(10)
muonEvents.calcStats()
mod = Model(decay)
result = mod.fit(muonEvents.counts, t=muonEvents.binBounds, N=1, lamb=1, B = 1)
muonEvents.plotData(result)
print(result.fit_report())
print (len(muonEvents.times))
if __name__ == "__main__":
main()
This might be a simple scaling problem. As a quick test, try dividing all raw data by a factor of 1000 (both X and Y) to see if changing the magnitude of the data has any effect.
Just to build on James Phillips answer, I think the data you show in your graph imply values for N, lamb, and B that are very different from 1, 1, 1. Keep in mind that exp(-lamb*t) is essentially 0 for lamb = 1, and t> 100. So, if the algorithm starts at lamb=1 and varies that by a little bit to find a better value, it won't actually be able to see any difference in how well the model matches the data.
I would suggest trying to start with values that are more reasonable for the data you have, perhaps N=1.e6, lamb=1.e-4, and B=100.
As James suggested, having the variables have values on the order of 1 and putting in scale factors as necessary is often helpful in getting numerically stable solutions.

Scipy odeint giving index out of bounds errors

I am trying to solve a differential equation in python using Scipy's odeint function. The equation is of the form dy/dt = w(t) where w(t) = w1*(1+A*sin(w2*t)) for some parameters w1, w2, and A. The code I've written works for some parameters, but for others I get given index out of bound errors.
Here's some example code that works
import numpy as np
import scipy.integrate as integrate
t = np.arange(1000)
w1 = 2*np.pi
w2 = 0.016*np.pi
A = 1.0
w = w1*(1+A*np.sin(w2*t))
def f(y,t0):
return w[t0]
y = integrate.odeint(f,0,t)
Here's some example code that doesn't work
import numpy as np
import scipy.integrate as integrate
t = np.arange(1000)
w1 = 0.3*np.pi
w2 = 0.005*np.pi
A = 0.15
w = w1*(1+A*np.sin(w2*t))
def f(y,t0):
return w[t0]
y = integrate.odeint(f,0,t)
The only thing that changes between these is that the three parameters w1, w2, and A are smaller in the second, but the second one always gives me the following error
line 13, in f
return w[t0]
IndexError: index 1001 is out of bounds for axis 0 with size 1000
This error continues even after restarting python and running the second code first. I've tried with other parameters, some seem to work, but others give me different index out of bounds errors. Some say 1001 is out of bounds, some say 1000, some say 1008, ect.
Changing the initial condition on y (the second input for odeint, which I have as 0 on the above codes) also changes the number on the index error, so it might be that I'm misunderstanding what to put here. I wasn't told what the initial conditions should be other than that y is used as a phase of a signal, so I presumed it to be initially 0.
What you want to do is
def w(t):
return w1*(1+A*np.sin(w2*t))
def f(y,t0):
return w(t0)
Array indices are typically integers, time arguments and values of solutions of differential equations are typically real numbers. Thus there is some conceptual difficulty in invoking w[t0].
You might also try to integrate directly the function w, there is no inherent difficulty in this example.
As for coupled systems, you solve them as coupled systems.
def w(t):
return w1*(1+A*np.sin(w2*t))
def f(y,t):
wt = w(t)
return np.array([ wt, wt*sin(y[1]-y[0]) ])

Solving nonlinear overdetermined system using python

I'm trying to find a good way to solve a nonlinear overdetermined system with python. I looked into optimization tools here http://docs.scipy.org/doc/scipy/reference/optimize.nonlin.html but I can't figure out how to use them. What I have so far is
#overdetermined nonlinear system that I'll be using
'''
a = cos(x)*cos(y)
b = cos(x)*sin(y)
c = -sin(y)
d = sin(z)*sin(y)*sin(x) + cos(z)*cos(y)
e = cos(x)*sin(z)
f = cos(z)*sin(x)*cos(z) + sin(z)*sin(x)
g = cos(z)*sin(x)*sin(y) - sin(z)*cos(y)
h = cos(x)*cos(z)
a-h will be random int values in the range 0-10 inclusive
'''
import math
from random import randint
import scipy.optimize
def system(p):
x, y, z = p
return(math.cos(x)*math.cos(y)-randint(0,10),
math.cos(x)*math.sin(y)-randint(0,10),
-math.sin(y)-randint(0,10),
math.sin(z)*math.sin(y)*math.sin(x)+math.cos(z)*math.cos(y)-randint(0,10),
math.cos(x)*math.sin(z)-randint(0,10),
math.cos(z)*math.sin(x)*math.cos(z)+math.sin(z)*math.sin(x)-randint(0,10),
math.cos(z)*math.sin(x)*math.sin(y)-math.sin(z)*math.cos(y)-randint(0,10),
math.cos(x)*math.cos(z)-randint(0,10))
x = scipy.optimize.broyden1(system, [1,1,1], f_tol=1e-14)
could you help me out a bit here?
If I understand you right, you want to find an approximate solution to the non-linear system of equations f(x) = b where b is the vector containing the random values b=[a,...,h].
In order to do this you will first need to remove the random values from the system function, because otherwise in each iteration the solver will try to solve a different equation system. Moreover, I think that the basic Broyden method only works for a system with as many unknowns as equations. Alternatively you could use scipy.optimize.leastsq. A possible solution looks like this:
# I am using numpy because it's more convenient for the generation of
# random numbers.
import numpy as np
from numpy.random import randint
import scipy.optimize
# Removed random right-hand side values and changed nomenclature a bit.
def f(x):
x1, x2, x3 = x
return np.asarray((math.cos(x1)*math.cos(x2),
math.cos(x1)*math.sin(x2),
-math.sin(x2),
math.sin(x3)*math.sin(x2)*math.sin(x1)+math.cos(x3)*math.cos(x2),
math.cos(x1)*math.sin(x3),
math.cos(x3)*math.sin(x1)*math.cos(x3)+math.sin(x3)*math.sin(x1),
math.cos(x3)*math.sin(x1)*math.sin(x2)-math.sin(x3)*math.cos(x2),
math.cos(x1)*math.cos(x3)))
# The second parameter is used to set the solution vector using the args
# argument of leastsq.
def system(x,b):
return (f(x)-b)
b = randint(0, 10, size=8)
x = scipy.optimize.leastsq(system, np.asarray((1,1,1)), args=b)[0]
I hope this is of help for you. However, note that it is extremely unlikely that you will find a solution, especially when you generate random integers in the interval [0,10] while the range of f is limited to [-2,2]

Working out an equation

I'm trying to solve a differential equation numerically, and am writing an equation that will give me an array of the solution to each time point.
import numpy as np
import matplotlib.pylab as plt
pi=np.pi
sin=np.sin
cos=np.cos
sqrt=np.sqrt
alpha=pi/4
g=9.80665
y0=0.0
theta0=0.0
sina = sin(alpha)**2
second_term = g*sin(alpha)*cos(alpha)
x0 = float(raw_input('What is the initial x in meters?'))
x_vel0 = float(raw_input('What is the initial velocity in the x direction in m/s?'))
y_vel0 = float(raw_input('what is the initial velocity in the y direction in m/s?'))
t_f = int(raw_input('What is the maximum time in seconds?'))
r0 = x0
vtan = sqrt(x_vel0**2+y_vel0**2)
dt = 1000
n = range(0,t_f)
r_n = r0*(n*dt)
r_nm1 = r0((n-1)*dt)
F_r = ((vtan**2)/r_n)*sina-second_term
r_np1 = 2*r_n - r_nm1 + dt**2 * F_r
data = [r0]
for time in n:
data.append(float(r_np1))
print data
I'm not sure how to make the equation solve for r_np1 at each time in the range n. I'm still new to Python and would like some help understanding how to do something like this.
First issue is:
n = range(0,t_f)
r_n = r0*(n*dt)
Here you define n as a list and try to multiply the list n with the integer dt. This will not work. Pure Python is NOT a vectorized language like NumPy or Matlab where you can do vector multiplication like this. You could make this line work with
n = np.arange(0,t_f)
r_n = r0*(n*dt),
but you don't have to. Instead, you should move everything inside the for loop to do the calculation at each timestep. At the present point, you do the calculation once, then add the same only result t_f times to the data list.
Of course, you have to leave your initial conditions (which is a key part of ODE solving) OUTSIDE of the loop, because they only affect the first step of the solution, not all of them.
So:
# Initial conditions
r0 = x0
data = [r0]
# Loop along timesteps
for n in range(t_f):
# calculations performed at each timestep
vtan = sqrt(x_vel0**2+y_vel0**2)
dt = 1000
r_n = r0*(n*dt)
r_nm1 = r0*((n-1)*dt)
F_r = ((vtan**2)/r_n)*sina-second_term
r_np1 = 2*r_n - r_nm1 + dt**2 * F_r
# append result to output list
data.append(float(r_np1))
# do something with output list
print data
plt.plot(data)
plt.show()
I did not add any piece of code, only rearranged your lines. Notice that the part:
n = range(0,t_f)
for time in n:
Can be simplified to:
for time in range(0,t_f):
However, you use n as a time variable in the calculation (previously - and wrongly - defined as a list instead of a single number). Thus you can write:
for n in range(0,t_f):
Note 1: I do not know if this code is right mathematically, as I don't even know the equation you're solving. The code runs now and provides a result - you have to check if the result is good.
Note 2: Pure Python is not the best tool for this purpose. You should try some highly optimized built-ins of SciPy for ODE solving, as you have already got hints in the comments.

Categories